当前位置:首页 » 语数英语 » 初中数学多项式

初中数学多项式

发布时间: 2021-08-10 07:15:24

Ⅰ 初中数学多项式


PDF

Ⅱ 初中数学多项式怎么求值

合并同类项求值,化简

Ⅲ 初中数学多项式乘以多项式怎样算

1、计算下列各式(1)(2x+3y)(3x-2y)(2)(x+2)(x+3)-(x+6)(x-1)(3)(3x2+2x+1)(2x2+3x-1)(4)(3x+2y)(2x+3y)-(x-3y)(3x+4y)2、求(a+b)2-(a-b)2-4ab的值,其中a=2002,b=2001.3、2(2x-1)(2x+1)-5x(-x+3y)+4x(-4x2-y),其中x=-1,y=2.四、探究创新乐园1、若(x2+ax-b)(2x2-3x+1)的积中,x3的系数为5,x2的系数为-6,求a,b.2、根据(x+a)(x+b)=x2+(a+b)x+ab,直接计算下列题(1)(x-4)(x-9)(2)(xy-8a)(xy+2a)五、数学生活实践一块长am,宽bm的玻璃,长、宽各裁掉cm后恰好能铺盖一张公桌台面(玻璃与台面一样大小),问台面面积是多少?

Ⅳ 初中数学 多项式问题

第二个、第三个是多项式,第一个是单项式,最后一个是分式。共2个多项式。

Ⅳ 初中数学多项式的运算试题(带答案)

一、从学生原有的认知结构提出问题

我们在上一节课里学习了单项式与多项式的乘法,请口算下列练习中的(1)、(2):

(1)3x(x+y)=_________________�

(2)(a+b)k=_________________�

(3)(a+b)(m+n)=_________________�

比较(3)与(1)、(2)在形式上有何不同?

(前两个是单项式乘以多项式,第三个是多项式乘以多项式�)

如何进行多项式乘以多项式的计算呢?这就是我们本节课所要研究的问题�

二、师生共同研究多项式乘法的法则

1�引例 小芳在街上买5千克苹果,如何把这些苹果一次带回家?

(拿塑料袋装,把5千克苹果变成一个整体�)

想一想,怎样计算(a+b)(m+n)=?

启发学生把(a+b)看成一个整体(如看成一个单项式),把多项式的乘法转化为单项式与多顶

式相乘,运用单项式与多项式相乘的法则进行计算,即

(a+b)(m+n)

=(a+b)m+(a+b)n

=am+bm+an++bn�

2�看图回答:

(1)长方形的长是_______________�

(2)Ⅰ、Ⅱ、Ⅲ、Ⅳ四个小长方形面积分别是_______________�

(3)由(1),(2)可得出等式________________�

这样得出了和上面一致的结论,即

(a+b)(m+n)=am+bm+an++bn�

3�上述运算过程可以表示为

(a+b)(m+n)

引导学生观察式特征,讨论并回答:

(1)如何用文字语言叙述多项式的乘法法则?

(2)多项式与多项式相乘的步骤应该是什么?

希望学生回答出:

(1)一般地,多项式与多项式相乘,①先用一个多项式的每一项乘以另一个多项式的每一项

;②再把所得的结果相加�

(2)步骤①②即(1)中的①、②�)

三、运用举例 变式练习

例 计算:

(1)(x+2y)(5a+3b); (2)(2x-3)(x+4);

(3)(x+y)2; (4)(x+y)(x2-xy+y2)�

解:(1)(x+2y)(5a+3b)

=x·5a+x·3b+2y·5a+2y·3b

=5ax+3bx+10ay+6by;

(2)(2x-3)(x+4)

=2x2+8x-3x-12

=2x2+5x-12

(3)(x+y)2

=(x+y)(x+y)

=x2+xy+xy+y2

=x2+2xy+y2;

(4)(x+y)(x2-xy+y2)

=x3-x2y+xy2+x2y-xy2+y3

=x3+y3�

结合例题讲解,提醒学生在解题时要注意:(1)解题书写和格式的规范性;(2)注意总结不同

类型题目的解题方法、步骤和结果;(3)注意各项的符号,并要注意做到不重复、不遗漏�

课堂练习

1�计算:

(1)(m+n)(x+y);

(2)(x-2z)2;

(3)(2x+y)(x-y)�

2�选择题:

(2a+3)(2a-3)的计算结果是()�

(A)4a2+12a-9 (B)4a2+6a-9 (C)4a2-9 (D)2a2-9

3�判断题:

(1)(a+b)(c+d)=ac+ad+bc; ()

(2)(a+b)(c+d)=ac+ad+ac+bd; ()

(3)(a+b)(c+d)=ac+ad+bc+bd; ()

(4)(a-b)(c-d)=ac+ad+bc-ad� ()

4�长方形的长是(2a+1),宽是(a+b),求长方形的面积�

5�计算:

(1)(xy-z)(2xy+z); (2)(10x3-5y2)(10x3+5y2)�

6�计算:

(1)(3a-2)(a-1)+(a+1)(a+2); (2)(3x+2)(3x-2)(9x2+4)�

在学生练习的同时,教师巡回辅导,因材施教,并注意根据信息反馈,及时提醒学生正确运

用多项式的乘法法则,注意例题讲解时总结的三条�

四、小结

启发引导学生归纳本节所学的内容:

1�多项式的乘法法则

(a+b)(m+n)=am+an+bm+bn�

2�解题(计算)步骤(略)�

3�解题(计算)应注意(1)不重复、不遗漏;(2)符号�

五、反馈测试

把计算结果填入题后的括号内:

(1)(x+y)(x-y)=( );

(2)(x-y)2=( );

(3)(a+b)(x+y)=( );

(4)(3x+y)(x-2y)=( );

(5)(x-1)(x2+x+1)=( );

(6)(3x+1)(x+2)=( );

(7)(4y-1)(y-1)=( );

(8)(2x-3)(4-x)=( );

(9)(3a2+2)(4a+1)=( );

(10)(5m+2)(4m2-3)=( )�

六、作业

1�计算:

(1)(3x+1)(x+2); (2)(4y-1)(y-5); (3)(2x-3)(4x-1);

(4)(3a+2)(4a+1); (5)(5m+2)(4m-3); (6)(5n-4)(3n-1);

(7)(7x2-8y2)(x2+3y2); (8)(9m-4n)(4n+9m)�

2�计算:

(1)(x+2)(x-2)(x2+4); (2)(1-2x+4x2)(1+2x);

(3)(x-y)(x2+xy+y2); (4)3x(x2+4x+4)-x(x-3)(3x+4);

(5)5x(x2+2x+1)-(2x+3)(x-5); (6)(3x-y)(y+3x)-(4x-3y)(4x+3y)�

3�计算:

(1)(3x+1)2; (2)(x-1)(x2+x+1);

(3)(3x+1)3; (4)(x+1)(x2-x+1)�
看下面的例子:计算

(1)2x2y·3xy2; (2)4a2x2·(-3a3bx).

同学们按以下提问,回答问题:

(1)2x2y·3xy2

①每个单项式是由几个因式构成的,这些因式都是什么?

2x2y·3xy2=(2·x2·y)·(3·x·y2)

②根据乘法结合律重新组合

2x2y·3xy2=2·x2·y·3·x·y2

③根据乘法交换律变更因式的位置

2x2y·3xy2=2·3·x2·x·y·y2

④根据乘法结合律重新组合

2x2y·3xy2=(2·3)·(x2·x)·(y·y2)

⑤根据有理数乘法和同底数幂的乘法法则得出结论

2x2y·3xy2=6x3y3

按以上的分析,写出(2)的计算步骤:

(2)4a2x2·(-3a3bx)

=4a2x2·(-3)a3bx

=[4·(-3)]·(a2·a3)·(x2·x)·b

=(-12)·a5·x3·b

=-12a5bx3.

通过以上两题,让学生总结回答,归纳出单项式乘单项式的运算步骤是:

①系数相乘为积的系数;

②相同字母因式,利用同底数幂的乘法相乘,作为积的因式;

③只在一个单项式里含有的字母,连同它的指数也作为积的一个因式;



单项式与单项式相乘,积仍是一个单项式;
⑤单项式乘法法则,对于三个以上的单项式相乘也适用.

看教材,让学生仔细阅读单项式与单项式相乘的法则,边读边体会边记忆.

利用法则计算以下各题.

例1 计算以下各题:

(1)4n2·5n3;

(2)(-5a2b3)·(-3a);

(3)(-5an+1b)·(-2a);

(4)(4×105)·(5×106)·(3×104).

解:(1) 4n2·5n3

=(4·5)·(n2·n3)

=20n5;

(2) (-5a2b3)·(-3a)

=[(-5)·(-3)]·(a2·a)·b3

=15a3b3;

(3) (-5an+1b)·(-2a)

=[(-5)·(-2)]·(an+1·a)b

=10an+2b;

(4) (4·105)·(5·106)·(3·104)

=(4·5·3)·(105·106·104)

=60·1015

=6·1016.

例2 计算以下各题(让学生回答):

(3)(-5amb)·(-2b2);
(4)(-3ab)(-a2c)·6ab2.

=3x3y3;

(3) (-5amb)·(-2b2);

=[(-5)·(-2)]·am·(b·b2)

=10amb3

(4)(-3ab)·(-a2c)·6ab2

=[(-3)·(-1)·6]·(aa2a)·(bb2)·c

=18a4b3c.

希望你能采纳

Ⅵ 初中数学多项式求解

方法一:4x^2为非负数,非负数+正数=正数
方法二:在平面直角坐标系中作出y=4x^2+1的图像,图像的全部都在X轴上方,所以函数y=4x^2+1的值总大于0,故整式4x^2+1的值总为正值
方法三:因为x^2大于等于0,所以4x^2+1大于0

Ⅶ 初中数学 多项式

不含x的平方项,就是说,
(m+2)x^2 +3x^2=0
对不对?
只有这种情况,x^2才能消掉
字母相同,指数相同
说明合并同类项时系数相加,结果为0
即(m+2+3)x^2=0
m+2+3=0
m=-5
所以2m^2+m+1=2*5^2+5+1=56

Ⅷ 初中数学的多项式是什么

多项式区别于单项式,是由几个单项式相加或相减连接而成的式子。如a是单项式,b也是单项式,而a+b就是多项式了,因为它们有加号相连。

Ⅸ 初中数学多项式。

LZ您好
根据题意,该多项式x³项不存在
合并同类项,x³系数是m-2,欲令此项不存在,显然系数为0
故m=2
同理xy²系数也为0,所以3n-1=0
n=1/3
于是2m+3n=5
D为正解

Ⅹ 初中数学求多项式

你的问题不具体。首先要搞清楚什么是多项式,多项式是表示几个单项式的和。每个单项式叫做项,不含字母的项叫做常数项。项数指单项式的个数。次数指最高项的次数。如3x²-x+6为2次三项式。记住每一项前面的“-”不能丢,就不难理解多项式为什么表示几个单项式的和。搞懂了这些解题应该问题不大。希望能有帮助。

热点内容
教师基本情况登记表 发布:2025-07-01 17:05:51 浏览:241
英语辅导报社 发布:2025-07-01 16:38:23 浏览:143
高一语文综合试卷 发布:2025-07-01 16:38:21 浏览:589
而且英语 发布:2025-07-01 14:58:57 浏览:936
个人师风师德自查报告 发布:2025-07-01 13:46:43 浏览:476
物理家庭电路 发布:2025-07-01 13:30:04 浏览:464
物理因子 发布:2025-07-01 13:05:18 浏览:844
汉乐府诗有哪些 发布:2025-07-01 08:41:05 浏览:409
短篇小说班主任 发布:2025-07-01 05:53:13 浏览:140
阳春教师待遇 发布:2025-07-01 04:22:37 浏览:201