当前位置:首页 » 语数英语 » 数学几何游戏

数学几何游戏

发布时间: 2021-08-10 04:58:46

1. 一款几何画风的手机游戏

纪念碑谷还不错

2. 初一数学几何题100道

(一)选择题
1、我国研制的“曙光3000超级服务器”,它的峰值计算速度达到403,200,000,000次/秒,用科学计数法可表示为 ( )
A. 4032×108 B. 403.2×109 C. 4.032×1011 D. 0.4032×1012
2、下面四个图形每个都由六个相同的小正方形组成,折叠后能围成正方体的是 ( )
3、下列各组数中,相等的一组是( )
A.-1和- 4+(-3) B. |-3|和-(-3) C. 3x2-2x=x D. 2x+3x=5x2
4.巴黎与北京的时差是-7(正数表示同一时刻比北京早的时数),若北京时间是7月2日14:00时整,则巴黎时间是( )
A.7月2日21时 B.7月2日7时 C.7月1日7时 D.7月2日5时
5、国家规定存款利息的纳税办法是:利息税=利息×20%,银行一年定期的利率为2.25%,今小磊取出一年到期的本金及利息时,交纳了4.5元利息税,则小磊一年前存入银行的钱为
A. 1000元 B. 900元 C. 800元 D. 700元 ( )
6、某种品牌的彩电降价30%后,每台售价为a元,则该品牌彩电每台售价为 ( )
A. 0.7a 元 B. 0.3a元 C. 元 D. 元
7、两条相交直线所成的角中
A.必有一个钝角 B.必有一个锐角 C.必有一个不是钝角 D.必有两个锐角
8、为了让人们感受丢弃塑料袋对环境造成的影响,某班环保小组的六名同学记录了自己家中一周内丢弃的塑料袋的数量,结果如下(单位:个): 33 25 28 26 25 31.如果该班有45名学生,根据提供的数据估计本周全班同学各家总共丢弃塑料袋的数量约为 ( )
A.900个 B.1080个 C.1260个 D.1800个
9、若关于x的方程3x+5=m与x-2m=5有相同的解,则x的值是 ( )
A. 3 B. –3 C. –4 D. 4
10、已知:│m + 3│+3(n-2)2=0,则m n值是 ( )
A. –6 B.8 C. –9 D. 9
11. 下面说法正确的是( )
A. 过直线外一点可作无数条直线与已知直线平行 B. 过一点可作无数条直线与已知直线垂直
C. 过两点有且只有二条直线 D. 两点之间,线段最短.
12、正方体的截面中,边数最多的多边形是 ( )
A.四边形 B.五边形 C.六边形 D. 七边形
二、 填空题
13、用计算器求4×(0.2-3)+(-2)4时,按键的顺序是__________________________
14、计算51°36ˊ=________°
15、张大伯从报社以每份0.4元的价格购进了a份报纸,以每份0.5元的价格售出了b份报纸,剩余的以每份0.2元的价格退回报社,则张大伯的卖报收入是___________.
16、 已知:如图,线段AB=3.8㎝,AC=1.4㎝,D为CB的中点,A C D B 则DB= ㎝
17、设长方体的面数为f, 棱数为v,顶点数为e,则f + v + e =___________.
18.用黑白两种颜色的正六边形地面砖按如下所示的规律拼成若干个图案:则第(4)个图案中有白色地面砖________块;第n
(1) (2) (3) 个图案中有白色地面砖_________块.
19. 一个袋中有白球5个,黄球4个,红球1个(每个球除颜色外其余都相同),摸到__________球的机会最小
20、一次买10斤鸡蛋打八折比打九折少花2元钱,则这10斤鸡蛋的原价是________元.

1、如果运进货物30吨记作+30吨,那么运出50吨记作 ;
2、3的相反数是_____ , ______ 的相反数是
3、既不是正数也不是负数的数是 ;
4.-2的倒数是 , 绝对值等于5的数是 ;
5、计算:-3+1= ; ; ;
; ;
6、根据语句列式计算: ⑴-6加上-3与2的积 ,
⑵-2与3的和除以-3 ;
7、比较大小: ; +| | ;
8、.按某种规律填写适当的数字在横线上
1,- , ,- , ,
9、绝对值大于1而小于4 的整数有 ,其和为 ,积为 ;
10.规定图形 表示运算a-b+c,图形 表示运算 .
则 + =_______
二、 选择题(每题3分,共30分)
11、 已知室内温度为3℃,室外温度为 ℃,则室内温度比室外温度高( )
(A) 6℃ (B) -6℃ (C) 0℃ (D) 3℃
12、下列各对数中,互为相反数的是 ( )
A. 与 B. 与
C. 与 D. 与
13、下列各图中,是数轴的是 ( )
A. B.
-1 0 1 1
C. D.
-1 0 1 -1 0 1
14. 对下列各式计算结果的符号判断正确的一个是 ( )
A、 B、
C、 D、
15.一个数的倒数等于这个数本身,这个数是 ( )
(A)1 (B) (C)1或 (D)0
16.下列各计算题中,结果是零的是( )
(A) (B)
(C) (D)
17. 已知a 、 b 互为相反数, 则 ( )
(A) a – b = 0 (B) a + b = 0 (C) a = (D) a - |b| = 0
18.数轴上的两点M、N分别表示-5和-2,那么M、N两点间的距离是( )
A.-5+(-2) B、-5-(-2)
C、|-5+(-2)| D、|-2-(-5)|
19. 下列说法正确的是 ( )
(A)一个数的绝对值一定是正数 (B)任何正数一定大于它的倒数
(C)-a一定是负数 (D)零与任何一个数相乘,其积一定是零
20. 如图是一个正方形盒的展开图,若在其中的三个正方形A、B、C 、内分别填入适当的数,使得它们折成正方形后相对的面上的两个数互为相反数,则 填入正方形A、B、C内的三个数依次为( )
(A) 1, -2, 0 (B) 0, -2, 1
(C) -2, 0, 1 (D) -2, 1, 0
21. 计算下列各题: (每小题5分,共20分)
(1) (2) 12—(—18)+(—7)—15
(3) (4) -2 +|5-8|+24÷(-3)
22、(4分)把下列各数填在相应的表示集合的大括号里:
(1)正整数集合{ …}
(2)整数集合 { …}
(3)正分数集合{ …}
(4)负分数集合{ …}
23、在数轴上表示下列各数,再用“<”号把各数连接起来。(5分)
+2,—(+4),+(—1),|—3|,—1.5
24、 (7分)“十??一”黄金周期间,南京市中山陵风景区在7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):
日期 1日 2日 3日 4日 5日 6日 7日
人数变化单位:万人 1.6 0.8 0.4 -0.4 -0.8 0.2 -1.2
(1) 请判断七天内游客人数最多的是哪天?最少的是哪天?它们相差多少万人?
(2) 若9月30日的游客人数为2万人,求这7天的游客总人数是多少万人?
25、(6分)若有理数a,b,c在数轴上的位置如图所示,其中0是原点,
|b|=|c|。
(1)用“<”号把a,b,-a,-b连接起来;
(2)b+c的值是多少?
(3)判断a+b与a+c的符号。
26、设a是绝对值大于1而小于5的所有整数的和,b是不大于2的非负整数的和,求a、b,以及b—a的值。(6分)
27、(附加题5分)有一个“猜成语”的电子游戏,其规则是:参加游戏的每两个一组,主持人出示写有成语的一块牌子给两个中的一个人(甲)看,但另一个人(乙)是看不到牌子上的成语的。现在请甲用一句话(这句话中不能出现成语中含有的字)或一个动作告诉牌子上的成语,要求乙根据甲的话或动作猜出这个成语。现在我们把这个游戏中的成语改写两个整数“-1和1”,要求甲用一句话或一个式子、一个图形告诉乙这两个数(同样不能出现与牌子上相同的数字)。如果你是甲,对这两个整数,将怎样告诉乙?(至少说出两种)

(1)23+(-73)
(2)(-84)+(-49)
(3)7+(-2.04)
(4)4.23+(-7.57)
(5)(-7/3)+(-7/6)
(6)9/4+(-3/2)
(7)3.75+(2.25)+5/4
(8)-3.75+(+5/4)+(-1.5)
(9)(-17/4)+(-10/3)+(+13/3)+(11/3)
(10)(-1.8)+(+0.2)+(-1.7)+(0.1)+(+1.8)+(+1.4)
(11)(+1.3)-(+17/7)
(12)(-2)-(+2/3)
(13)|(-7.2)-(-6.3)+(1.1)|
(14)|(-5/4)-(-3/4)|-|1-5/4-|-3/4|)
(15)(-2/199)*(-7/6-3/2+8/3)
(16)4a)*(-3b)*(5c)*1/6
还有50道题,不过没有答案
1. 3/7 × 49/9 - 4/3
2. 8/9 × 15/36 + 1/27
3. 12× 5/6 – 2/9 ×3
4. 8× 5/4 + 1/4
5. 6÷ 3/8 – 3/8 ÷6
6. 4/7 × 5/9 + 3/7 × 5/9
7. 5/2 -( 3/2 + 4/5 )
8. 7/8 + ( 1/8 + 1/9 )
9. 9 × 5/6 + 5/6
10. 3/4 × 8/9 - 1/3
0.12χ+1.8×0.9=7.2 (9-5χ)×0.3=1.02 6.4χ-χ=28+4.4
11. 7 × 5/49 + 3/14
12. 6 ×( 1/2 + 2/3 )
13. 8 × 4/5 + 8 × 11/5
14. 31 × 5/6 – 5/6
15. 9/7 - ( 2/7 – 10/21 )
16. 5/9 × 18 – 14 × 2/7
17. 4/5 × 25/16 + 2/3 × 3/4
18. 14 × 8/7 – 5/6 × 12/15
19. 17/32 – 3/4 × 9/24
20. 3 × 2/9 + 1/3
21. 5/7 × 3/25 + 3/7
22. 3/14 ×× 2/3 + 1/6
23. 1/5 × 2/3 + 5/6
24. 9/22 + 1/11 ÷ 1/2
25. 5/3 × 11/5 + 4/3
26. 45 × 2/3 + 1/3 × 15
27. 7/19 + 12/19 × 5/6
28. 1/4 + 3/4 ÷ 2/3
29. 8/7 × 21/16 + 1/2
30. 101 × 1/5 – 1/5 × 21
31.50+160÷40 (58+370)÷(64-45)
32.120-144÷18+35
33.347+45×2-4160÷52
34(58+37)÷(64-9×5)
35.95÷(64-45)
36.178-145÷5×6+42 420+580-64×21÷28
37.812-700÷(9+31×11) (136+64)×(65-345÷23)
38.85+14×(14+208÷26)
39.(284+16)×(512-8208÷18)
40.120-36×4÷18+35
41.(58+37)÷(64-9×5)
42.(6.8-6.8×0.55)÷8.5
43.0.12× 4.8÷0.12×4.8
44.(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.6
45.6-1.6÷4= 5.38+7.85-5.37=
46.7.2÷0.8-1.2×5= 6-1.19×3-0.43=
47.6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.9
48.10.15-10.75×0.4-5.7
49.5.8×(3.87-0.13)+4.2×3.74
50.32.52-(6+9.728÷3.2)×2.5
51.-5+58+13+90+78-(-56)+50
52.-7*2-57/(3
53.(-7)*2/(1/3)+79/(3+6/4)
54.123+456+789+98/(-4)
55.369/33-(-54-31/15.5)
56.39+{3x[42/2x(3x8)]}
57.9x8x7/5x(4+6)
58.11x22/(4+12/2)
59.94+(-60)/10

3. 求30道初一上册数学的几何应用题

题1:某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元,当地一家农工商公司收获这种蔬菜140t,该公司的加工能力是:如果对蔬菜进行粗加工,每天可加工16t;如进行精加工,每天可加工6t,但两种加工方式不可同时进行,受季节条件限制,公司必须在十五天内将这批蔬菜全部销售或加工完毕。为此,公司制定了三种方案:
方案一:将蔬菜全部进行粗加工;
方案二:尽可能多地对蔬菜进行精加工,没来得及加工的蔬菜直接在市场上销售;
方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成。
采用这三种方案加工蔬菜,各能获利多少?选择哪种方案获利最多?

问题2:有10名菜农,每人可种甲种蔬菜3公顷或乙种蔬菜2公顷,已知甲种蔬菜每公顷可收入0.5万元,乙种蔬菜每公顷可收入0.8万元,要使总收入不低于15.6万元,则最多安排多少人种甲种蔬菜?

问题3:在一条直线上任取一点A,截取AB=12cm,再截取AC=38cm,DE分别是AB、AC的中点,求D、E两点之间的距离。

1、方案一:
15*16=250>140
可以全部粗加工
利润=4500*140=630,000
方案二:
6*15=90<140
利润=7500*90+1000*(140-90)=725,000
方案三:
设粗加工X天,则精加工15-X天
则有16X+6(15-X)=140 则X=5
利润=16*5*4500+6*10*7500=810,000

所以第三个方案好,获利多。

2.设X人种甲,则10-X人种乙
所以有
X*3*0.5+(10-X)*2*0.8>15.6
1.5X+16-1.6X>15.6
0.4>0.1X
所以最多三人种甲

3.如B、C在A的同侧,则有
38/2-12/2=19-6=13cm
如B、C在A的异侧,则有
38/2+12/2=19+6=25cm

商店搞促销活动,买5盒赠1盒,买30盒多少钱〈一盒2.60元〉{
华美洗发水买一瓶30元,买五瓶赠一瓶, 买八瓶赠二瓶,买五瓶赠一瓶,平均每瓶多少元?妈妈和同事们合伙买12瓶,怎样买合算????

某工厂制定了2011年的生产计划,现有如下数据:(1)工人400人(2)每人年工时1100时。预测年销量80000-100000箱,每箱生产2时,用料10千克,目前存量300吨,年底可补充900吨,根据数据确定年产量及工人数

解:
1.此工厂可以利用的工时资源有:400X1100=440000小时
2.可以利用的材料资源有300+900=1200吨=1200000千克
3.预测年销量80000-100000箱所需的
(1)工时:160000-200000时,需要的工人数:146-182人
(2)材料:800000-1000000千克
所以,可按最大预测年销量生产100000箱。
答:可确定年产量100000箱,工人数182人。

例1 :货轮上卸下若干只箱子,总重量为10吨,每只箱子的重量不超过1吨,为了保证能把这些箱子一次运走,问至少需要多少辆载重3吨的汽车?

[分析与解] 因为每一只箱子的重量不超过1吨,所以每一辆汽车可运走的箱子重量不会少于2吨,否则可以再放一只箱子。所以,5辆汽车本是足够的,但是4辆汽车并不一定能把箱子全部运走。例如,设有13只箱子,,所以每辆汽车只能运走3只箱子,13只箱子用4辆汽车一次运不走。

因此,为了保证能一次把箱子全部运走,至少需要5辆汽车。

例2: 用10尺长的竹竿来截取3尺、4尺长的甲、乙两种短竹竿各100根,至少要用去原材料几根?怎样截法最合算?

[分析与解] 一个10尺长的竹竿应有三种截法:

(1) 3尺两根和4尺一根,最省;

(2) 3尺三根,余一尺;

(3) 4尺两根,余2尺。

为了省材料,尽量使用方法(1),这样50根原材料,可截得100根3尺的竹竿和50根4尺的竹竿,还差50根4尺的,最好选择方法(3),这样所需原材料最少,只需25根即可,这样,至少需用去原材料75根。

例3: 一个锐角三角形的三条边的长度分别是两位数,而且是三个连续偶数,它们个位数字的和是7的倍数,这个三角形的周长最长应是多少厘米?

[分析与解] 因为三角形三边是三个连续偶数,所以它们的个位数字只能是0,2,4,6,8,并且它们的和也是偶数,又因为它们的个位数字的和是7的倍数,所以只能是14,三角形三条边最大可能是86,88,90,那么周长最长为86+88+90=264厘米。

例4: 把25拆成若干个正整数的和,使它们的积最大。

[分析与解] 先从较小数形开始实验,发现其规律:

把6拆成3+3,其积为3×3=9最大;

把7拆成3+2+2,其积为3×2×2=12最大;

把8拆成3+3+2,其积为3×3×2=18最大;

把9拆成3+3+3,其积为3×3×3=27最大;……

这就是说,要想分拆后的数的乘积最大,应尽可能多的出现3,而当某一自然数可表示为若干个3与1的和时,要取出一个3与1重合在一起再分拆成两个2之和,因此25可以拆成3+3+3+3+3+3+3+2+2,其积37×22=8748为最大。

例5: A、B两人要到沙漠中探险,他们每天向沙漠深处走20千米,已知每人最多可携带一个人24天的食物和水,如果不准将部分食物存放于途中,问其中一个人最远可以深入沙漠多少千米(要求最后两人返回出发点)?如果可以将部分食物存放于途中以备返回时取用呢?

[分析与解] 设A走X天后返回,A留下自己返回时所需的食物,剩下的转给B,此时B共有(48-3X)天的食物,因为B最多携带24天的食物,所以X=8,剩下的24 天食物,B只能再向前走8天,留下16天的食物供返回时用,所以B可以向沙漠深处走16天,因为每天走20千米,所以其中一人最多可以深入沙漠320千米。

如果改变条件,则问题关键为A返回时留给B24天的食物,由于24天的食物可以使B单独深入沙漠12天的路程,而另外24天的食物要供A、B两人往返一段路,这段路为24÷4=6天的路程,所以B可以深入沙漠18天的路程,也就是说,其中一个人最远可以深入沙漠360千米。

例6: 甲、乙两个服装厂每个工人和设备都能全力生产同一规格的西服,甲厂每月用的时间生产上衣, 的时间生产裤子,全月恰好生产900套西服;乙厂每月用的时间生产上衣,的时间生产裤子,全月恰好生产1200套西服,现在两厂联合生产,尽量发挥各自特长多生产西服,那么现在每月比过去多生产西服多少套?

[分析与解] 根据已知条件,甲厂生产一条裤子与一件上衣的时间之比为2:3;因此在单位时间内甲厂生产的上衣与裤子的数量之比为2:3;同理可知,在单位时间内乙厂生产上衣与裤子的数量之比是3:4;,由于,所以甲厂善于生产裤子,乙厂善于生产上衣。两厂联合生产,尽量发挥各自特长,安排乙厂全力生产上衣,由于乙厂生产 月生产1200件上衣,那么乙厂全月可生产上衣1200÷ =2100件,同时,安排甲厂全力生产裤子,则甲厂全月可生产裤子900÷ =2250条。

为了配套生产,甲厂先全力生产2100条裤子,这需要2100÷2250=月,然后甲厂再用月单独生产西服900×=60套,于是,现在联合生产每月比过去多生产西服

(2100+60)-(900+1200)=60套

例7 今有围棋子1400颗,甲、乙两人做取围棋子的游戏,甲先取,乙后取,两人轮流各取一次,规定每次只能取7P(P为1或不超过20的任一质数)颗棋子,谁最后取完为胜者,问甲、乙两人谁有必胜的策略?

[分析] 因为1400=7×200,所以原题可以转化为:有围棋子200颗,甲、乙两人轮流每次取P颗,谁最后取完谁获胜。

[解] 乙有必胜的策略。

由于200=4×50,P或者是2或者可以表示为4k+1或4k+3的形式(k为零或正整数)。乙采取的策略为:若甲取2,4k+1,4k+3颗,则乙取 2,3,1颗,使得余下的棋子仍是4的倍数。如此最后出现剩下数为不超过20的4的倍数,此时甲总不能取完,而乙可全部取完而获胜。

[说明] (1)此题中,乙是“后发制人”,故先取者不一定存在必胜的策略,关键是看他们所面临的“情形”;

(2)我们可以这样来分析这个问题的解法,将所有的情形--剩余棋子的颗数分成两类,第一类是4的倍数,第二类是其它。若某人在取棋时遇到的是第二类情形,那么他可以取1或2或3,使得剩下的是第一类情形,若取棋时面临第一类情形,则取棋后留给另一个人的一定是第二类情形。所以,谁先面临第二类情形谁就能获胜,在绝大部分双人比赛问题中,都可采用这种方法。

例8 有一个80人的旅游团,其中男50人,女30人,他们住的旅馆有11人、7人和5人的三种房间,男、女分别住不同的房间,他们至少要住多少个房间?

[分析与解] 为了使得所住房间数最少,安排时应尽量先安排11人房间,这样50人男的应安排3个11人间,2个5人间和1个7人间;30个女人应安排1个11人间,2个7人间和1个5人间,共有10个房间。

例9 有一个3×3的棋盘方格以及9张大小为一个方格的卡片,在每一张卡片上任意写上一数,甲、乙两人做游戏,轮流选取一张卡片放到9格中的一格,对甲计算上、下两行六个数字的和,对乙计算左、右两列六个数字的和,和数大者为胜。证明:不论卡片上写着怎样的数,若甲先走总可以有一种策略使得乙不可能获胜。

[证] 有三种情形:

(1)当a1+a9>a2+a8时,甲必胜。甲的策略是:先选a9放入A格中,第二次尽可能选小

的数放入B或D格,则A与C格中的数字之和不小于a1+a9,而B与D格的数字之和不大于a2+a8,,故甲胜。

(2)当a1+a9<a2+a8时,甲也必胜。甲先取a1放到B格,第二次甲选a8或a9放到A或C格中,这样,A与C格的数字之和不小于a2+a8,而B与D格的数字之和不大于a1+a9,,故甲胜。

(3)当a1+a9 = a2+a8时,甲取胜或和局,甲可采用上述策略中的任一种。
追问
好是好,我是小学的。太多了

回答
1.乙两地相距6千米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟行70米。问他走后一半路程用了多少分钟?

2.小明从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路、一半下坡路。小明上学走两条路所用的时间一样多。已知下坡的速度是平路的1.5倍,那么上坡的速度是平路的多少倍?

3.一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行驶8千米,因此第二小时比第一小时多行驶6千米。那么甲、乙两地之间的距离是多少千米?

4、一条电车线路的起点站和终点站分别是甲站和乙站,每隔5分钟有一辆电车从甲站发出开往乙站,全程要走15分钟。有一个人从乙站出发沿电车线路骑车前往甲站。他出发的时候,恰好有一辆电车到达乙站。在路上他又遇到了10辆迎面开来的电车。到达甲站时,恰好又有一辆电车从甲站开出。问他从乙站到甲站用了多少分钟?

5.甲、乙两人在河中游泳,先后从某处出发,以同一速度向同一方向游进。现在甲位于乙的前方,乙距起点20米,当乙游到甲现在的位置时,甲将游离起点98米。问:甲现在离起点多少米?

6.甲、乙两辆汽车同时从东西两地相向开出,甲每小时行56千米,乙每小时行48千米,两车在离两地中点32千米处相遇。问:东西两地的距离是多少千米?

7.李华步行以每小时4千米的速度从学校出发到20.4千米外的冬令营报到。0.5小时后,营地老师闻讯前往迎接,每小时比李华多走1.2千米。又过了1.5小时,张明从学校骑车去营地报到。结果3人同时在途中某地相遇。问:骑车人每小时行驶多少千米?

8快车和慢车分别从甲、乙两地同时开出,相向而行,经过5小时相遇。已知慢车从乙地到甲地用12.5小时,慢车到甲地停留0.5小时后返回,快车到乙地停留1小时后返回,那么两车从第一次相遇到第二次相遇需要多少时间?

9.某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来校作报告,往返需用1小时。这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达。问:汽车速度是劳模步行速度的几倍?

4. 学前数学几何图形综合练习教案怎么

【活动目标】
1、引导幼儿学习运用几何图形拼物粘贴的基本技能。
2、学习表现物体主要特征,培养幼儿想象力。
3、鼓励幼儿和同伴画得不一样,培养创新意识。
4、培养幼儿的技巧和艺术气质。
5、培养幼儿初步的创造能力。
【活动准备】
1、每组六种大小各异的几何图形;
2、课件、范例;
3、记号笔、油画棒、胶水。
【活动过程】
一、直接出示范画,引导幼儿仔细观察图画
T:今天老师请小朋友欣赏一幅图,看看画的是什么?
你知道是怎么画成的?
你认识哪些图形宝宝?
二、根据幼儿回答出示相应图形卡片
T:这些图形宝宝有个共同的名字叫“几何图形”。
T:你能像老师一样用这些图形宝宝拼出一幅美丽的画吗?我请小朋友来试试。
三、个别幼儿黑板上操作,教师带领幼儿边讲解边评价。
提醒幼儿粘贴时要注意的地方。
T:仔细看看这只小鸟有什么地方有问题?(缺了眼睛)
告诉幼儿有的细小的地方我们可以用记号笔帮它添画上去。还有一些背景也可以。像这条鱼应该在哪里游?那我们可以帮它添上河水,天空中可以天上云朵等。
四、欣赏课件
T:老师还带来了几张拼图画,我们一起来看下。
①图上是什么?运用了哪几种图形?
②你们想不想也来试试,用这些图形宝宝拼出一幅美丽的画?
五、交代要求,幼儿作画,教师指导。
(1)注意画面合理布局,粘贴时胶水适量,保持画面整洁。
(2)鼓励幼儿大胆拼摆,并可根据画面需要进行适当添画。
六、展示作品,总结评价。
找一找你最喜欢的一幅画,请作者介绍。
表扬想象丰富,画面整洁的幼儿。
活动反思:
从本次活动可以看出,孩子本身就存在发展水平的差异,可以先请幼儿用同一形状进行拼摆组合,再过渡到两个图形,最后增加难度提升到用三个图形。这样幼儿可以根据自己的水平自由选择用几种图形进行操作。
小网络:图形是指在一个二维空间中可以用轮廓划分出若干的空间形状,图形是空间的一部分不具有空间的延展性,它是局限的可识别的形状。

5. 用学过的几何图形拼成类似的图形,来做一些数学游戏吗

没有什么巧妙的方法
几何图形只有多做题
多见识些题型
就会好做很多
给你推荐本书
中考夺标
这本书不错
题很多
您可以去看看

6. 数学几何在生活中的应用有哪些

数学除了四则混合运算等简单的外,其余和生活都没什么大的关系,比如高数等等,可能你这辈子都用不到 但学习数学会学到很多思维方式,不论在工作还是学习中都会受益终生的学习几何证明可以锻炼你的超空间思维 学习函数可以锻炼你的逻辑

7. 数学教案有哪几类 概念类的 图形几何类的解决问题类的

活动目标:
一、引导幼儿区分圆形、三角形、长方形、正方形,并能按标记进行分类。
二、通过情景游戏等活动,让幼儿初步感知图形之间的转换关系,并能想办法解决问题。
三、培养幼儿思维的灵活性,发展幼儿动手能力,激发幼儿学习数学的欲望。
活动准备:
1、学会了各种图形的特征。
2、自制的“小路”,上面镂刻大小不同的图形“土坑”,将镂刻下来的图形作成铺路的“石头”。小篮同幼儿人数。
3、圆形、三角形、长方形、正方形的图形标记,音乐。
活动过程:
一、情景导入“捡石头”,激发幼儿活动兴趣。
1、“小朋友,今天的天气真好,我们一起去郊外捡石头!”(随音乐进入活动室)
2、教师提出操作要求:“快看!有那么多五彩缤纷的小石头,大家可以挑自己喜欢的捡。”
3、引导幼儿观察、操作,鼓励幼儿边操作边交流。
4、请小朋友大胆介绍自己喜欢的石头 (颜色、形状)。
5、游戏:按标记举“石头”。
二、铺石头:
1、“大家捡了那么多漂亮的石头,我们用它来铺一条石子路,好吗?”
2、幼儿自由操作:把捡到的“石头”一一对应地嵌入相应形状的 “坑”里。
3、出现问题:“小石头没有了,但是还有坑没有铺好,该怎么办?”
4、幼儿再次操作。
5、发现问题:“老师发现这里有块石头很特别,是用两种颜色的石头拼起来的。”请个别幼儿介绍他的方法。
6、引导幼儿想办法互相合作,用捡来的“石头”铺平“地上”的“坑”。
7、教师小结:用几个不同形状的图形能拼出一个新的图形来。
三、踩石头:
1、“路铺平了,我们来玩踩石头的游戏!” 教师介绍玩法:“音乐一响,小朋友就一边念儿歌一边动起来,音乐一停就立即踩到“石头”上,并说说踩的是什么形状、颜色的“石头”。
2、游戏重复2"3次。
3、让幼儿找找在幼儿园里有没有这样的图形,结束活动。
活动延伸:
1、幼儿操作材料放入活动室计算角,让幼儿在自由活动中继续操作。
2、让幼儿回家找一找、想一想,在日常生活中有什么东西的形状是圆形、三角形、长方形及正方形,回园告诉老师,并列出图表。
《有趣的几何图形》课后反思:
在幼儿的活动过程中,确有许多的知识、技能需要教师以直接的方式予以支持。比如,那些幼儿无法凭借现有的条件通过探索获得的经验,教师要直接给予一些替代性的经验,当出现一些新型复合材料的时候,需要给幼儿演示其基本的用法,当幼儿出现无法克服的客观困难的时候,及时的予以解除。图形变变是幼儿喜欢的数学活动,我没有给任何提示,首先让孩子们自己尝试,中间稍微介入一下,最后放手让孩子们变,孩子们的探索有了别样的成功体验。

8. 数学几何在现实生活中到底有什么用处

关键是培养你的空间想象能力、逻辑推理能力、以及发现问题、分析问题和解决问题的能力,学习一门课程不一定要有实际用途,很多时候只是进行某种能力的培养和某种思维方式的训练,在以后的生活中自觉不自觉地运用,然而大多数人都没有觉察——因为处理问题往往是多种能力和思维方式的综合运用。 实际应用:工程类、机械类、软件工程中的3d类游戏设计等等。

9. 20道小学四年级数学几何题

1、 人民路小学操场长90米,宽45米,改造后,长增加10米,宽增加5米。现在操场面积比原来增加多少平方米?

【思路导航】用操场现在的面积减去操场原来的面积,就得到增加的面积,操场现在的面积是:(90+10)×(45+5)=5000(平方米),操场原来的面积是:90×45=4050(平方米)。所以现在比原来增加5000-4050=950平方米。
(90+10)×(45+5)-(90×45)=950(平方米)

练习(1)有一块长方形的木板,长22分米,宽8分米,如果长和宽分别减少10分米,3分米,面积比原来减少多少平方分米?
练习(2)一块长方形地,长是80米,宽是45米,如果把宽增加5米,要使面积不变,长应减少多少米?

10. 小学数学游戏

猜拳游戏
游戏目的:练习数的组成。
游戏过程:例如:师:下面我们做关于“6”的游戏
我出2(手势:伸两个手指)
生:我出4(手势:伸四个手指)
2和4合成6
可以老师和学生猜,同桌互相猜。

拍手
游戏目的:练习数的组成。
游戏过程:师:下面我们做关于“7”的游戏
师先拍3下,要求学生不说话,只拍手,拍完后,才说“几和几合成7”。

找朋友
游戏目的:使学生能正确计算10以内的加法
游戏准备:
1.若干套1到9的数字卡片。
2.每次游戏前发给每个学生1张。
游戏过程:
1.把几套从1到9的数字卡片分别发给全班同学,戴在胸前.全班同学围成一圈做丢手帕的游戏,捉到谁,谁就站在圈中央找出自己的朋友来搭救自己。
2.数字凑成10才能做朋友(可以是两人做朋友,如7和3,也可是三人做朋友,如2,4和4,还可以是四人、五人……做朋友),朋友越多越好。
3.根据找到朋友的人数多少,大家用掌握声进行奖励,找到一个朋友,鼓一次掌,找到两个朋友鼓两次掌,以此类推。

摸几何图形
游戏目的:训练学生用触摸的方法对看不见的几何图形进行分类,巩固他们对几何图形的特征辨认。
游戏材料:三角形、圆形、正方形、长方形的硬纸片若干,一个纸盒,一块大手帕。
游戏过程:
(1)将若干三角形、圆形、正方形、长方形硬纸片放进纸盒里,用手帕盖好;
(2)纸盒外边分别放一块三角形、圆形、正方形、长方形纸片;
(3)一个小朋友把一只手伸进纸盒摸图形,另一只手在纸盒外边拿一个与摸到的图形同类的图形,然后将摸到的图形拿出来进行比较。如两只手中的图形确是同一类型,得10分,并可继续摸一次;如两只手中的图形不是同一类型,不给分,且不再摸。注意事项:盒子里面的图形与盒子外边的图形尽可能大小相等,否则会给儿童做游戏带来难度。当然增加难度,可以加上各种立体图形。
搭积木
游戏目的:
1.通过学生接触不同形状的积木,熟悉各立体图形的特征。
2.培养学生动手操作能力。
游戏准备:有正方体、长方体、球、圆柱等形状的积木。
游戏过程:
1.学生分为若干小组,每组发给一副积木。
2.以小组为单位,合作搭积木,用不同形状的积木搭成自己喜欢的事物(如:桥、房子等)。
3.将各小组的作品摆在一起,由各小组推举的一名学生讲解自己组摆的是什么事物,用了那些形状的积木,并一一指出来。
4.全体学生评判出最优作品。

拼一拼,摆一摆
游戏目的:
1.通过游戏,培养学生的空间观念。
2.培养学生的动手操作能力。
游戏准备:
1.教师提前准备一个用长方体、正方体、圆柱和球拼摆的玩具。
2.每个学生准备与教师相同的长方体、正方体、圆柱和球各若干个。
游戏过程:
1.教师分步描述自己的玩具。(玩具不要让学生看见)
2.学生根据教师的描述逐步拼摆。
3.教师将自己的玩具展示给学生看,全班同学一起评选与教师玩具相似的作品。
4.谁的作品与教师的玩具最相似,哪个学生就获得“小小设计师”的称号。

猜猜看
游戏目的:
1.通过游戏使学生加深对长方体、正方体、圆柱和球等立体图形的认识。
2.发展学生的数学交流能力。
游戏准备:每人准备一盒积木。
游戏过程:
1.教师将全班学生分成若干个小组,每组两名学生。
2.将积木放入课桌中,其中一个学生随便摸出一块积木(不要让另外一个学生看到),然后摸的学生说明积木的特征。
>>点击查看一年级数学学习游戏专题,阅读更多相关文章!

培优不偏科,轻松面对小升初!

90
你可能还感兴趣的相关文章

热点内容
e推教学 发布:2025-07-01 20:16:22 浏览:492
故事数学题 发布:2025-07-01 19:00:18 浏览:952
教师基本情况登记表 发布:2025-07-01 17:05:51 浏览:241
英语辅导报社 发布:2025-07-01 16:38:23 浏览:143
高一语文综合试卷 发布:2025-07-01 16:38:21 浏览:589
而且英语 发布:2025-07-01 14:58:57 浏览:936
个人师风师德自查报告 发布:2025-07-01 13:46:43 浏览:476
物理家庭电路 发布:2025-07-01 13:30:04 浏览:464
物理因子 发布:2025-07-01 13:05:18 浏览:844
汉乐府诗有哪些 发布:2025-07-01 08:41:05 浏览:409