初中数学多项式
Ⅰ 初中数学多项式
PDF
Ⅱ 初中数学多项式怎么求值
合并同类项求值,化简
Ⅲ 初中数学多项式乘以多项式怎样算
1、计算下列各式(1)(2x+3y)(3x-2y)(2)(x+2)(x+3)-(x+6)(x-1)(3)(3x2+2x+1)(2x2+3x-1)(4)(3x+2y)(2x+3y)-(x-3y)(3x+4y)2、求(a+b)2-(a-b)2-4ab的值,其中a=2002,b=2001.3、2(2x-1)(2x+1)-5x(-x+3y)+4x(-4x2-y),其中x=-1,y=2.四、探究创新乐园1、若(x2+ax-b)(2x2-3x+1)的积中,x3的系数为5,x2的系数为-6,求a,b.2、根据(x+a)(x+b)=x2+(a+b)x+ab,直接计算下列题(1)(x-4)(x-9)(2)(xy-8a)(xy+2a)五、数学生活实践一块长am,宽bm的玻璃,长、宽各裁掉cm后恰好能铺盖一张公桌台面(玻璃与台面一样大小),问台面面积是多少?
Ⅳ 初中数学 多项式问题
第二个、第三个是多项式,第一个是单项式,最后一个是分式。共2个多项式。
Ⅳ 初中数学多项式的运算试题(带答案)
一、从学生原有的认知结构提出问题
我们在上一节课里学习了单项式与多项式的乘法,请口算下列练习中的(1)、(2):
(1)3x(x+y)=_________________�
(2)(a+b)k=_________________�
(3)(a+b)(m+n)=_________________�
比较(3)与(1)、(2)在形式上有何不同?
(前两个是单项式乘以多项式,第三个是多项式乘以多项式�)
如何进行多项式乘以多项式的计算呢?这就是我们本节课所要研究的问题�
二、师生共同研究多项式乘法的法则
1�引例 小芳在街上买5千克苹果,如何把这些苹果一次带回家?
(拿塑料袋装,把5千克苹果变成一个整体�)
想一想,怎样计算(a+b)(m+n)=?
启发学生把(a+b)看成一个整体(如看成一个单项式),把多项式的乘法转化为单项式与多顶
式相乘,运用单项式与多项式相乘的法则进行计算,即
(a+b)(m+n)
=(a+b)m+(a+b)n
=am+bm+an++bn�
2�看图回答:
(1)长方形的长是_______________�
(2)Ⅰ、Ⅱ、Ⅲ、Ⅳ四个小长方形面积分别是_______________�
(3)由(1),(2)可得出等式________________�
这样得出了和上面一致的结论,即
(a+b)(m+n)=am+bm+an++bn�
3�上述运算过程可以表示为
(a+b)(m+n)
引导学生观察式特征,讨论并回答:
(1)如何用文字语言叙述多项式的乘法法则?
(2)多项式与多项式相乘的步骤应该是什么?
希望学生回答出:
(1)一般地,多项式与多项式相乘,①先用一个多项式的每一项乘以另一个多项式的每一项
;②再把所得的结果相加�
(2)步骤①②即(1)中的①、②�)
三、运用举例 变式练习
例 计算:
(1)(x+2y)(5a+3b); (2)(2x-3)(x+4);
(3)(x+y)2; (4)(x+y)(x2-xy+y2)�
解:(1)(x+2y)(5a+3b)
=x·5a+x·3b+2y·5a+2y·3b
=5ax+3bx+10ay+6by;
(2)(2x-3)(x+4)
=2x2+8x-3x-12
=2x2+5x-12
(3)(x+y)2
=(x+y)(x+y)
=x2+xy+xy+y2
=x2+2xy+y2;
(4)(x+y)(x2-xy+y2)
=x3-x2y+xy2+x2y-xy2+y3
=x3+y3�
结合例题讲解,提醒学生在解题时要注意:(1)解题书写和格式的规范性;(2)注意总结不同
类型题目的解题方法、步骤和结果;(3)注意各项的符号,并要注意做到不重复、不遗漏�
课堂练习
1�计算:
(1)(m+n)(x+y);
(2)(x-2z)2;
(3)(2x+y)(x-y)�
2�选择题:
(2a+3)(2a-3)的计算结果是()�
(A)4a2+12a-9 (B)4a2+6a-9 (C)4a2-9 (D)2a2-9
3�判断题:
(1)(a+b)(c+d)=ac+ad+bc; ()
(2)(a+b)(c+d)=ac+ad+ac+bd; ()
(3)(a+b)(c+d)=ac+ad+bc+bd; ()
(4)(a-b)(c-d)=ac+ad+bc-ad� ()
4�长方形的长是(2a+1),宽是(a+b),求长方形的面积�
5�计算:
(1)(xy-z)(2xy+z); (2)(10x3-5y2)(10x3+5y2)�
6�计算:
(1)(3a-2)(a-1)+(a+1)(a+2); (2)(3x+2)(3x-2)(9x2+4)�
在学生练习的同时,教师巡回辅导,因材施教,并注意根据信息反馈,及时提醒学生正确运
用多项式的乘法法则,注意例题讲解时总结的三条�
四、小结
启发引导学生归纳本节所学的内容:
1�多项式的乘法法则
(a+b)(m+n)=am+an+bm+bn�
2�解题(计算)步骤(略)�
3�解题(计算)应注意(1)不重复、不遗漏;(2)符号�
五、反馈测试
把计算结果填入题后的括号内:
(1)(x+y)(x-y)=( );
(2)(x-y)2=( );
(3)(a+b)(x+y)=( );
(4)(3x+y)(x-2y)=( );
(5)(x-1)(x2+x+1)=( );
(6)(3x+1)(x+2)=( );
(7)(4y-1)(y-1)=( );
(8)(2x-3)(4-x)=( );
(9)(3a2+2)(4a+1)=( );
(10)(5m+2)(4m2-3)=( )�
六、作业
1�计算:
(1)(3x+1)(x+2); (2)(4y-1)(y-5); (3)(2x-3)(4x-1);
(4)(3a+2)(4a+1); (5)(5m+2)(4m-3); (6)(5n-4)(3n-1);
(7)(7x2-8y2)(x2+3y2); (8)(9m-4n)(4n+9m)�
2�计算:
(1)(x+2)(x-2)(x2+4); (2)(1-2x+4x2)(1+2x);
(3)(x-y)(x2+xy+y2); (4)3x(x2+4x+4)-x(x-3)(3x+4);
(5)5x(x2+2x+1)-(2x+3)(x-5); (6)(3x-y)(y+3x)-(4x-3y)(4x+3y)�
3�计算:
(1)(3x+1)2; (2)(x-1)(x2+x+1);
(3)(3x+1)3; (4)(x+1)(x2-x+1)�
看下面的例子:计算
(1)2x2y·3xy2; (2)4a2x2·(-3a3bx).
同学们按以下提问,回答问题:
(1)2x2y·3xy2
①每个单项式是由几个因式构成的,这些因式都是什么?
2x2y·3xy2=(2·x2·y)·(3·x·y2)
②根据乘法结合律重新组合
2x2y·3xy2=2·x2·y·3·x·y2
③根据乘法交换律变更因式的位置
2x2y·3xy2=2·3·x2·x·y·y2
④根据乘法结合律重新组合
2x2y·3xy2=(2·3)·(x2·x)·(y·y2)
⑤根据有理数乘法和同底数幂的乘法法则得出结论
2x2y·3xy2=6x3y3
按以上的分析,写出(2)的计算步骤:
(2)4a2x2·(-3a3bx)
=4a2x2·(-3)a3bx
=[4·(-3)]·(a2·a3)·(x2·x)·b
=(-12)·a5·x3·b
=-12a5bx3.
通过以上两题,让学生总结回答,归纳出单项式乘单项式的运算步骤是:
①系数相乘为积的系数;
②相同字母因式,利用同底数幂的乘法相乘,作为积的因式;
③只在一个单项式里含有的字母,连同它的指数也作为积的一个因式;
④
单项式与单项式相乘,积仍是一个单项式;
⑤单项式乘法法则,对于三个以上的单项式相乘也适用.
看教材,让学生仔细阅读单项式与单项式相乘的法则,边读边体会边记忆.
利用法则计算以下各题.
例1 计算以下各题:
(1)4n2·5n3;
(2)(-5a2b3)·(-3a);
(3)(-5an+1b)·(-2a);
(4)(4×105)·(5×106)·(3×104).
解:(1) 4n2·5n3
=(4·5)·(n2·n3)
=20n5;
(2) (-5a2b3)·(-3a)
=[(-5)·(-3)]·(a2·a)·b3
=15a3b3;
(3) (-5an+1b)·(-2a)
=[(-5)·(-2)]·(an+1·a)b
=10an+2b;
(4) (4·105)·(5·106)·(3·104)
=(4·5·3)·(105·106·104)
=60·1015
=6·1016.
例2 计算以下各题(让学生回答):
(3)(-5amb)·(-2b2);
(4)(-3ab)(-a2c)·6ab2.
=3x3y3;
(3) (-5amb)·(-2b2);
=[(-5)·(-2)]·am·(b·b2)
=10amb3
(4)(-3ab)·(-a2c)·6ab2
=[(-3)·(-1)·6]·(aa2a)·(bb2)·c
=18a4b3c.
希望你能采纳
Ⅵ 初中数学多项式求解
方法一:4x^2为非负数,非负数+正数=正数
方法二:在平面直角坐标系中作出y=4x^2+1的图像,图像的全部都在X轴上方,所以函数y=4x^2+1的值总大于0,故整式4x^2+1的值总为正值
方法三:因为x^2大于等于0,所以4x^2+1大于0
Ⅶ 初中数学 多项式
不含x的平方项,就是说,
(m+2)x^2 +3x^2=0
对不对?
只有这种情况,x^2才能消掉
字母相同,指数相同
说明合并同类项时系数相加,结果为0
即(m+2+3)x^2=0
m+2+3=0
m=-5
所以2m^2+m+1=2*5^2+5+1=56
Ⅷ 初中数学的多项式是什么
多项式区别于单项式,是由几个单项式相加或相减连接而成的式子。如a是单项式,b也是单项式,而a+b就是多项式了,因为它们有加号相连。
Ⅸ 初中数学多项式。
LZ您好
根据题意,该多项式x³项不存在
合并同类项,x³系数是m-2,欲令此项不存在,显然系数为0
故m=2
同理xy²系数也为0,所以3n-1=0
n=1/3
于是2m+3n=5
D为正解
Ⅹ 初中数学求多项式
你的问题不具体。首先要搞清楚什么是多项式,多项式是表示几个单项式的和。每个单项式叫做项,不含字母的项叫做常数项。项数指单项式的个数。次数指最高项的次数。如3x²-x+6为2次三项式。记住每一项前面的“-”不能丢,就不难理解多项式为什么表示几个单项式的和。搞懂了这些解题应该问题不大。希望能有帮助。