五年级数学思考题
1. 五年级数学思考题40道
1. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?
2. 有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?
3. 某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?
4. 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.
5. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?
6. 有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?
7. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间?
8. 甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车.
9. 甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?
10. 今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个.那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱?
小学数学应用题综合训练(02)
11. 师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?
12. 一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的.
13. 一部书稿,甲单独打字要14小时完成,,乙单独打字要20小时完成.如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时.......两人如此交替工作.那么打完这部书稿时,甲乙两人共用多少小时?
14. 黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多?
15. 一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米?
16. 甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨?
17. 甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478.那么甲、乙丙三数之和是几?
18. 一辆车从甲地开往乙地.如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少千米?
19. 某校参加军训队列表演比赛,组织一个方阵队伍.如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加.那么组成这个方阵的人数应为几人?
20. 甲、乙、丙三台车床加工方形和圆形的两种零件,已知甲车床每加工3个零件中有2个是圆形的;乙车床每加工4个零件中有3个是圆形的;丙车床每加工5个零件中有4个是圆形的.这天三台车床共加工了58个圆形零件,而加工的方形零件个数的比为4:3:3,那么这天三台车床共加工零件几个?
小学数学应用题综合训练(03)
21. 圈金属线长30米,截取长度为A的金属线3根,长度为B的金属线5根,剩下的金属线如果再截取2根长度为B的金属线还差0.4米,如果再截取2根长度为A的金属线则还差2米,长度为A的等于几米?
22. 某公司要往工地运送甲、乙两种建筑材料.甲种建筑材料每件重700千克,共有120件,乙种建筑材料每件重900千克,共有80件,已知一辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,至少要几次?
23. 从王力家到学校的路程比到体育馆的路程长1/4,一天王力在体育馆看完球赛后用17分钟的时间走到家,稍稍休息后,他又用了25分钟走到学校,其速度比从体育馆回来时每分钟慢15米,王力家到学校的距离是多少米?
24. 师徒两人合作完成一项工程,由于配合得好,师傅的工作效率比单独做时要提高1/10,徒弟的工作效率比单独做时提高1/5.两人合作6天,完成全部工程的2/5,接着徒弟又单独做6天,这时这项工程还有13/30未完成,如果这项工程由师傅一人做,几天完成?
25. 六年级五个班的同学共植树100棵.已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班.又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵?
26. 甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米.乙总共跑了多少千米?
27. 有高度相等的A,B两个圆柱形容器,内口半径分别为6厘米和8厘米.容器A中装满水,容器B是空的,把容器A中的水全部倒入容器B中,测得容器B中的水深比容器高的7/8还低2厘米.容器的高度是多少厘米?
28. 有104吨的货物,用载重为9吨的汽车运送.已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成.
29. 师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件?
30. 奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米.去时用了4天,回来时用了3天,问学校距离百花山多少千米?
小学数学应用题综合训练(04)
31. 某地收取电费的标准是:每月用电量不超过50度,每度收5角;如果超出50度,超出部分按每度8角收费.每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?
32. 王师傅计划用2小时加工一批零件,当还剩160个零件时,机器出现故障,效率比原来降低1/5,结果比原计划推迟20分钟完成任务,这批零件有多少个?
33. 妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张1.20元.用这些钱买甲种卡要比买乙种卡多8张,买乙种卡要比买丙种卡多买6张.妈妈给了红红多少钱?乙种卡每张多少钱?
34. 一位老人有五个儿子和三间房子,临终前立下遗嘱,将三间房子分给三个儿子各一间.作为补偿,分到房子的三个儿子每人拿出1200元,平分给没分到房子的两个儿子.大家都说这样的分配公平合理,那么每间房子的价值是多少元?
35. 小明和小燕的画册都不足20本,如果小明给小燕A本,则小明的画册就是小燕的2倍;如果小燕给小明A本,则小明的画册就是小燕的3倍.原来小明和小燕各有多少本画册?
36. 有红、黄、白三种球共160个.如果取出红球的1/3,黄球的1/4,白球的1/5,则还剩120个;如果取出红球的1/5,黄球的1/4,白球的1/3,则剩116个,问(1)原有黄球几个?(2)原有红球、白球各几个?
37. 爸爸、哥哥、妹妹三人现在的年龄和是64岁,当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁.当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁.现在三人的年龄各是多少岁?
38. B在A,C两地之间.甲从B地到A地去送信,出发10分钟后,乙从B地出发去送另一封信.乙出发后10分钟,丙发现甲乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间?
39. 甲、乙两个车间共有94个工人,每天共加工1998竹椅.由于设备和技术的不同,甲车间平均每个工人每天只能生产15把竹椅,而乙车间平均每个工人每天可以生产43把竹椅.甲车间每天竹椅产量比乙车间多几把?
40. 甲放学回家需走10分钟,乙放学回家需走14分钟.已知乙回家的路程比甲回家的路程多1/6,甲每分钟比乙多走12米,那么乙回家的路程是几米?
2. 五年级数学思考题30道带答案
(1)某工厂生产一批玩具,完成任务的五分之三后,又增加了280件,这样还需要做的玩具比原来的多10%.原来要做多少玩具?(请写出计算过程)
解:
增加的部分就是原来的:3/5+10%
所以原来要做:280/(3/5+10%)=400件
(2)某校办工厂这个月生产本子的增值额为3万元.如果按增值额的17%交纳增值税,这个月应交纳增值税多少元?(请写出计算过程)
应该交:30000*17%=5100元
(3)爸爸这个月的工资是2100元,按规定工资在1600元以上的部分应缴纳所得税,如果按5%的税率缴纳个人收入调节税,爸爸这个月应交纳税多少元?他实际收入多少元?(请写出计算过程)
应该交:(2100-1600)*5%=25元
实际收入:2100-25=2075元
一、有关平行四边形、三角形、梯形面积计算的应用题
1、解放军战士开垦一块平行四边形的菜地。它的底为24米,高为16米。这块地的面积是多少?
s=ah 24*16=384
2、一块梯形小麦试验田,上底86米,下底134米,高60米,它的面积是多少平方米?
s=(a+b)*h/2 (86+134)*60/2=6600
3、一块三角形土地,底是358米,高是160米,这块土地的面积是多少平方米?
s=ah/2 358*160/2=28640
二、归总应用题
1、解放军运输连运送一批煤,如果每辆卡车装4.5吨,需要16辆车一次运完。如果每辆卡车装6吨,需要几辆车一次运完?
4.5*16/6=12
2、同学们摆花,每人摆9盆,需要36人;如果要18人去摆,每人要摆多少盆?
36*9/18=18
三、三步计算应用题
太阳沟小学举行数学知识竞赛。三年级有60人参加,四年级有45人参加,五年级参加的人数是四年级人数的2倍。三个年级一共有多少人参加比赛?
45*2+45+60=195
四、相遇应用题
1、张明和李红同时从两地出发,相对走来。张明每分走50米,李红每分走40米,经过12分两人相遇。两人相距多少米?
(50+40)*12=1080
2、甲乙两地相距255千米,两辆汽车同时从两地对开。甲车每小时48千米,乙车每小时行37千米,几小时后两车相遇?
255/(48+37)=3
五、列简易方程解应用题
1、向群文具厂每小时能生产250个文具盒。多少小时能生产10000个?
设:x小时能生产10000个
250x=10000
x=40
答:40小时能生产10000
六、有关长方体、正方体、表面积、体积(容积)计算的应用题
1、一个长方体的铁盒,长18厘米,宽15厘米,高12厘米。做这个铁盒的容积是多少?
18*15*12=3240
2、一个正方体棱长15厘米,它的体积是多少?
15*15*15=3375
1、填一填
(1)分母是12的最简真分数有( )个,他们的和是( )。
(2)一根铁丝长45 米,比另一根短14 米,两根铁丝共( )米。
(3)一根铁丝长45 米,另一根比它短17 米,另一根长( )米。
(4)异分母分数相加减,要先( ),化成( ),再加减。
(5)一批化肥,第一天运走它的13 ,第二天运走它的25 ,还剩这批化肥的( )没有运。
(6)把下面的分数和小数互化。
0.75=( ) 25 =( ) 3.42=( )
58 =( ) 2.12=( ) 414 =( )
2、计算题
512 +34 +112 710 -38 -18 415 +56
12 -(34 -38 ) 56 -(13 +310 ) 23 +56
3、解方程
17 +x=23 45 -x=14 x-16 =38
5、解决问题
(1)有一块布料,做上衣用去78 米,做裤子用去34 米,还剩112 米,这些布料一共用去多少米?
(2)某工程队修一条路,第一周修了49 千米,第二周修了29 千米,第三周修的比前两周的总和少16 千米,第三周修了多少?
(3)课堂上学生做实验用15 小时,老师讲解用310 小时,其余的时间学生独立做作业。已知每堂课是23 小时,学生做作业用了多少时间?
一填空题
1. 米表示把1米平均分成( )份,取其中的( )份。
2. 的分数单位是( ),它有( )个这样的分数单位。
3.( )个 是 , 里有( )个 。
4.在括号里填上适当的分数。
24千克=( )吨 4米20厘米=( )米
360米=( )千米 1小时=( )日
5. = = = =( )÷9=44÷( )
6.分数单位是 的最大真分数是( ),最小假分数是( ),最小的最简分数是( )。
7.把2米长的木料,平均分成7段,每段长 米,每段占全长的 。
8. + 表示( )个( )加上( )个( ),和是( )。
9. 、 、 、 这几个分数中能化成有限小数的是( )。
10.把下面各组分数从大到小排列。
、 、 ( )>( )>( )
、 、4.5 ( )>( )>( )
二、选择题:
1.下列各数中,不小于 的是( )。
A、1 B、 C、
2.把5千克盐放入20千克水中,盐的重量占盐水的( )。
A、 B、 C、
3.小于 的最简真分数有( )个。
A、3 B、4 C、无数
4. 和 这两个分数( )。
A、意义相同 B、大小相等 C、分数单位相同
5.甲的 等于乙的 ,那么甲( )乙。
A、大于 B、等于 C、小于
三、判断题。
1.3千克水的 和1千克水的 一样重。 ( )
2. 吨棉花= 吨铁。 ( )
3.1 是一个最简分数。 ( )
4.因为 比 小,所以 的分数单位比 的分数单位小。( )
5.真分数总是小于假分数。 ( )
6. 米比 大。 ( )
7.最简分数的分子与分母没有公因数。 ( )
四、口算。
+0.5 + 3.6+ +
2.4-1 +3.6 6.43- -0.375
五、计算下列各题。(能简算的尽量简算)
1+ - + - - -
2.15-( - ) 2.85+ +2.15+ 3.4-(0.25+ )
六、解方程。
+x=5.6 x- = x-(1.4+ )=1.8
七、列式计算。
1. 甲数是 ,比乙数多0.75,两数的和是多少?
2. 一个数减去3.25的差加上 ,结果是2.5,这个数是多少?
八、应用题。
1. 五三班有学生48人,其中男生21人。女生人数占全班人数的几分之几?男生人数是女生人数的几分之几?
2. 做同样的零件,小张12小时可做27个,小王6小时可做13个,小赵 8小时可做19个。谁做得最快?谁做得最慢?
3. 修一条1500米长的路,第一周完成了全工程的 ,第二周完成了全工程的 ,再修全工程的几分之几就完成了全部任务?
4. 王林看一本书,第一天看了全书的 ,第二天和第三天都比第一天多看全书的 ,三天后还剩全书的几分之几没看?
5. 有一个长方形,周长是68厘米,已知长是2 分米,宽是多少厘米?
回答者: 断翼天使ylq - 秀才 三级 1-18 10:07
干什么呀?????
回答者: 小朝夕 - 试用期 一级 1-20 13:12
分数、百分数应用题解题公式
单位“1”已知: 单位“1” × 对应分率 = 对应数量
求单位“1”或单位“1”未知: 对应数量 ÷ 对应分率 = 单位“1”
求一个数是另一个数的几分之几(或百分之几)公式:
一个数 ÷ 另一个数 = 一个数是另一个数的几分之几(或百分之几)
求一个数比另一个数多几分之几(或百分之几)公式:
多的数量÷单位“1” = 一个数比另一个数多几分之几(或百分之几)
求一个数比另一个数少几分之几(或百分之几)公式:
少的数量÷单位“1” = 一个数比另一个数少几分之几(或百分之几)
(注意:这里的“多”、“少”还可以换成“增产”、“节约”等字。)
(注意:例题:(1)果园里有桃树120棵,梨树的棵数比桃树多20%,果园里有梨树多少棵?
(2)果园里有桃树120棵,比梨树的棵数少20%,果园里有梨树多少棵?
分析思路:先找出单位“1”,确定已知还是未知,单位“1” 知道就用乘法,单位“1”不知道就用除法。“比谁多(少)几分之几“列式就是“1+(-)几分之几”。)
列式:(1)120×(1+20%)
(2)120÷(1-20%)
打折、利润、利息、税收应用题的解题公式
含义:“八折”的含义是:现价是原价的80%;“八五折”的含义是:现价是原价的85%
公式:
现价 = 原价 × 折数(通常写成百分数形式)
利润 = 售价 - 成本
利息 = 本金 × 利率 × 时间
税后利息 = 本金×利率×时间×80%(注意:国债和教育储蓄不交税)
应纳税额 = 需要交税的钱 × 税率
圆的周长和面积的有关公式及关键语句
圆的周长和直径的比的比值叫做圆周率。 π = C ÷ d
已知直径求周长:C = πd 已知周长求直径:d = C ÷π
已知半径求周长:C = 2πr 已知周长求半径:r = C÷π÷2
已知半径求面积:S =πr
已知直径求面积:r = d÷2
S = πr
已知周长求面积:r = C÷π÷2
S = πr
半圆周长 = C ÷ 2 + d (注意:半圆周长 = 5.14r,适用于填空题)
半圆面积 = S ÷ 2
把一个圆平均分成若干份,拼成一个近似的长方形。(图见书本)
(1)拼成的长方形面积 = 圆的面积
(2)拼成的长方形的长 = 圆周长的一半 ( 长 = )
(3)拼成的长方形的宽 = 圆的半径 ( 宽 = r )
一、填空。(每空1分,共20分)
⑴、一个数由3个100、2个10、5个0.01组成,这个数写作( )。
⑵、7吨560千克=( )吨, 1 小时=( )分
⑶、把子80分解质因数,(180= )
⑷、 的分数单位是( ),它再加上( )个这样的分数单
位就得最小的质数。
⑸、2.7∶1 化成最简单的整数比是( ),比值是( )。
⑹、一个三角形至少有( )个锐角。
⑺、一个圆柱体钢铁可以铸成( )个等底等高的圆锥体。
⑻、5米布用去 米,剩下多少米?列式是( )。
⑼、圆是轴对称圆形,它的对称轴有( )条。
⑽、小学数学竞赛的获奖人数共30名,一、二、三等奖人数的比是
1∶2∶3,获三等奖的人数有( )名。
⑾、一个圆的周长是18.84厘米,这个圆的面积是( )。
⑿、在比例尺是1∶30000000的地图上,量得北京到广州的距离是6
厘米,北京到广州的实际距离大约是( )千米。
二、判断题。(正确的在括号内画“√”,错误的画“×”)(共8分)
⑴、16和24的最大公约数是它们最小公倍数的 。 ( )
⑵、循环小数0.5按四舍五入法保留两位小数约得0.55。 ( )
⑶、果园里栽了50棵树,有3棵没有成活,成活率是97%。 ( )
⑷、甲数比乙数少20%,乙数比甲数多25%。 ( )
⑸、正方体的六个面都是正方形。 ( )
⑹、3千克的 和1千克的 一样重。 ( )
⑺、路程一定,速度和时间成反比例。 ( )
⑻、三个连续自然数的和是m,那么最大的数是( +1)。 ( )
三、选择题。(把正确答案的序号填在括号里)(每题1分,共8分)
⑴、两个质数的积一定不是( )。
A、质数 B、合数 C、奇数 D、偶数
⑵、若 是假分数, 是真分数,那么( )。
A、X<5 B、X>5 C、X=5 D、X=6
⑶、小红晚上9∶40上火车,第二天上午8∶12下火车,她在火车上的时间是( )。
A、10小时32分 B、1小时28分 C、10点32分
⑷、三角形的面积一定,底和高( )。
A、成正比例 B、成反比例 C、不成比例
⑸、两个棱长都是4厘米的正方体,拼成一个长方体,这个长方体的表面积是( )平方厘米。
A、168 B、192 C、160
⑹、等腰三角形一个底角的度数是顶角度数的 ,顶角是( )。
A、1200 B、1350 A、300
⑺、要清楚地表示我校六年级各班人数的多少,绘制( )统计图最好。
A、条形 B、折线 C、扇形
⑻、甲数是135,( ),乙数是多少?,这道题缺一个条件,如果计算乙数的算
式是:135×(1+ ),请在括号里补上下面相应的条件。
A、乙数是甲的 B、甲数比乙数多 C、乙数比甲数多
四、计算题。(共34分)
1、直接写出得数。(6分)
0.125+ = 0.6-0.06= 4-3 =
× = 6 ÷3= 1÷ =
2、求下面X的值。(6分)
X-0.3×2.4=1.54 1 ∶3.5=
3、脱式计算。(12分)
72.56―18.74―21.26 3.7× +63×
1375-1702÷23 24÷1.6-0.8×0.9
4、列式计算。(6分)
⑴、24的25%减去3 的差去除4 ,商是多少?
⑵、比一个数的 少2.4的数是7.6,求这个数。
5、下图正方形的边长是3分米,求阴影部分的面积。(4分)
五、应用题。(每题5分,共30分)
1、张家界百货大楼降价20%出售一种毛衣,只卖96元钱,这种毛衣的原价是多少?
2、二家河乡计划在一片荒滩上植树1346棵,已经栽了7天,平均每天栽103棵。剩下的要5天栽完,平均每天要栽多少棵?
3、甲乙两城相距624千米,一列客车和一列货车同时从甲乙两地相对开出,客车每小时的平均速度是65千米,货车的平均速度是客车的 。两车开出以后几小时相遇?
4、小华读一本书,原计划每天读85页,12天可以读完,如果每天读102页,几天可以读完?(用比例解)
5、把一个体积为314立方厘米的铁块,熔铸成一个圆柱体。这个圆柱体底面直径是10厘米,高约是多少厘米?
6、某粮店本月卖出去原有大米的 以后,又运来720千克,这时所存的大米恰好是原有大米的80%,这个粮店原有大米多少千克?
题1、营业员把一张5元的人民币和一张5角的人民币换成了28张票面为1元和1角的人民币,求换来的这两种人民币各多少张?
题2、有一元,二元,五元的人民币共50张,总面值为116元,已知一元的比二元的多2张,问三种面值的人民币各多少张?
题3、有3元,5元和7元的电影票400张,一共价值1920元,其中7元和5元的张数相等,三种价格的电影票各多少张?
题4、用大、小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱,现在有18车货,价值3024元,若每箱便宜2元,则这批货价值2520元,问:大、小汽车各有多少辆?
题5、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次,平均每天运14次,这几天中有几天是雨天?
题6、运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样卖这批西瓜共值290元,如果每千克西瓜降价0.05元,这批西瓜只能卖250元,问:有多少千克大西瓜?
题7、甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶每次倒扣6分,两人各投10次,共得152分,其中甲比乙多得16分,问:两人各中多少次?
题8、某次数学竞赛共有20条题目,每答对一题得5分,错了一题不仅不得分,而且还要倒扣2分,这次竞赛小明得了86分,问:他答对了几道题?
.解:设有1元的x张,1角的(28-x)张
x+0.1(28-x)=5.5
0.9x=2.7
x=3
28-x=25
答:有一元的3张,一角的25张。
2.解:设1元的有x张,2元的(x-2)张,5元的(52-2x)
x+2(x-2)+5(52-2x)=116
x+2x-4+260-10x=116
7x=140
x=20
x-2=18
52-2x=12
答:1元的有20张,2元18张,5元12张。
3.解:设有7元和5元各x张,3元的(400-2x)张
7x+5x+3(400-2x)=1920
12x+1200-6x=1920
6x=720
x=120
400-2x=160
答:有3元的160张,7元、5元各120张。
4.解:货物总数:(3024-2520)÷2=252(箱)
设有大汽车x辆,小汽车(18-x)辆
18x+12(18-x)=252
18x+216-12x=252
6x=36
x=6
18-x=12
答:有大汽车6辆,小汽车12辆。
5.解:天数=112÷14=8天
设有x天是雨天
20(8-x)+12x=112
160-20x+12x=112
8x=48
x=6
答:有6天是雨天。
6.解:西瓜数:(290-250)÷0.05=800千克
设有大西瓜x千克
0.4x+0.3(800-x)=290
0.4x+240-0.3x=290
0.1x=50
x=500
答:有大西瓜500千克。
7.解:甲得分:(152+16)÷2=84分
乙:152-84=68分
设甲中x次
10x-6(10-x)=84
10x-60+6x=84
16x=144
x=9
设乙中y次
10y-6(10-y)=68
16y=128
y=8
答:甲中9次,乙8次。
8.解:设他答对x道题
5x-2(20-x)=86
5x-40+2x=86
7x=126
x=18
答:他答对了18题。
例1 :货轮上卸下若干只箱子,总重量为10吨,每只箱子的重量不超过1吨,为了保证能把这些箱子一次运走,问至少需要多少辆载重3吨的汽车?
[分析] 因为每一只箱子的重量不超过1吨,所以每一辆汽车可运走的箱子重量不会少于2吨,否则可以再放一只箱子。所以,5辆汽车本是足够的,但是4辆汽车并不一定能把箱子全部运走。例如,设有13只箱子,,所以每辆汽车只能运走3只箱子,13只箱子用4辆汽车一次运不走。
因此,为了保证能一次把箱子全部运走,至少需要5辆汽车。
例2: 用10尺长的竹竿来截取3尺、4尺长的甲、乙两种短竹竿各100根,至少要用去原材料几根?怎样截法最合算?
[分析] 一个10尺长的竹竿应有三种截法:
(1) 3尺两根和4尺一根,最省;
(2) 3尺三根,余一尺;
(3) 4尺两根,余2尺。
为了省材料,尽量使用方法(1),这样50根原材料,可截得100根3尺的竹竿和50根4尺的竹竿,还差50根4尺的,最好选择方法(3),这样所需原材料最少,只需25根即可,这样,至少需用去原材料75根。
例3: 一个锐角三角形的三条边的长度分别是两位数,而且是三个连续偶数,它们个位数字的和是7的倍数,这个三角形的周长最长应是多少厘米?
[分析] 因为三角形三边是三个连续偶数,所以它们的个位数字只能是0,2,4,6,8,并且它们的和也是偶数,又因为它们的个位数字的和是7的倍数,所以只能是14,三角形三条边最大可能是86,88,90,那么周长最长为86+88+90=264厘米。
例4: 把25拆成若干个正整数的和,使它们的积最大。
[分析] 先从较小数形开始实验,发现其规律:
把6拆成3+3,其积为3×3=9最大;
把7拆成3+2+2,其积为3×2×2=12最大;
把8拆成3+3+2,其积为3×3×2=18最大;
把9拆成3+3+3,其积为3×3×3=27最大;……
这就是说,要想分拆后的数的乘积最大,应尽可能多的出现3,而当某一自然数可表示为若干个3与1的和时,要取出一个3与1重合在一起再分拆成两个2之和,因此25可以拆成3+3+3+3+3+3+3+2+2,其积37×22=8748为最大。
。
3. 20道小学五年级数学思考题
某特种部队在丛林地区接到一项反恐任务,把速度从60千米/小时提高到72千米/小时,结果提前4小时还差36千米就赶到预定的地点战斗。行动中用了几小时 ?
一个小组共有13名同学,其中至少有2名同学同一个月过生日。为什么?
任意4个自然数,其中至少有两个数的差是3的倍数。这是为什么?
有规格尺寸相同的5种颜色的袜子各15只混装在箱内,试问不论如何取,从箱中至少取出多少只就能保证有3双袜子(袜子无左、右之分)?
某人去银行取款,第一次取了存款的一半多50元,第二次取了余下的一半多100元。这时他的存折上还剩1250元。他原有存款多少元?
有26块砖,兄弟2人争着去挑,弟弟抢在前面,刚摆好砖,哥哥赶来了。哥哥看弟弟挑得太多,就拿来一半给自己。弟弟觉得自己能行,又从哥哥那里拿来一半。哥哥不让,弟弟只好给哥哥5块,这样哥哥比弟弟多挑2块。问最初弟弟准备挑多少块?
一列长300米的火车以每分1080米的速度通过一座大桥。从车头开上桥到车尾离开桥一共需3分。这座大桥长多少米?
某人步行的速度为每秒2米.一列火车从后面开来,超过他用了10秒.已知火车长90米.求火车的速度。
在环形跑道上,两人都按顺时针方向跑时,每12分钟相遇一次,如果两人速度不变,其中一人改成按逆时针方向跑,每隔4分钟相遇一次,问两人各跑一圈需要几分钟?
一列长300米的火车,以每分1080米的速度通过一座长为940米的在桥,从车头开上桥到车尾离开桥需要多少分钟?
一列火车通过530米的桥需40秒钟,以同样的速度穿过380米的山洞需30秒钟。求这列火车的速度是多少米/秒,全长是多少米?
铁路沿线的电杆间隔是40米,某旅客在运行的火车中,从看到第一根电线杆到看到第51根电线杆正好是2分钟,火车每小时行多少千米。
一个人站在铁道旁,听见行近来的火车汽笛声后,再过57秒钟火车经过他面前.已知火车汽笛时离他1360米;(轨道是笔直的)声速是每秒钟340米,求火车的速度?(得数保留整数)
一列450米长的货车,以每秒12米的速度通过一座570米长的铁桥,需要几秒钟?
现有两列火车同时同方向齐头行进,行12秒后快车超过慢车。快车每秒行18米,慢车每秒行10米。如果这两列火车车尾相齐同时同方向行进,则9秒后快车超过慢车,求两列火车的车身长。
李明和张忆在300米的环形跑道上练习跑步,李明每秒跑5米,张忆每秒跑3米,两人同时从起跑点出发同向而行,问出发后李明第一次追上张忆时,张忆跑了多少米?
速度为快、中、慢的三辆汽车同时从同一地点出发,沿同一公路追赶前面一个骑车人,这三辆车分别用6分钟、10分钟、12分钟追上骑车人,现在知道快车每小时24千米,中速车每小时20千米,那么慢车每小时行多少千米?(选做题)
周长为400米的圆形跑道上,有相距100米的A、B两点,甲、乙两人分别从A、B两点同时相背而跑,两人相遇后,乙立刻转身与甲同向而跑,当甲跑到A时,乙恰好跑到B.如果以后甲、乙跑的速度和方向都不变,那么追上乙时,甲共跑了多少米(从出发时算起)?
蔡琛在期末考试中,政治、语文、数学、英语、生物五科的平均分是 89分.政治、数学两科的平均分是91.5分.语文、英语两科的平均分是84分.政治、英语两科的平均分是86 分,而且英语比语文多10分.问蔡琛这次考试的各科成绩应是多少分?
果品店把2千克酥糖,3千克水果糖,5千克奶糖混合成什锦糖.已知酥糖每千克4.40元,水果糖每千克4.20元,奶糖每千克7.20元.问:什锦糖每千克多少元?
甲乙两块棉田,平均亩产籽棉185斤.甲棉田有5亩,平均亩产籽棉203斤;乙棉田平均亩产籽棉170斤,乙棉田有多少亩?
已知八个连续奇数的和是144,求这八个连续奇数。
应该是20道吧
4. 五年级上数学思考题
1.一块长1米20厘米,宽90厘米的铝皮,剪成直径30厘米的圆片,最多可以剪几块?
分析:此题不需求面积的。只需求长和宽各是圆的直径的几倍,然后求出长和宽的倍数的积。
1米20厘米=120厘米
120÷30=4 90÷30=3
4×3=12(块)
答:最多可以剪12块。
2.一个圆柱,底面半径1分米,它的侧面展开是一个正方形。这个圆柱的表面积和体积是多少?
分析:从侧面展开图正方形入手,可知这个圆柱的高是圆柱的底面周长。
圆柱的表面积:
(3.14×1×2)×(3.14×1×2)+3.14×1×1×2
=6.28×6.28+6.28
=6.28×7.28
=45.7184(平方分米)
圆柱的体积:
3.14×1×1×(3.14×1×2)
=3.14×6.28
=19.7192(平方分米)
答:这个圆柱的表面积是45.7184平方分米,体积是19.7192平方分米。
3.一列火车上午8时从甲站开出,到第二天的晚上9时到达乙站。已知火车平均每小时行98千米。甲乙两站间的铁路长多少千米?
分析:这题的解题关键是要知道火车行驶的时间。
24-8+9=25(小时)[或者:12-8+12+9=25(小时)]
98×25=(100-2)×25
=2500-50
=2450(千米)
答:甲乙两站间的铁路长2450千米。
4.一个圆和一个扇形的半径相等。已知圆的面积是30平方厘米,扇形的圆心角是72度。求扇形的面积。
分析:因为圆和扇形的半径相等,圆和扇形的面积存要在倍数关系。这个倍数就是它们圆心角之间的倍数关系。
72÷360=1/5,30×1/5=6(平方厘米)
答:扇形的面积是6平方厘米。
第11题:一个半径3厘米的圆,在圆中画一个扇形,使它的面积占圆面积的20%,并且算出这个扇形的面积。
分析:此题与上题的思路一样。
3.14×3×3×20%=5.652(平方厘米)
答:这个扇形的面积是5.652平方厘米。
5.学校把植树任务按5:3分给六年级和五年级。六年级实际栽了108棵,超过原分配任务的20%。原计划五年级栽树多少棵?
分析:六年级原计划栽树的棵数是解题的关键。
1、六年级原计划栽树多少棵?
108÷(1+20%)=108×5/6=90(棵)
2、原计划五年级栽树多少棵?
90÷5×3=54(棵)
综合算式:
108÷(1+20%)÷5×3
=90÷5×3
=54(棵)
答:原计划五年级栽树54棵。
6.甲乙两面个工程队全修一段公路,甲队的工作效率是乙队的3/5。两队合修6天正好完成这段公路的2/3,余下的由乙队单独修,还要几天才能修完?
分析:求两队的工效是解题的关键。
1、两队的工效和是多少?
2/3÷6=1/9
2、乙队的工效是多少?
1/9×[5÷(3+5)]
=1/9×5/8
=5/72
3、还要几天才能修完?
(1-2/3)÷5/72
=1/3×72/5
=24/5(天)
答:还要24/5天才能修完。
7.某水泥厂去年生产水泥232400吨,今年头5个月的产量就等于去年全年的产量。照这样计算,这个水泥厂今年将比去年增产百分之几?
解法一:分析,今年后7个月的产量就是增产的,因此我们要先求出后7个月生产量。
232400÷5×(12-5)
=46480×7
=325360(吨)
325360÷232400=1、4=140%
解法二:把232400吨看作单位“1”,
1、今年平均每月生产量是去年的几分之几?
1÷5=1/5
2、今年比去年增产几分之几?
1/5×(12-5)=7/5
3、今年比去年增产百分之几?
7/5=1.4=140%
综合算式:1÷5×(12-5)=1.4=140%
答:这个厂今年比去年增产140%。
8.幼儿园买进大小两种毛巾各40条,共用258.8元。大毛巾的单价比小毛巾单价的2倍多0.11元。这两种毛巾单价各是多少元?
解:设小毛巾的单价是x元,则大毛巾的单价是(2x+0.11)元。
[x+(2x+0.11)]×40=258.8
3x=6.47-0.11
x=6.36÷3
x=2.12
2x+0.11=2.12×2+0.11
=4.35
答:大毛巾的单价是每条4.35元,小毛巾的单价是每条2.12元。
9. 一间长4、8米、宽3、6米的房间,用边长0、15米的正方形瓷砖铺地面,需要768块。在长6米、宽4、8米的房间里,如果用同样的瓷砖来铺,需要多少块?如果在第一个房间改铺边长0、2米的正方形瓷砖,要用多少块?(用比例解)
分析:房间的面积是一定的,每块砖的面积和块数成反比例。
解:设需要x块。
0.15×0.15x =6×4.8
x =6×4.8÷0.15÷0.15
x =1280
答:需要1280块。
解:设需要y块。
0.2×0.2y=4.8×3.6
y=4.8×3.6÷0.2÷0.2
y=432
答:需要432块。
10.一艘轮船所带的柴油最多可以用6小时。驶出时顺风,每小时行驶30千米。驶回时逆风,每小时行驶的路程是顺风时的4/5。这艘轮船最多驶出多远应往回驶?
分析:轮船行驶的路程一定,每小时行驶的路程和时间成反比例。
解:设这艘轮船逆风行驶了x小时。
30×4/5x=30×(6-x)
4/5x=6-x
9/5x=6
x=10/3
30×4/5×10/3=80(千米)
答:这艘轮船最多驶出80千米就应往回驶。
11. 一辆汽车从甲地开往乙地,第一小时行了全程的1/7,第二小时比第一小时多行了16千米,这时距离乙地还有94千米。甲乙两地的公路长多少千米?
分析:“从第二小时比第一小时多行了16千米”可知第二小时行了全程的1/7和16千米。第一小时和第二小时共行全程的(1/7+1/7)和16千米。由此可知(96+16)占全程的(1-1/7-1/7)。
根据上面的分析得:
(96+16)÷(1-1/7-1/7)
=112÷5/7
=112×7/5
=156、8(千米)
答:甲乙两地的公路长156、8千米。
或者用方程解:
解:设甲乙两地的公路长x千米。
(1-1/7-1/7)x=96+16
5/7x=112
x=156、8
答:甲乙两地的公路长156、8千米。
题目改编:若这题中的一个条件改成“这时距离甲地96千米”,其它条件不变,问题也不变。如何解答?
12.一个编织组,原来30人10天生产1500只花篮。现在增加到80人,按原来的工效,生产6000只花篮需要多少天?(用比例解答)
分析:题中说“按原来的工效”,这说明这个纺织组的工作效率是一定的。工作效率一定,工作总量和工作时间成正比例。
解:设需要x天。
1500:(30×50)=6000:(80×x)
1500×(80×x)=6000×(30×50)
x=6000×30×50÷80÷1500
x=6000÷80
x=75
答:需要75天。
13.红光农场有两块麦田,第一块5.5公顷,共收小麦27.3吨,第二块3.6公顷,共收小麦18.2吨,这两块麦田平均每公顷收小麦多少吨?
14. 一辆汽车在山区行驶,上山用了3小时,平均每小时行30千米,下山行完同样的路程,只用了2小时,求这辆汽车上山,下山的平均速度.
15. 甲乙二人同时从同一地点向相反方向背向而行,甲每小时行驶15千米,乙每小时行驶12千米,4.5小时两人相距多少千米?甲比乙多走多少千米?
16. 服装厂计划做1470套服装,已经做了5天,平均每天做150套,剩下的要4.5天完成,剩下的平均每天比原来每天多做多少套?
17. 每套童装用布2.5米,每套成人服装用布4米,现在要做童装5套,成人服装3套,共有布30米,还可以剩下多少米布?如果每条裤子用布1.1米,剩下的这些布可做裤子多少条?
18.超市开展矿泉水“买5送1”的活动。一个旅游团有48人,想每人发一瓶矿泉水,需要购买多少瓶水就够了?
(买5送1 的意思是要6瓶矿泉水只需要买5瓶,48里有8个6,所以只需要8个5就可以了,答案是40瓶。)
19. 一个小数部分是两位的小数,用四舍五入法把它精确到0.1,它的近似值是5.0,那么这个两位小数是什么?
(解析:所求的两位小数是:4.95,4.96,4.97,4.98,4.99,5.00,5.01,5.02,5.03,5.04
20. 一只底面是正方形的长方体铁箱,如果把它的侧面展开,正好得到一个边长是40cm的正方形.求这只铁箱的容积是多少升?
《 40÷4=10 10×10×40÷1000=4》
5. 五年级数学思考题(难点的)
一、 口算题( 12分 )
4.411= 0.30.3= 0÷730= 0.0310-0.1=
75= 0.250.5= 0.537= 125×0.50.8=
1.90.5= 295= 2.30.8= 0.2×7.650=
二、 简算题( 6分 )
9.98.6+0.86
三、 计算题(每道小题 6分 共 12分 )
1. 3-7.143.51.05
2. [20-(90.756.6+2.25)]11.6
四、 应用题(每道小题 10分 共 20分 )
1. 红光农场有两块麦田,第一块5.5公顷,共收小麦27.3吨,第二块3.6公顷,共收小麦18.2吨,这两块麦田平均每公顷收小麦多少吨?
2. 一辆汽车在山区行驶,上山用了3小时,平均每小时行30千米,下山行完同样的路程,只用了2小时,求这辆汽车上山,下山的平均速度.
五、 其它题(第1小题 8分, 2-4每题 10分, 第5小题 12分, 共 50分)
1. 一个小组学生的作文得分如下表,这个小组学生作文的平均分是多少?(得数保留一位小数)
得 分
90
85
80
75
人 数
2
3
1
1
2. 下面是某班男生跳远成绩纪录单(单位:米).把这些成绩分类整理,填入下表.
3.08 2.95 3.15 3.05 2.83 2.92 2.87 3.05 2.85
2.65 2.86 2.38 2.95 2.80 3.03 2.84 2.94 3.02
成绩(米)
2.8以下
2.80-2.89
2.90-2.99
3.00-3.09
3.10以上
人数
3. 把下面的统计表填完整.
鬃机器厂一车间各小组生产鬃零件数量统计表 1989年4月
4. 某工厂有四个车间,第一车间有男职工62人,女职工50人.第二车间有男职工34人,女职工47人.
第三车间有男职工45人,女职工38人.第四车间有男职工12人,女职工83人.制成条形统计表.
1. 甲乙二人同时从同一地点向相反方向背向而行,甲每小时行驶15千米,乙每小时行驶12千米,4.5小时两人相距多少千米?甲比乙多走多少千米?
2. 服装厂计划做1470套服装,已经做了5天,平均每天做150套,剩下的要4.5天完成,剩下的平均每天比原来每天多做多少套?
3. 每套童装用布2.5米,每套成人服装用布4米,现在要做童装5套,成人服装3套,共有布30米,还可以剩下多少米布?如果每条裤子用布1.1米,剩下的这些布可做裤子多少条?
6. 五年级数学思考题,带答案,20题
1.一块长1米20厘米,宽90厘米的铝皮,剪成直径30厘米的圆片,最多可以剪几块?
分析:此题不需求面积的。只需求长和宽各是圆的直径的几倍,然后求出长和宽的倍数的积。
1米20厘米=120厘米
120÷30=4 90÷30=3
4×3=12(块)
答:最多可以剪12块。
2.一个圆柱,底面半径1分米,它的侧面展开是一个正方形。这个圆柱的表面积和体积是多少?
分析:从侧面展开图正方形入手,可知这个圆柱的高是圆柱的底面周长。
圆柱的表面积:
(3.14×1×2)×(3.14×1×2)+3.14×1×1×2
=6.28×6.28+6.28
=6.28×7.28
=45.7184(平方分米)
圆柱的体积:
3.14×1×1×(3.14×1×2)
=3.14×6.28
=19.7192(平方分米)
答:这个圆柱的表面积是45.7184平方分米,体积是19.7192平方分米。
3.一列火车上午8时从甲站开出,到第二天的晚上9时到达乙站。已知火车平均每小时行98千米。甲乙两站间的铁路长多少千米?
分析:这题的解题关键是要知道火车行驶的时间。
24-8+9=25(小时)[或者:12-8+12+9=25(小时)]
98×25=(100-2)×25
=2500-50
=2450(千米)
答:甲乙两站间的铁路长2450千米。
4.一个圆和一个扇形的半径相等。已知圆的面积是30平方厘米,扇形的圆心角是72度。求扇形的面积。
分析:因为圆和扇形的半径相等,圆和扇形的面积存要在倍数关系。这个倍数就是它们圆心角之间的倍数关系。
72÷360=1/5,30×1/5=6(平方厘米)
答:扇形的面积是6平方厘米。
第11题:一个半径3厘米的圆,在圆中画一个扇形,使它的面积占圆面积的20%,并且算出这个扇形的面积。
分析:此题与上题的思路一样。
3.14×3×3×20%=5.652(平方厘米)
答:这个扇形的面积是5.652平方厘米。
5.学校把植树任务按5:3分给六年级和五年级。六年级实际栽了108棵,超过原分配任务的20%。原计划五年级栽树多少棵?
分析:六年级原计划栽树的棵数是解题的关键。
1、六年级原计划栽树多少棵?
108÷(1+20%)=108×5/6=90(棵)
2、原计划五年级栽树多少棵?
90÷5×3=54(棵)
综合算式:
108÷(1+20%)÷5×3
=90÷5×3
=54(棵)
答:原计划五年级栽树54棵。
6.甲乙两面个工程队全修一段公路,甲队的工作效率是乙队的3/5。两队合修6天正好完成这段公路的2/3,余下的由乙队单独修,还要几天才能修完?
分析:求两队的工效是解题的关键。
1、两队的工效和是多少?
2/3÷6=1/9
2、乙队的工效是多少?
1/9×[5÷(3+5)]
=1/9×5/8
=5/72
3、还要几天才能修完?
(1-2/3)÷5/72
=1/3×72/5
=24/5(天)
答:还要24/5天才能修完。
7.某水泥厂去年生产水泥232400吨,今年头5个月的产量就等于去年全年的产量。照这样计算,这个水泥厂今年将比去年增产百分之几?
解法一:分析,今年后7个月的产量就是增产的,因此我们要先求出后7个月生产量。
232400÷5×(12-5)
=46480×7
=325360(吨)
325360÷232400=1、4=140%
解法二:把232400吨看作单位“1”,
1、今年平均每月生产量是去年的几分之几?
1÷5=1/5
2、今年比去年增产几分之几?
1/5×(12-5)=7/5
3、今年比去年增产百分之几?
7/5=1.4=140%
综合算式:1÷5×(12-5)=1.4=140%
答:这个厂今年比去年增产140%。
8.幼儿园买进大小两种毛巾各40条,共用258.8元。大毛巾的单价比小毛巾单价的2倍多0.11元。这两种毛巾单价各是多少元?
解:设小毛巾的单价是x元,则大毛巾的单价是(2x+0.11)元。
[x+(2x+0.11)]×40=258.8
3x=6.47-0.11
x=6.36÷3
x=2.12
2x+0.11=2.12×2+0.11
=4.35
答:大毛巾的单价是每条4.35元,小毛巾的单价是每条2.12元。
9. 一间长4、8米、宽3、6米的房间,用边长0、15米的正方形瓷砖铺地面,需要768块。在长6米、宽4、8米的房间里,如果用同样的瓷砖来铺,需要多少块?如果在第一个房间改铺边长0、2米的正方形瓷砖,要用多少块?(用比例解)
分析:房间的面积是一定的,每块砖的面积和块数成反比例。
解:设需要x块。
0.15×0.15x =6×4.8
x =6×4.8÷0.15÷0.15
x =1280
答:需要1280块。
解:设需要y块。
0.2×0.2y=4.8×3.6
y=4.8×3.6÷0.2÷0.2
y=432
答:需要432块。
10.一艘轮船所带的柴油最多可以用6小时。驶出时顺风,每小时行驶30千米。驶回时逆风,每小时行驶的路程是顺风时的4/5。这艘轮船最多驶出多远应往回驶?
分析:轮船行驶的路程一定,每小时行驶的路程和时间成反比例。
解:设这艘轮船逆风行驶了x小时。
30×4/5x=30×(6-x)
4/5x=6-x
9/5x=6
x=10/3
30×4/5×10/3=80(千米)
答:这艘轮船最多驶出80千米就应往回驶。
11. 一辆汽车从甲地开往乙地,第一小时行了全程的1/7,第二小时比第一小时多行了16千米,这时距离乙地还有94千米。甲乙两地的公路长多少千米?
分析:“从第二小时比第一小时多行了16千米”可知第二小时行了全程的1/7和16千米。第一小时和第二小时共行全程的(1/7+1/7)和16千米。由此可知(96+16)占全程的(1-1/7-1/7)。
根据上面的分析得:
(96+16)÷(1-1/7-1/7)
=112÷5/7
=112×7/5
=156、8(千米)
答:甲乙两地的公路长156、8千米。
或者用方程解:
解:设甲乙两地的公路长x千米。
(1-1/7-1/7)x=96+16
5/7x=112
x=156、8
答:甲乙两地的公路长156、8千米。
题目改编:若这题中的一个条件改成“这时距离甲地96千米”,其它条件不变,问题也不变。如何解答?
12.一个编织组,原来30人10天生产1500只花篮。现在增加到80人,按原来的工效,生产6000只花篮需要多少天?(用比例解答)
分析:题中说“按原来的工效”,这说明这个纺织组的工作效率是一定的。工作效率一定,工作总量和工作时间成正比例。
解:设需要x天。
1500:(30×50)=6000:(80×x)
1500×(80×x)=6000×(30×50)
x=6000×30×50÷80÷1500
x=6000÷80
x=75
答:需要75天。
13.红光农场有两块麦田,第一块5.5公顷,共收小麦27.3吨,第二块3.6公顷,共收小麦18.2吨,这两块麦田平均每公顷收小麦多少吨?
14. 一辆汽车在山区行驶,上山用了3小时,平均每小时行30千米,下山行完同样的路程,只用了2小时,求这辆汽车上山,下山的平均速度.
15. 甲乙二人同时从同一地点向相反方向背向而行,甲每小时行驶15千米,乙每小时行驶12千米,4.5小时两人相距多少千米?甲比乙多走多少千米?
16. 服装厂计划做1470套服装,已经做了5天,平均每天做150套,剩下的要4.5天完成,剩下的平均每天比原来每天多做多少套?
17. 每套童装用布2.5米,每套成人服装用布4米,现在要做童装5套,成人服装3套,共有布30米,还可以剩下多少米布?如果每条裤子用布1.1米,剩下的这些布可做裤子多少条?
18.超市开展矿泉水“买5送1”的活动。一个旅游团有48人,想每人发一瓶矿泉水,需要购买多少瓶水就够了?
(买5送1 的意思是要6瓶矿泉水只需要买5瓶,48里有8个6,所以只需要8个5就可以了,答案是40瓶。)
19. 一个小数部分是两位的小数,用四舍五入法把它精确到0.1,它的近似值是5.0,那么这个两位小数是什么?
(解析:所求的两位小数是:4.95,4.96,4.97,4.98,4.99,5.00,5.01,5.02,5.03,5.04
20. 一只底面是正方形的长方体铁箱,如果把它的侧面展开,正好得到一个边长是40cm的正方形.求这只铁箱的容积是多少升?
《 40÷4=10 10×10×40÷1000=4》
7. 小学五年级数学思考题
1.设有X人.
5X-17=3X-3
2X=14
X=7
答:有7个同学.
2.设有X个同学.
8X-27=6X-5
2X=22
X=11
共有树:11*8-27=61(棵)
或:11*6-5=61(棵)
答:人有11个同学,共有树61棵.
3.设上层有书X本,则下层书为:3X+5本.中层书为:2X+1本.
X+3X+5+2X+1=840
6X=734
X=139
下层为:3*139+5=422(本)
中层为:2*139+1=279(本)
答:上中下层各有书139本,279本和422本.
4.设原来买梨X个,原来买的苹果为3X个.
3X-6=5(X-10)
3X-6=5X-50
2X=44
X=22
苹果为:3*22=66(个)
苹果和梨共为:66+22=88(个)
答:原来买来苹果和梨共为88个.
5.设小红原来有X张画片.小明原来有3X张.
3X+5=2(X+5)
3X+5=2X+10
X=5
小明原来有:3*5=15(张)
答:小红和小明原来各有5张和15张画片.
8. 小学五年级数学思考题50题。。 急求。
1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?
六.抽屉原理、奇偶性问题
1.一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出几只手套才能保证有3副同色的?
2.有四种颜色的积木若干,每人可任取1-2件,至少有几个人去取,才能保证有3.某盒子内装50只球,其中10只是红色,10只是绿色,10只是黄色,10只是蓝色,其余是白球和黑球,为了确保取出的球中至少包含有7只同色的球,问:最少必须从袋中取出多少只球?
1. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?
2. 有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?
3. 某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?
4. 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.
5. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?
6. 有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?
7. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间?
8. 甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车.
9. 甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?
10. 今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个.那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱?
小学数学应用题综合训练(02)
11. 师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?
12. 一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的.
13. 一部书稿,甲单独打字要14小时完成,,乙单独打字要20小时完成.如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时.......两人如此交替工作.那么打完这部书稿时,甲乙两人共用多少小时?
14. 黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多?
15. 一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米?
16. 甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨?
17. 甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478.那么甲、乙丙三数之和是几?
18. 一辆车从甲地开往乙地.如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少千米?
19. 某校参加军训队列表演比赛,组织一个方阵队伍.如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加.那么组成这个方阵的人数应为几人?
20. 甲、乙、丙三台车床加工方形和圆形的两种零件,已知甲车床每加工3个零件中有2个是圆形的;乙车床每加工4个零件中有3个是圆形的;丙车床每加工5个零件中有4个是圆形的.这天三台车床共加工了58个圆形零件,而加工的方形零件个数的比为4:3:3,那么这天三台车床共加工零件几个?
小学数学应用题综合训练(03)
21. 圈金属线长30米,截取长度为A的金属线3根,长度为B的金属线5根,剩下的金属线如果再截取2根长度为B的金属线还差0.4米,如果再截取2根长度为A的金属线则还差2米,长度为A的等于几米?
22. 某公司要往工地运送甲、乙两种建筑材料.甲种建筑材料每件重700千克,共有120件,乙种建筑材料每件重900千克,共有80件,已知一辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,至少要几次?
23. 从王力家到学校的路程比到体育馆的路程长1/4,一天王力在体育馆看完球赛后用17分钟的时间走到家,稍稍休息后,他又用了25分钟走到学校,其速度比从体育馆回来时每分钟慢15米,王力家到学校的距离是多少米?
24. 师徒两人合作完成一项工程,由于配合得好,师傅的工作效率比单独做时要提高1/10,徒弟的工作效率比单独做时提高1/5.两人合作6天,完成全部工程的2/5,接着徒弟又单独做6天,这时这项工程还有13/30未完成,如果这项工程由师傅一人做,几天完成?
25. 六年级五个班的同学共植树100棵.已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班.又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵?
26. 甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米.乙总共跑了多少千米?
27. 有高度相等的A,B两个圆柱形容器,内口半径分别为6厘米和8厘米.容器A中装满水,容器B是空的,把容器A中的水全部倒入容器B中,测得容器B中的水深比容器高的7/8还低2厘米.容器的高度是多少厘米?
28. 有104吨的货物,用载重为9吨的汽车运送.已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成.
29. 师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件?
30. 奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米.去时用了4天,回来时用了3天,问学校距离百花山多少千米?
小学数学应用题综合训练(04)
31. 某地收取电费的标准是:每月用电量不超过50度,每度收5角;如果超出50度,超出部分按每度8角收费.每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?
32. 王师傅计划用2小时加工一批零件,当还剩160个零件时,机器出现故障,效率比原来降低1/5,结果比原计划推迟20分钟完成任务,这批零件有多少个?
33. 妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张1.20元.用这些钱买甲种卡要比买乙种卡多8张,买乙种卡要比买丙种卡多买6张.妈妈给了红红多少钱?乙种卡每张多少钱?
34. 一位老人有五个儿子和三间房子,临终前立下遗嘱,将三间房子分给三个儿子各一间.作为补偿,分到房子的三个儿子每人拿出1200元,平分给没分到房子的两个儿子.大家都说这样的分配公平合理,那么每间房子的价值是多少元?
35. 小明和小燕的画册都不足20本,如果小明给小燕A本,则小明的画册就是小燕的2倍;如果小燕给小明A本,则小明的画册就是小燕的3倍.原来小明和小燕各有多少本画册?
36. 有红、黄、白三种球共160个.如果取出红球的1/3,黄球的1/4,白球的1/5,则还剩120个;如果取出红球的1/5,黄球的1/4,白球的1/3,则剩116个,问(1)原有黄球几个?(2)原有红球、白球各几个?
37. 爸爸、哥哥、妹妹三人现在的年龄和是64岁,当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁.当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁.现在三人的年龄各是多少岁?
38. B在A,C两地之间.甲从B地到A地去送信,出发10分钟后,乙从B地出发去送另一封信.乙出发后10分钟,丙发现甲乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间?
39. 甲、乙两个车间共有94个工人,每天共加工1998竹椅.由于设备和技术的不同,甲车间平均每个工人每天只能生产15把竹椅,而乙车间平均每个工人每天可以生产43把竹椅.甲车间每天竹椅产量比乙车间多几把?
40. 甲放学回家需走10分钟,乙放学回家需走14分钟.已知乙回家的路程比甲回家的路程多1/6,甲每分钟比乙多走12米,那么乙回家的路程是几米?
小学数学应用题综合训练(05)
41. 某商品每件成本72元,原来按定价出售,每天可售出100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提高到原来的2.5倍,照这样计算,每天的利润比原来增加几元?
42. 甲、乙两列火车的速度比是5:4.乙车先发,从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车往B站,两列火车相遇的地方离A,B两站距离的比是3:4,那么A,B两站之间的距离为多少千米?
43. 大、小猴子共35只,它们一起去采摘水蜜桃.猴王不在的时候,一只大猴子一小时可采摘15千克,一只小猴子一小时可采摘11千克.猴王在场监督的时候,每只猴子不论大小每小时都可以采摘12千克.一天,采摘了8小时,其中只有第一小时和最后一小时有猴王在场监督,结果共采摘4400千克水蜜桃.在这个猴群中,共有小猴子几只?
44. 某次数学竞赛设一、二等奖.已知(1)甲、乙两校获奖的人数比为6:5.(2)甲、乙来年感校获二等奖的人数总和占两校获奖人数总和的60%.(3)甲、乙两校获二等奖的人数之比为5:6.问甲校获二等奖的人数占该校获奖总人数的百分数是几?
45. 已知小明与小强步行的速度比是2:3,小强与小刚步行的速度比是4:5.已知小刚10分钟比小明多走420米,那么小明在20分钟里比小强少走几米?
46. 加工一批零件,原计划每天加工15个,若干天可以完成.当完成加工任务的3/5时,采用新技术,效率提高20%.结果,完成任务的时间提前10天,这批零件共有几个?
47. 甲、乙二人在400米的圆形跑道上进行10000米比赛.两人从起点同时同向出发,开始时甲的速度为8米/秒,乙的速度为6米/秒,当甲每次追上乙以后,甲的速度每秒减少2米,乙的速度每秒减少0.5米.这样下去,直到甲发现乙第一次从后面追上自己开始,两人都把自己的速度每秒增加0.5米,直到终点.那么领先者到达终点时,另一人距离终点多少米?
48. 小明从家去学校,如果他每小时比原来多走1.5千米,他走这段路只需原来时间的4/5;如果他每小时比原来少走1.5千米,那么他走这段路的时间就比原来时间多几分几之?
49. 甲、乙、丙、丁现在的年龄和是64岁.甲21岁时,乙17岁;甲18岁时,丙的年龄是丁的3倍.丁现在的年龄是几岁?
50. 加工一批零件,原计划每天加工30个.当加工完1/3时,由于改进了技术,工作效率提高了10%,结果提前了4天完成任务.问这批零件共有几个?
9. 五年级数学思考题
某车间每天能生产甲种零件120个,或乙种零件100个,或丙种零件200个,甲,乙,丙三种零件分别取3个,2个,1个可配成一套。现要求在30天内生产出最多的成套产品,甲,乙,丙三种零件应该各安排生产多少天?
一、小数一步加、减法应用题
1、一本数学读物6.25元,一本语文读物5.86元。两本书一共要多少钱?
2、一个西瓜重4.86千克,一个哈密瓜重3.5千克。一个西瓜比一个哈密瓜重多多少千克?
二小数一步乘除法应用题1一种毛线每千克48.36元,买3千克应付多少元?买0.6千克呢?
2、一个养蚕专业组养春蚕21张,一共产茧1240千克。平均每张大约产茧多少千克?
三、含有三个已知条件的两步计算应用题1、小红看一本故事书,看了5天,每天看12页,还有38页没有看。这本书一共有多少页?(画一画线段图)
2、食堂运来面粉和大米各3袋。面粉每袋重25千克,大米每袋重50千克。运来面粉和大米一共多少千克?
3、民兵打靶,第一次用子弹250发,第二次用子弹320发,第三次比前两次的总和少180发,第三次用子弹多少发?
四、含有两个已知条件的两步计算应用题
1、学校买彩色粉笔45盒,买的白粉笔比彩色粉笔多15盒。一共买多少盒粉笔?
2、一个空筐重2千克,往筐里放入32千克花生。装着花生的筐的重量是空筐的多少倍?
五、连乘应用题
1、粮店运来两车面粉,每车装80袋,每袋25千克。这个粮店运来多少千克面粉?(用两种方法解答)
2、三年级同学到菜园收白菜,分成4组,每组11人,平均每人收45千克。一共收白菜多少千克?
1.化肥厂计划生产7200吨化肥,已经生产了4个月,平均每月生产化肥1200吨,余下的每月生产800吨,还要生产多少个月才能完成?
2. 塑料厂计划生产1300件塑料模件,6天生产了780件。照这样计算,剩下的还要生产多少天才能完成?
3.李师傅上午4小时生产了252个零件,照这样的速度下午又工作3小时。李师傅这一天共生产零件多少件?
4. 水泥厂计划生产水泥3600吨,用20天完成。实际每天比计划多生产20吨,实际多少天完成任务?
5.一堆煤3.6吨,计划可以烧10天,改进炉灶后,每天比原计划节约0.06吨,这堆煤现在可以烧多少天?
6. 甲、乙两地相距420千米,一辆客车从甲地到乙地计划行使7小时。实际每小时比原计划多行使10千米,实际几小时到达?
7.小强从家回校上课,如果每分钟走50米,12分钟回到学校,如果每分钟多走10米,提前几分钟可以回到学校?
8. 筑一条长6.4千米的公路,前3个月平均每月筑1.2千米,剩下的每月修1.4千米,还要几个月完成?
9.小明用10.2元买文具,买了6支铅笔,每支0.45元,余下的钱买圆珠笔,每支2.5元,可以买多少支?
10. 服装厂原计划做120套西服,每套西服用布4.8米,改进裁剪方法后。每套节约用布0.3米,原来用的布现在可做西服多少套?
11.一本故事书,原来每页排576字,排了25页。再版时字改小了,只需排18页。现在每页比原来多排多少个字?
12. 一列客车和一列货车同时从甲、乙两地相对开出,客车每小时行使80千米,货车每小时行使60千米,经过5小时两车相遇。甲、乙两地的铁路长多少千米?
13.两个工程队同时合开一条1500米的隧道,甲工程队在一端开工,每天挖14米,乙工程队在另一端开工,每天挖16米,多少天后隧道可以挖通?
14. 甲、乙两人同时合打一份7000字的稿件,甲每小时打600字,乙比甲每小时多打200字,经过几小时可以完成任务?
15.小明和小强放学后在学校门口向相反的方向行走,小明每分钟走70米,小强每分钟走68米,5分钟后两人相距多少米?
16、 甲、乙两地的路程是630千米,客车从甲地开出2小时后,货车从乙地相向开出,已知客车每小时行使65千米,货车每小时行使60千米。货车开出几小时后与客车相遇?
五年级数学应用题练习(二)
班别: 姓名: 成绩:
1、机床厂原来知道机床每台用钢材1.02吨,改进设计后,每台比原来节约0.12吨,原来制造300台所用的钢材,现在可以制造机床多少台?
2、小明买了6支铅笔和4本练习本,每本练习本0.68元,每支铅笔0.24元。小明付出5元钱,应找回多少元?
3、甲、乙两列火车同时从两地相对开出,甲火车每小时行使80千米,乙火车每小时行使70千米,开出12小时后两车还相距110千米,两地相距有多少千米?
4、光明造纸厂生产一批新闻纸,原计划28天完成,每天需生产12.5吨。施加提前3天完成,实际每天比原计划多生产多少吨?
5、李师傅生产一 批零件,前3天生产零件126件,照这样计算,再生产12天完成生产任务。这批零件共有多少件?
6、化肥厂计划用30天生产化肥84吨,实际每天比计划多生产0.2吨,实际比计划提前几天完成任务?
7、加工一批服装,每天加工300套,16天可以完成,
(1) 如果每天加工400套,提前几天完成?
(2) 如果每天多加工20套,几天可以完成?
(3) 如果要提前5天完成,每天要加工多少套?
8、某汽车厂计划全年生产汽车16800台,结果提前2个月就完成了全年的生产任务。照这样的速度,全年可生产汽车多少台?
9、新丰农机厂一个车间加工2480个零件。原来每天加工100个,工作20天后,改为每天加工120个。这样再加工几天就可以完成任务?
10、一个服装厂原来做一种儿童服装,每套用布2.2米。现在改进了裁剪方法,每套节省布0.2米。原来做600套这种服装所用的布,现在可以做多少套?
11、小红买了练习本和生字本各3本,一本练习本0.36元,一本生字本0.32元,小红买生字本比买练习本少用多少元?
12、同学抬水浇树。三年级浇45棵,三年级比四年级少浇10棵,四年级是五年纪浇的棵数的一半。五年级比三年纪多浇多少棵?
13、两个工程队合开一条隧道,各从一端开凿,第一队每天开12.6米,第二队每天开14.4米,第一队开凿5天后,第二队才加入,再过21天隧道终于打通。
(1)这条隧道长多少千米?
(2)打通时两队各开凿了多少米?
14、小汽车每小时行63千米,小汽车的速度是载重汽车的1.4倍。它们从相距270千米的两地同时开出,相向行驶。
(1) 经过几小时相遇?
(2) 相遇时两车各行了多少千米?
(3) 如果出发时是8时15分,相遇时是几时几分?
1一辆摩托车 小时行98千米,一辆卡车 小时行80千米,试求:
(1)摩托车与卡车所用时间之比;
(2)摩托车与卡车所行路程之比;
(3)摩托车速度与卡车速度之比。
2一辆汽车从甲地开往500千米外的乙地,已经行了280千米,求已经行的路程与剩下路程之比。
3一项工程,甲队单独做10天完成,乙队单独做8天完成,甲队与乙队工作效率之比是多少?
4五(1)班有学生40人,体育锻炼达标的有32人,未达标的人数占全班人数的百分之几(即求未达标率)?
5小李、小赵、小王三人合做一批零件,到完工时,小李做总数的 ,小赵做总数的 ,小王做总数的 ,求三人所做零件数量之比。
6 五(1)班第一次数学测试,及格的有48人,不及格的有2人。求这次数学测试的及格率。
7某车间某天出勤职工38人,缺勤2人,求出勤率。
8某厂上半月完成计划产量的56%,下半月又完成计划产量的64%,这个月增产百分之几?
9一套自学丛书,现在的单价是160元,比原价降低了40元,问现在的售价是原价的百分之几?
10 少先队绿化组春季植树360株,秋季植树440株,共成活760株,求树苗成活率。
11 月饼厂去年生产月饼140吨,今年生产月饼210吨,今年比去年增产百分之几?
12 6千克比5千克多百分之几?5千克比6千克少百分之几?
13 某厂上半月完成计划产量的56%,下半月又完成计划产量的64%,这个月增产百分之几?
14服装厂下半年生产服装计划数比上半年增加20%,那么下半年生产服装计划数是上半年的百分之几?
15.油菜籽的出油率是38%,5吨油菜籽可加工出多少吨油?
16.修建一自来水厂,计划投资500万元,实际比计划节约了5%,节约了多少万元?
17.油菜籽的出油率达到八成五,勤奋村种了8公顷油菜,每公顷收到油菜籽3750千克,共可出菜籽油多少千克?
18.辛庄小学六年级学生有200人,其中120人参加兴趣小组,要使参加兴趣小级的人数达到88%,还需要增加多少人参加?
19.养鸡场养肉鸡10万只,第一次卖去 ,第二次卖去25%,还剩多少万只?
20.一堆煤重120吨,第一天运走了总重量的20%,第二天运走总重量的25%,还剩下多少吨?
21.一辆汽车原来每小时用去汽油12升,修理后用油节约了10%,现在这辆汽车每小时用去汽油多少升?
22.某小学四年级有120人,五年级比四年级少10%,五年级有多少人?
23.汽车 小时行24千米,摩托车每小时的速度比汽车快70%,摩托车每小时行多少千米?
24一条公路,第一个月修了全长的 ,第二个月修了6千米,还剩37.5%没有修。这条公路全长多少米?
25 某厂生产一批零件,第一天生产40件,第二天比第一天多生产10%,两天的产量占总数的25%,这批零件有多少件?
26 一辆汽车从甲城开往乙城,已经行了72千米,还剩下全程的62.5%,这辆汽车行到乙城还需要多少千米?
27 甲、乙两车同时从两地相向开出,当甲车行了全程的60%,乙车行了全程的75%时,两车相距140千米。两地相距多少千米?甲车比乙车少行多少千米?
28 庆丰商店运来桔子和梨1620千克,运来的梨是桔子的80%,运来桔子和梨各多少千克?.
29油菜籽的出油率是38%,5吨油菜籽可加工出多少吨油?
30修建一自来水厂,计划投资500万元,实际比计划节约了5%,节约了多少万元?
31 全国工商税收收入95年为5383亿元,96年增收1051亿元,96年比95年增收百分之几?
1、 新华书店把5250本文艺书和科技书运往农村,文艺书有25包,科技书有80包,每包的本数相等。每包多少本书?科技书和文艺书各有多少本?
2、 一个粮店,上午卖出50袋面粉,下午卖出30袋面粉,每袋面粉的重量相等,上午比下午多卖出面粉1600千克。每袋面粉重多少千克?上午和下午各卖出面粉多少千克?
3、 第一辆卡车运来水泥80包,第二辆卡车运来水泥65包,比第一辆卡车少运来水泥1.5吨,两辆卡车各运来水泥多少吨?
4、 一个水果店有两筐单价相同的苹果,第一筐重45千克,第二筐重39千克,第二筐比第一筐少卖15元,两筐苹果各值多少元?两筐苹果共值多少元?
5、 华丰水国行,运来的梨比橘子多840千克,梨的重量是橘子的1.5倍,橘子和梨各重多少千克?
6、 服装厂有工人156人,其中女工人数是男工人数的3倍,求男、女工各有多少人?
7、 两包赈灾物品共重154千克,其中第一包比第二包的2倍少14千克,求两包赈灾物品的重量各是多少千克?
8、 仓库存有大米和面粉,已知存放的面粉比大米多4500千克,存放的面粉比大米的3倍还多700千克,求仓库存有大米和面粉各多少千克?
9、 明明星期天上街买衣服,花175元买了一套服装,已知上衣比裤子贵15元,上衣与裤子各多少元?
10、 一个长方形的周长是55厘米,已知长比宽长3.5厘米,这个长方形的长和宽各是多少厘