数学建模能力
数学建模大赛的目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力。竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,不要求参赛者预先掌握深入的专门知识,但是需要参赛者学过高等学校的数学课程。要求参赛者具备对题目进行模型假设、建立和求解、计算方法的设计和计算机实现、结果的分析和检验、模型的改进等方面能力。
⑵ 【求助!!!】数学建模究竟考察什么能力为什么会出现整体实力,不管是数学理论还是计算机能力都很强的
建模这东西很不好说的,毕竟他没有实物,他完全看你的论文写作能力,即使你有再强的能力,你在论文说不明白自己的模型和思想,也是没用的。。我有的朋友数学和编程都很强,写出来的东西却是非常口语化,怎么拿奖?不是有一句话说的好吗,数模要的是你能够忽悠得住审核人。。没拿奖也不需要怀疑自己能力的,论文毕竟要答道点子上。。
⑶ 请问数学建模对那一方面的能力要求较高
自学能力,团队协作,软件,数学思维,专业课。《数学建模案例分析》《matlaB》····其实和数学有关的一切东西都有可能用的
⑷ 如何提高数学建模能力
一、立足实际,多渠道、多层面培养学生应用意识。
数学问题源于现实生活,是从生活、生产实际问题中抽象而来。因而,在数学知识、数学方法、数学思想的传授中,应尽可能地联系生活、生产实际。
数学概念多是由实际问题抽象而来,大多有其背景,因此在教学中应重视概念从实际引入,通过实际问题抽象出数学概念,培养学生应用数学的兴趣。引入正负数概念时介绍古代人们如何用算筹进行计算的故事,引入有序数对时用去电影院看电影找座位的亲身经历,等等,此外应当补充一些有趣的实际问题,特别是对教材中没有给出的实际问题抽象概念,既加深学生对概念的理解,又培养学生对应用问题的兴趣。例如:在讲解一元一次方程时,可从古代数学家阿尔·花剌子模写的《对消与还原》说起。
二、把握教材,立足课本,为更好培养学生建模能力夯实基础。
要提高学生数学建模能力除了在教学中潜移默化地培养学生的数学应用意识外,还需要立足课本,夯实所学的基础知识。如果学生对所学的数学知识不及时加以巩固,则提高建模能力根本无从谈起。数学建模能力是学生解答数学问题的一种综合能力。无知便无能,部分学生在建模时所遇到的困难与所学课本知识不牢固直接有关。
三、突破题意阅读关,提高学生抽象概括能力,培养学生建模能力。
在教学中,我们经常可见部分学生在解决实际问题时,往往表现为无从下手、不知所措;思维主题束缚于旧知,苦思而不得突破,在已知与未知之间的鸿沟不能跨越而徘徊不前的情况。而解决实际问题的关键之一是将实际情况抽象转化为数学问题,即建立数学模型。要建立恰当的数学模型必须突破题意阅读关,捕捉题中的关键信息。由于应用题往往题目较长,久而久之,学生解应用题的能力得不到提高,因此越来越怕应用问题,逐渐失去解题信心,产生畏惧心理。要解决好上述问题,首先,教师应明确学生实际的认知水平,对所解决的问题把握好难度关。其次要积极引导学生主动理解题意,获取信息,重视从普通语言到数学语言的翻译过程。在从实际问题抽象出数学本质的关键一步不能为学生代劳,要启发学生自己总结数学模型;切忌贪多求快直接给出式子的做法。
三、系统归纳、总结经验,提高学生数学建模能力。
及时系统归纳、总结解题经验是提高学生建模能力的重要途径。在平常教学中要及时指导学生归纳整理形成能力,进一步消除畏难心理,提高建模能力。
⑸ 数学建模需要哪些数学能力
抽象能力、提取主要因素的能力、检验能力、优化提高、解决模型能力、高数、线代、概率、微分方程等基本知识以及一定的编程能力
⑹ 1.什么是数学模型数学建模的一般步骤是什么 2.数学建模需要具备哪些能力和知识 答的好悬赏加
数学建模是利用数学方法解决实际问题的一种实践.即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解.
数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一.
数学建模的一般方法和步骤
建立数学模型的方法和步骤并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性.建模的一般方法:
机理分析:根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义.
测试分析方法:将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型.测试分析方法也叫做系统辩识.
将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法.
在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定.机理分析法建模的具体步骤大致如下:
1、 实际问题通过抽象、简化、假设,确定变量、参数;
2、 建立数学模型并数学、数值地求解、确定参数;
3、 用实际问题的实测数据等来检验该数学模型;
4、 符合实际,交付使用,从而可产生经济、社会效益;不符合实际,重新建模.
数学模型的分类:
1、 按研究方法和对象的数学特征分:初等模型、几何模型、优化模型、微分方程模型、图论模型、逻辑模型、稳定性模型、统计模型等.
2、 按研究对象的实际领域(或所属学科)分:人口模型、交通模型、环境模型、生态模型、生理模型、城镇规划模型、水资源模型、污染模型、经济模型、社会模型等.
数学建模需要丰富的数学知识,涉及到高等数学,离散数学,线性代数,概率统计,复变函数等等基本的数学知识.同时,还要有广泛的兴趣,较强的逻辑思维能力,以及语言表达能力等等.
参加数学建模竞赛需知道的内容
一、全国大学生数学建模竞赛
二、数学建模的方法及一般步骤
三、重要的数学模型及相应案例分析
1、线性规划模型及经济模型案例分析
2、层次分析模型及管理模型案例分析
3、统计回归模型及案例分析
4、图论模型及案例分析
5、微分方程模型及案例分析
四、相关软件
1、Matlab软件及编程;2、Lingo软件;3、Lindo软件。
五、数模十大常用算法
1. 蒙特卡罗算法。2. 数据拟合、参数估计、插值等数据处理算法。3. 线性规划、整数规划、多元规划、二次规划等规划类算法。4. 图论算法。5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。6. 最优化理论的三大非经典算法。7. 网格算法和穷举法。8. 一些连续数据离散化方法。9. 数值分析算法。10. 图象处理算法。
六、如何查阅资料
七、如何写作论文
八、如何组织队伍:团队精神,配合良好,不断的提出问题和解决问题。
九、如何才能获奖:比较完整,有几处创新点。
十、如何信息处理:WORD、LaTeX,飞秋、QQ。
其实主要看下例子就可以了,知道一些基本的模型,我这里也有很多例子,各个学校的讲座都有要的话直接向我要
⑺ 如何快速提高数学建模能力
掌握常用的模型以及算法,了解原理,并掌握几款数模常用的软件;平时多看看优秀论文,比赛的时候多学点东西;这个东西也需要多练习就会好一点的。。
⑻ 如何培养数学建模能力
新课标下如何培养学生的数学建模思想
数学模型是指针对或参照某种事物的特征或数量相依关系,采用形式化的数学语言,概括地或近似地表示出来的一种数学结构。初中数学中常见的建模方法有:对现实生活中普遍存在的等量关系(不等关系),建立方程模型(不等式模型);对现实生活中普遍存在的变量关系,建立函数模型;涉及图形的,建立几何模型;涉及对数据的收集、整理、分析,建立统计模型……这些模型是常见的,并且对它们的研究具有典型的意义,这也就注定了这些内容的重要性。在中学阶段,数学建模的教学符合数学新课程改革理念。通过建模教学,可以加深学生对数学知识和方法的理解和掌握,调整学生的知识结构,深化知识层次。学生通过观察、收集、比较、分析、综合、归纳、转化、构建、解答等一系列认识活动来完成建模过程,认识和掌握数学与相关学科及现实生活的联系,感受到数学的广泛应用。同时,培养学生应用数学的意识和自主、合作、探索、创新的精神,使学生能成为学习的主体。因此在数学课堂教学中,教师应逐步培养学生数学建模的思想、方法,形成学生良好的思维习惯和用数学的能力。下面谈谈建模思想在初中数学教学中几种常见的应用类型。
一、 方程思想
新课标要求能够根据具体问题中的数量关系列出方程,体会方程是刻画现实世界中的一个有效的数学模型。这即是方程的思想在初中数学中的应用,它要求我们能够从问题的数量关系入手,运用数学语言将问题中的条件转化为方程(组),然后通过解方程(组)使问题获解。例:学校准备在图书馆后面的场地边上建一个面积为50平方米的长方形自行车棚,一边利用图书馆的后墙,并利用已有的总长为25米的铁围栏,请你设计,如何搭建比较合理?此题是华东师大出版的数学(九年级上)课本P38习题第9题。它考查了同学们在现实生活的背景中理解基本数量关系的能力。
显然,方程的思想就是把未知量用字母表示和已知量一起参与建立等式,构造方程的方法来解决问题,体现了未知和已知的统一。所以,在建立方程模型时,应着重培养学生如何学会寻找问题中的已知量、未知量的关系建立方程。随着课改的深入,数学命题更重视以社会热点,焦点和日常生活中熟悉的事实为背景,构建一个有鲜活背景,与社会,生活相关的数学应用题。因此,在课堂教学中,教师应引导学生关注生活,生产中的数学问题,尽可能给学生提供合适的问题,鼓励学生积极参与解决问题的活动,自己去探索,研究,从而强化应用数学的意识,并且具备把实际问题转化为数学问题的能力,使学生领会数学建模的思想和基本过程,提高解决问题的能力和信心。
二、不等式(组)的思想
同样的,数学建模思想用于不等式(组),新课标提出了类似的要求。不等式(组)的思想即从问题的数量关系出发,运用条件将问题中的数量关系转化为不等式(组)来解决。
例:某校初一、初二两年段学生参加社会实践活动,原计划租用48座客车若干辆,但还有24人无座位。
1) 设原计划租用48座客车x辆,试用x的代数式表示这两个年段学生的总人数。
2) 现决定租用60座客车,则可比原计划租48座客车少2辆,且所租60座客车中有一辆没有坐满,但这辆车已坐的座位超过36位,请你求出该校这两个年段学生总人数。此题便可通过构建不等关系得以解答。
三、 函数思想
新课标提出,能用适当的函数表示法刻画某些实际问题中变量之间的关系变化,结合对函数关系的分析,尝试对变量的变化规律进行初步预测,能用一次函数,二次函数等来解决简单的实际问题。在学习了正、反比例函数、一次函数和二次函数后,学生的头脑中已经有了这些函数的模型。因此,一些实际问题就可以通过建立函数模型来解决
例:某中学要印刷本校高中录取通知书,有两个印刷厂前来联系制作业务。甲厂优惠条件是每份定价1.5元,八折收费,另收900元制版费;乙厂的收费条件是每份定价1.5元的价格不变,而制版费900元则六折优惠,且甲、乙都规定,一次印刷数量至少是500份,如何根据印数数量选择比较合算的方案?若印刷数量为2000份,应选择哪个?费用是多少?
方案设计题是基础知识与基本技能结合比较紧密的一类应用题。此题不仅充分运用了函数的思想,又用到分类讨论思想。其形式上表述生产、销售、规划等问题十分贴近生活,是近年来中考热点问题。
四、 统计思想
在当前的经济生活中,统计知识的应用越来越广泛。而数学建模思想的应用在统计学方面的研究得到很好的体现。如新课标明确提出:体会用样本估计总体的思想。例:在某树林中100平方米的面积上统计有8棵红枫树,整个树林面积为10000平方米,你能估计整个树林共有多少棵枫树吗?
由以上几种常见数学模型的建立,可以发现数学模型的建立过程大致有以下三个步骤:①实际问题→数学模型;②数学模型→数学的解;③数学的解→实际问题的解.因此,在实际课堂教学中,教师应以学生为主体,充分引导学生注意观察生活中的各种现象,充分利用教材的优势,创造性使用教材,努力创设合适的问题情境,让学生投入到解决问题的实践活动中,自己去探索,经历数学建模的全过程,初步领会数学模型的思想和方法,增强数学应用意识,提高学生的创新能力,养成良好的思维品质,使学生学到有用的数学,学到不同的数学。