中考数学知识点
1.函数
2.几何 全等 相似 四边形 可能有大题
题的类型
1选择(知识点)(所有)
2填空(同上)
3计算(二次根式 一元二次方程 分式 锐角三角函数sin cos等)
4作图(轴对称 旋转 平面直角坐标系等)
5方案设计(一次函数 不等式 二元一次方程组应用等)*
6函数几何的结合(找点问题 二次函数 圆 勾股定理 四边形等)*
7三个图题(四边形 相似 等腰三角形 全等 勾股定理等)*
8二次函数应用(抛物线)
9.一次函数图像的应用(路程 相遇 加工等)
❷ 中考数学全部考点都有什么
哪个地区的?不同地区教材不一样。考纲要求也不一样。
❸ 中考数学一般主要要考哪些知识点
这个既要看这几年的数学的常考知识点。
还有可能根据地区的不同,有不同的题。
这几年的数学中考题一般都是由易到难。
除了单纯的计算,还有一些综合运用题。
现在的数学考题一般综合性较强,
不仅要记住课本上的知识点,还要灵活的运用。
❹ 中考数学考点有多少
一、数与式; 二、方程(不等式)与方程(不等式)组; 三、函数;一次、反比、二次; 四、三角形;相似、全等、直角三角形(正弦。。); 五、圆 六、概率 其中二次函数是重点
❺ 中考数学各知识点所占分值各是多少
你是什么地方的?现在中考命题基本上就是以市为单位的,各个市区的试题是不同的。当然也可能会有省卷。比如广东就有省卷和市卷分开来考试的 。所以具体的知识点的比值会不同的。
❻ 初中数学中考重点是什么
很多的学生到了初中之后,发现自己的分数会有一定的下降,这可能是由于上初中之后数学科目的难度加大,所以分数会有一定的降低,那么初中数学应该怎样学?应该使用什么方式哪?
知识点
当老师在讲完内容之后会讲一些课外的内容,一般是定理、概念等等,会让你对这些知识更加的了解,所以如果对这类题目有问题的同学可以多看一些课外的题目,当然想要提升分数是离不开练习题的,想要多好就需要多做一些习题,但是不可以过多,需要边做边思考才可以,这样所学的知识就会运用出来.
以上就是初中数学应该怎样学习的内容,如果在这个阶段对自己分数不满意的同学可以借鉴一下以上的内容,或许会对你有一定的帮助,将自身的分数提升.
❼ 中考数学重点知识归纳内容是什么
一、圆周角定理及其推论
1、圆周角
顶点在圆上,并且两边都和圆相交的角叫做圆周角。
2、圆周角定理
一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
二、一些基本公式
三倍角的正弦、余弦和正切公式
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]
三、二元一次方程组
1、二元一次方程
含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程。
2、二元一次方程的解
使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解。
3、二元一次方程组
两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组。一般形式:(不全为0)
4、二元一次方程组的解
使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。
5、二元一次方程组的解法
四、基本思想:"消元"
解法:(1)代入法(2)加减法(3)二元一次方程组一元一次方程组.
6、三元一次方程
把含有三个未知数,并且含有未知数的项的次数都是1的整式方程。
五、列方程(组)解应用题
注意:千万不要死记硬背例题的类型及其解法,要具体问题具体分析,一般来讲,应按下面的步骤进行:
1、审题:弄清题意和题目中的已知量、未知量,并能找出能够表示应用问题的全部含义的等量关系。
2、设未知数:选择一个或几个适当的未知量,用字母表示,并根据题目的数量关系,用含未知数的代数式表示相关的未知量。
3、列方程(组):根据等量关系列出方程(组)。
4、解方程(组):其过程可以省略,但要注意技巧和方法。
5、检验:首先检查所列方程(组)是否正确,然后检验所得方程的解是否符合题意。
6、写答:不要忘记单位名称。
7、分式方程的解法
①一般解法:去分母法,即方程两边同乘以最简公分母。
②特殊解法:换元法。
(2)验根:由于在去分母过程中,当未知数的取值范围扩大而有可能产生增根.因此,验根是解分式方程必不可少的步骤,一般把整式方程的根的值代人最简公分母,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去。
说明:解分式方程,一般先考虑换元法,再考虑去分母法。
六、相交线中的角
两条直线相交,可以得到四个角,我们把两条直线相交所构成的四个角中,有公共顶点但没有公共边的两个角叫做对顶角。我们把两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角叫做临补角。
临补角互补,对顶角相等。
直线AB,CD与EF相交(或者说两条直线AB,CD被第三条直线EF所截),构成八个角。其中∠1与∠5这两个角分别在AB,CD的上方,并且在EF的同侧,像这样位置相同的一对角叫做同位角;∠3与∠5这两个角都在AB,CD之间,并且在EF的异侧,像这样位置的两个角叫做内错角;∠3与∠6在直线AB,CD之间,并侧在EF的同侧,像这样位置的两个角叫做同旁内角。
七、线段的性质
1、线段公理:所有连接两点的线中,线段最短。也可简单说成:两点之间线段最短。
2、连接两点的线段的长度,叫做这两点的距离。
3、线段的中点到两端点的距离相等。
4、线段的大小关系和它们的长度的大小关系是一致的。
5、线段垂直平分线的性质定理及逆定理
垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。