近代数学
1. 近代数学的发展史
、近代数学的兴起
(1)向近代数学的过渡
a .代数学的出现
b.三角学的发展
c.从透视学到射影几何
d.计算技术与对数的诞生
(2)解析几何的诞生
2、微积分的创立
(1)半个世纪的酝酿
a.开普勒与旋转体体积
b.卡瓦列里不可分量原理
c.笛卡尔的圆法
d.费马求极大值与极小值的方法
e.巴罗的微分三角形
f.沃利斯的无穷算术
(2)牛顿的“流数术”
a.流数术的初建
b.流数术的发展
c.牛顿的《原理》与微积分
(3)莱布尼茨的微积分
a. 特征三角形
b. 分析微积分的建立
c. 莱布尼茨微积分的发展
3、分析时代
(1)微积分的进一步发展
a.积分技术与椭圆积分
b.微积分向多元函数的推广
c.无穷级数理论
d.函数概念的深化
e.微积分严格化的尝试
(2)微积分的应用与新分支的形成
a.常微分方程的形成
b.偏微分方程的产生
c.变分法的产生
(3)18世纪的几何与代数
a.微分几何的形成
b.方程论
c.数论进展
4、代数学的新生
(1) 代数方程的可解性与群的发现
(2) 从四元数到超复数
(3)布尔代数的形成
(4)代数数论的诞生
5、几何学的变革
(1)欧几里得几何平行公设
(2)非欧几里得几何的诞生
(3)非欧几里得几何的发展与确认
(4)射影几何的繁荣
(5)几何学的统一
6、分析的严格化
(1)柯西与分析基础
(2)分析的算术化
a. 维尔斯特拉斯的成就
b. 实数理论
c. 集合论的诞生
(3)分析的扩展
a. 复分析的建立
b. 解析数论的形成
c. 数学物理与微分方程
本部分的重、难点:代数学的出现、解析几何的诞生、开普勒与旋转体体积、卡瓦列里不可分量原理、笛卡尔的圆法、费马求极大值与极小值的方法、巴罗的微分三角形、沃利斯的无穷算术、牛顿的“流数术”、莱布尼茨的微积分、微积分向多元函数的推广、无穷级数理论、函数概念的深化、常微分方程的形成、偏微分方程的产生、微分几何的形成、数论进展、代数学的新生、非欧几里得几何的发展与确认和几何学的统一、分析的严格化等
(二)考核知识点与考核要求
1.近代数学发展史部分,要求达到“了解”层次的
(1)从透视学到射影几何
(2)计算技术与对数的诞生
(3)积分技术与椭圆积分
(4)函数概念的深化
(5)微积分严格化的尝试
(6)代数方程的可解性与群的发现
(7) 从四元数到超复数
(8) 分析的算术化
2.近代数学发展史部分,要求达到“理解、掌握”层次的
(1)代数学的出现、
(2)解析几何的诞生
(3)微积分的创立
a. 开普勒与旋转体体积
b. 卡瓦列里不可分量原理
c. 笛卡尔的圆法
d. 费马求极大值与极小值的方法
e. 巴罗的微分三角形
f. 沃利斯的无穷算术
g. 牛顿的“流数术”和莱布尼茨的微积分
(3)分析学时代
a. 微积分向多元函数的推广
b. 无穷级数理论
c. 函数概念的深化
d. 常微分方程的形成和偏微分方程的产生
e. 微分几何的形成
f. 数论进展
(4)代数学的新生
(5)非欧几里得几何的发展与确认和几何学的统一
(6)分析的严格化
a. 柯西与分析基础
b. 分析的扩展 (复分析的建立、解析数论的形成)
2. 概述近现代数学的发展史
--《近现代数学发展概论》张光远重庆出版社 1991.12版
《现代化知识文库--二十世纪数学史话》知识出版社 1984.2上海
注一:这是《二十世纪数学史话》的说法。
winion整理,如要转载,请注明转载自
国际数学界的最高奖?菲尔兹奖和国际数学家大会
诺贝尔奖金中为什么没有设数学奖?对此人们一直有着各种猜测与议论。每年一度的诺贝尔物理、化学、生理学和医学奖,表彰了这几个学科中的重大成就,奖掖了科学精英,可谓举世瞩目。不设数学奖,对于这个重要的基础学科,岂不是失去了一个在世界范围内评价重大成就和杰出人才的机会?
其实,数学领域中也有一种世界性的奖励,这就是每四年颁发一次的菲尔兹奖。在各国数学家的眼里,菲尔兹奖所带来的荣誉可与诺贝尔奖金媲美。
菲尔兹奖是由国际数学联盟(简称IMU)主持评定的,并且只在每四年召开一次的国际数学家大会(简称ICM)上颁发。菲尔兹奖的权威性,部分地即来自于此。所以,这里先简单介绍一下“联盟”与“大会”。
十九世纪以来,数学取得了巨大的进展。新思想、新概念、新方法、新结果层出不穷。面对琳琅满目的新文献,连第一流的数学家也深感有国际交流的必要。他们迫切希望直接沟通,以便尽快把握发展大势。正是在这样的情况下,第一次国际数学家大会在苏黎世召开了。紧接着,一九00年又在巴黎召开了第二次会议,在两个世纪的交接点上,德国数学家希尔伯特提出了承前启后的二十三个数学问题,使得这次大会成为名副其实的迎接新世纪的会议。
自一九00年以后,大会一般每四年召开一次。只是因为世界大战的影响,在一九一六年和一九四0~一九五0年间中断举行。第二次世界大战以后的第一次大会是一九五0年在美国举行的。在这次会议前夕,国际数学联盟成立了。这个联盟联络了全世界几乎所有的主要数学家,她的主要任务是促进数学事业的发展和国际交流,组织进行四年一次的国际数学家大会及其他专业性国际会议,颁发菲尔兹奖。自此以后,大会的召开比较正常。从一八九七年算起,总共举行了十九次大会,其中有九次是在一九五0~一九八三年间举行的。
联盟的日常事务由任期四年的执行委员会领导进行,近年来,这个委员会设主席一人,副主席二人,秘书长一人,一般委员五人,都是由在国际数坛上有影响的著名数学家担任。每次大会的议程,由执委会提名一个九人咨询委员会来编定。而菲尔兹奖的获奖人,则由执委会提名一个八人评定委员会来遴选。评委会的主席也就是执委会的主席,可见对这个奖的重视。这个评委会首先由每人提名,集中提出近四十个值得认真考虑的候选人,然后进行充分的讨论并广泛听取各国数学家的意见,最后在评定委员会内部投票决定本届菲尔兹奖的得奖人。
现在,国际数学家大会已是全世界数学家最重要的学术交流盛会了。一九五0年以来,每次参加者都在两千人以上,最近两次大会的参加者更在三千人以上。这么多的参加者再加上这四年来无数的新成果,用什么方法才能很好地交流呢?近几次大会采取了分三个层次讲演的办法。以一九七八年为例,在各专业小组中自行申请作十分钟讲演的约有七百人,然后由咨询委员会确定在各专业组中作四十五分钟邀请讲演的名单约二百个,以及向全会作一小时综述报告的人选十七位。被指定作一小时报告是一种殊荣,报告者是当今最活跃的一些数学家,其中有不少是过去或未来的菲尔兹奖获得者。
菲尔兹奖的宣布与授予,是开幕式的主要内容。当执委会主席(即评委会主席)宣布本届得主名单之后,全场掌声雷动。接着由东道国的重要人士(当地市长、所在国科学院院长、甚至国王、总统),或评委会主席授予一块金质奖章,外加一干五百美元的奖金。最后由一些权威的数学家来介绍得奖人的杰出工作,并以此结束开幕式。
菲尔兹奖是以已故的加拿大数学家约翰?查尔斯?菲尔兹命名的。
一八六三年五月十四日,菲尔兹生子加拿大渥太华。他十一岁时父亲逝世,十八岁时又失去了慈母,家境不算太好。菲尔兹十七岁时进入多伦多大学专攻数学。一八八七年,菲尔兹二十四岁,就在美国约翰.霍普金斯大学获得了博士学位。又过了两年,他在美国阿勒格尼大学当上了教授。
当时,世界数学的中心是在欧洲。北美的数学家差不多都要到欧洲学习、工作一段时间。一八九二年,菲尔兹远渡重洋,游学巴黎、柏林整整十年。在欧洲,他与福雪斯、弗劳伯纽斯等著名数学家有密切的交往。这一段经历,大大地开阔了菲尔兹的眼界。
作为一个数学家,菲尔兹的工作兴趣集中在代数函数方面,成就不算突出,但作为一名数学事业的组织、管理者,菲尔兹却是功绩卓著的。
菲尔兹很早就意识到研究生教育的重要,他是在加拿大推进研究生教育的第一人。现在人们都知道,一个国家的研究生培养情况如何,是衡量这个国家科学水平的一个可靠指数。而在当时,能有这样的认识实属难能可贵。
菲尔兹对于数学的国际交流的重要性,对于促进北美州数学的发展,都有一些卓越的见解。为了使北美的数学迅速赶上欧洲,菲尔兹竭尽全力主持筹备了一九二四年的多伦多国际数学家大会(这是在欧洲之外召开的第一次大会)。这次大会使他精疲力尽,健康状况再也没有好转,但这次会议对于北美的数学水平的成长产生了深远的影响。
一九二四年大会没有邀请德国等第一次世界大战的战败国的数学家。在此之前的一九二0年大会,因为是在法国的斯特拉斯堡(战前属德国)举行,德国拒绝参加(一九二八年的波伦亚大会只是由于希尔伯特坚持,德国才参加了。)。这些事情很可能触发了菲尔兹发起一项国际性奖金的念头,因为菲尔兹强烈地主张数学发展应该是国际性的。当菲尔兹知道了一九二四年大会的经费有结余时,他就建议以此作为基金设立一项这样的奖。菲尔兹奔走欧美谋求支持,并想在?九三二年苏黎世大会亲自提出正式建议,结果未及开幕他就逝世了。是多伦多大学数学系的悉涅,把这个建议和一大笔钱(其中包括一九二四年大会的结余和菲尔兹的遗产)提交苏黎世大会,大会立即接受了这一建议。
按照菲尔兹的意见,这项奖金应该就叫国际奖金,而不应该以任何国家机构或个人的名字来命名。但是国际数学家大会还是决定命名为菲尔兹奖。数学家们希望用这一方式来表示对菲尔兹的纪念和赞许,他不是以自已的研究工作,而是以远见、组织才能和勤恳的工作促进了本世纪的数学事业。
第一次菲尔兹奖颁发于一九三六年。不久,国际形势急剧恶化。原定一九四0年在美国召开的大会已成泡影。第二次的菲尔兹奖是在战后的第一次大会,即一九五0年大会上颁发的。以后,每次大会都顺利地进行了这一议程。?般是每届两名获奖者。但一九六六年、一九七0年、一九七八年得奖人是四名,据说是因为有一位不愿透露姓名的捐款人,使奖金可以临时增加到四份,一九八二年华沙会议因故而延期至一九八三年八月举行,获奖者为三名。总起来,获得菲尔兹奖的数学家己有二十七名。
在一九三六年、?九五0年、一九五四年这三次大会上,都是由一位数学家来介绍所有得奖人的工作的。一九三六年卡拉凯渥铎利还讲了一点获奖者的生平。一九五0年评委会主席玻尔就只用清晰而非专门的语言简述工作。一九五四年,由本世纪著名的数学家外尔介绍,他在结束语中盛赞两位得奖者“所达到的高度是自己未曾梦想到的”,“自已从未见过这样的明星在数学天空中灿烂地升起,”他说:“数学界为你们二位所做的工作感到骄傲。它表明数学这棵长满节瘤的老树仍然充满着汁液和生机。你们是怎样开始的,就怎样继续下去吧!”
从一九五八年起,改成每位获奖者分别由一位数学家介绍。介绍的内容比较地局限于工作,对于获奖者个人的情况很少涉及。这个做法,一直延续到最近一次大会。
菲尔兹奖只是一枚金质奖章,与诺贝尔奖金的十万美元相比真是微不足道。为什么在人们心目中,菲尔兹奖的地位竟然与诺贝尔奖金相当?
原因看来很多。菲尔兹奖是由数学界的国际学术团体--国际数学联盟,从全世界的第一流数学家中遴选的。就权威性与国际性而言,任何其他的奖励都无法与之相比。菲尔兹奖四年才发一次,每次至多四名,因而获奖机会比诺贝尔奖要少得多。但是主要的原因应该是:迄今为止的获奖者用他们的杰出工作,证明了菲尔兹奖不愧为最重要的国际数学奖。事情就是这样:从表面上看,一项奖赏为获奖人带来了巨大荣誉;而事实上正相反,正是得奖工作的水准奠定了这项奖励的学术地位的基础。
菲尔兹奖首先是一项工作奖(这一点与诺贝尔奖金相同),即授予的原因只能是“已经做出的成就”,而不能是服务优秀、活动积极等其他原因。但是菲尔兹奖只授予四十岁以下的数学家(起先是一种默契,后来就成为不成文的规定),因此也带有一点鼓励性。问题在于,如果放在整个数学家的范围里,菲尔兹奖的得奖工作地位如何?
我们只举一个小小的例子。一九七八年,当代著名的老一辈数学家,布尔巴基学派创始人之一丢东涅发表了一篇题为《论纯数学的当前趋势》的论文,对于近二十年来纯数学各分支的前沿作了全面概述。在文章中,他列举了十三个目前处于主流的数学分支。其中十二个分支中的部分重要工作是由菲尔兹奖获得者作出的。这再清楚不过地说明了菲尔兹奖获奖成就的地位。
人们不能不承认,数学对于现实生活的影晌正在与日俱增。许多学科都在悄悄地或先或后地经历着一场数学化的进程。现在,已经没有哪个领域能够抵御得住数学方法的渗透。
数学本身也在一日千里地发展着。全世界成千上万的数学工作者正在几十个分支成百个专门方向上孜孜研究着。他们每年提出大约二十万条新定理!重要论文数,如以《数学评论》的摘要为准,每八至十年翻一番。文献数量的爆炸再加上方法概念的迅速更新,使得工作在不同方向上的数学家连交谈也有点困难,更不用说非数学专业的人了。
这样就产生了一个尖锐的矛盾。一方面,公众非常需要数学,他们渴望理解数学!另?方面,现代数学过于深刻、庞大、变得越来越不容易接近。
因此,对于数学,特别是现代数学加以普及,使得数学和数学家的工作能对现实生活产生应有的积极影响,这已成为人们日益重视的课题。
二十一世纪的曙光即将普照全球,要概述一下二十世纪的数学发展决非易事。就纯粹数学而言,我们觉得有两个主题可以起到提纲挈领的作用:一个是希尔伯特二十三问题的提出、解决现状与发展,另一个就是菲尔兹奖的获奖者及其工作。
作为一种表彰纯数学成就的奖励,菲尔兹奖当然不能体现现代数学的全部内容。就这个奖本身而言也有种种缺点。但是,无论从哪一方面讲,菲尔兹奖的获得者都可以作为当代数学家的代表,他们的工作所属的领域大体上覆盖了纯粹数学主流分支的前沿。这样,菲尔兹奖就成了一个窥视现代数学面貌的很好的“窗口”。
3. 现代数学是高等数学吗高等数学是指近代数学吗
现代数学起源于17世纪是研究数量、结构、变化、空间以及信息等概念的一门学科版。
现代数学时权期是指由20世纪40年代至今,这一时期数学主要研究的是最一般的数量关系和空间形式,数和量仅仅是它的极特殊的情形,通常的一维、二维、三维空间的几何形象也仅仅是特殊情形。抽象代数、拓扑学、泛函分析是整个现代数学科学的主体部分。
高等数学主要内容包括:数列、极限、微积分、空间解析几何与线性代数、级数、常微分方程。
4. 近代数学的兴起
近代数学的兴起
第一节 中世纪的欧洲
在巴比伦、埃及、中国、印度、希腊和罗马等文明兴盛时代,欧洲(除希腊和意大利)还处于原始文明时期,大约在公元500年左右才开始出现新文化。公元5~11世纪,是欧洲历史上的黑暗时期,天主教会成为欧洲社会的绝对势力,封建宗教统治,使一般人笃信天国,追求来世,从而淡漠世俗生活,对自然不感兴趣。教会宣扬天启真理,并拥有解释这种真理的绝对权威,导致了理性的压抑,欧洲文明在整个中世纪处于凝滞状态。
由于罗马人偏重于实用而没有发展抽象数学,这对罗马帝国崩溃后的欧洲数学也有一定的影响,终使黑暗时代的欧洲在数学领域毫无成就。不过因宗教教育的需要,也出现一些水平低下的算术和几何教材。罗马人博埃齐(A.M.S.Boethius,约480~524)根据希腊材料用拉丁文选编了《几何》、《算术》等教科书,《几何》内容仅包含《几何原本》的第一卷和第三、四卷的部分命题,以及一些简单的测量术;《算术》则是根据四百年前尼科马库斯(Nicomachus)的一本浅易的著作编写的。这样简单的书籍竟一直成为欧洲教会学校的标准课本。此外,这一时期还有英国的比德(V.Bede,674~735)和后来成为教皇的法国人热尔拜尔(Gerbert,约950~1003,第一个在西班牙穆斯林学校学习的基督教徒)等人也讨论过数学,前者研究过算术中的指算,据说后者可能把印度-阿拉伯数字带入欧洲。
直到12世纪,欧洲数学才出现复苏的迹象。这种复苏开始由于受翻译、传播阿拉伯著作和希腊著作的刺激。1100年左右,欧洲人通过贸易和旅游,同地中海地区和近东的阿拉伯人以及东罗马帝国的拜占庭人发生了接触。十字军为掠夺土地的东征,使欧洲人进入了阿拉伯世界,从此欧洲人从阿拉伯人和拜占庭人那里学到希腊以及东方古典学术,激发他们对这些学术著作的搜求、发掘和研究,最终导致了文艺复兴时期欧洲数学的高涨。文艺复兴前哨的意大利,由于其特殊的地理位置容易与外部文明相联系,西西里岛成为东西方文化的熔炉。古代学术传播西欧的路线如下图所示。
数学著作的翻译主要有英国的阿德拉特(Adelard,约1120)翻译的《几何原本》和花拉字米的天文表;意大利人普拉托(Plato,12世纪上半叶)翻译的巴塔尼的《天文学》和狄奥多修斯的《球面几何》以及其它著作。12世纪最伟大的翻译家格拉多(Gherardo,1114~1187)将90多部阿拉伯文著作翻译成拉丁文,其中包括托勒玫的《大汇编》、《几何原本》、花拉子米的《代数学》。因此可以说12世纪是欧洲数学的翻译时代。
欧洲黑暗时代以后,第一位有影响的数学家是斐波那契(Fibonacci, 1170~1250),他早年就随其父亲在北非从师阿拉伯人学习算学,后又游历地中海沿岸诸国,回意大利写成《算盘书》(Abaci, 1202),这部著名的著作主要是古代中国、印度和希腊数学著作的内容,包括印度-阿拉伯数码,分数算法,开方法,二次和三次方程,不定方程,以及《几何原本》和希腊三角学的大部分内容(如中国数学的“孙子问题”,“百鸡问题”均出现于该书中)。特别是,书中系统介绍了印度数码,影响了欧洲数学面貌。《算盘书》可以看作是欧洲数学在经历了漫长的黑夜之后走向复苏的号角。
欧洲数学复苏的过程十分曲折,从12世纪到15世纪中叶,教会中的经院哲学派利用重新传入的希腊著作中的消极成分来阻抗科学的进步。特别是他们把亚里士多德、托勒玫的一些学术奉为绝对正确的教条,妄图用这种新的权威主义来继续束缚人们的思想。欧洲数学真正的复苏,要到15、16世纪。在文艺复兴的高潮中,数学的发展与科学的革新紧密结合在一起,数学在认识自然和探索真理方面的意义被文艺复兴的代表人物高度强调。达芬奇(1452~1519)就这样说过:“一个人若怀疑数学的极端可靠性就是陷入混乱,他永远不能平息诡辩科学中只会导致不断空谈的争辩。……因为人们的探讨不能称为科学的,除非通过数学上的说明和论证。”伽利略干脆认为宇宙“这本书是用数学的语言写成的”。科学中数学化趋势的增长促使数学本身走向繁荣。以下简略介绍这一时期数学发展的重要方面。 第二节 向近代数学的过渡
2.1 代数学
欧洲人在数学上的推进是从代数学开始的,它是文艺复兴时期成果最突出、影响最深远的领域,拉开了近代数学的序幕。主要包括三、四次方程求解与符号代数的引入这两个方面。
翻译家格拉多(gherardo, 1114~1187)将花拉子米的《代数学》翻译成拉丁文后,开始在欧洲传播,不过,直到十五世纪, 人们还以为三、四次方程与化圆为方问题一样难以解决。第一个突破是波伦亚大学的数学教授费罗(Scipionedel Ferro, 1465~1526)大约于1515年左右作出的,他发现了形如(m , n > 0)的三次方程的代数解法。当时流行着学者们不公开自己研究成果的风气,费罗将自己的解法秘密传给他的学生费奥(Antonio Maria Fior)。与此同时,1535年意大利另一位数学家塔塔利亚(Niccolo Fontana, 1499?~1557,绰号Tartaglia)也宣称自己可以解形如 (m , n > 0)的三次方程。于是,费奥开始向塔塔利亚挑战,要求各自解出对方提出的十三个三次方程,比赛结果,塔塔利亚很快解出形如和(m , n > 0)的两类型所有三次方程,而费奥仅能解出前一类型的方程。塔塔利亚同样没有公布他的解法,在教书行医于米兰的学者卡尔丹(G.Cardano,1501~1576)的再三请求、并答应保密的情况下,塔塔利亚将其解法传授与他。不久,卡尔丹违背诺言而著《大法》(Ars magna, 1545)一书,公布了这些解法。《大法》所载三次方程 x3+px= q 的解法,实质是考虑恒等式 (a-b)3 + 3ab(a-b) = a3-b3
若选取a和b,使 3ab= p,a3-b3 = q, (*)
由(*)不难解出a和b,
a = b=
于是得到a-b就是所求的x. 后人称之为卡尔丹公式。
三次方程解决后不久,1540年意大利数学家达科伊(T.Da Coi)向卡尔丹提出一个四次方程的问题,卡尔丹为能解决,由其学生费拉里(Lodovico Ferrari,1522~1565)解决了,其解法也被卡尔丹写进《大术》中。其解法是利用一个变换:,将一般四次方程简化为,由此进一步 于是,对于任意的z,有 再选择适当的z,使上式右边成为完全平方式,实际上使
即可。这样就变为z的三次方程。
费拉里所讨论的四次方程类型主要有以下几种:
当然,说卡尔丹完全是剽窃失之于公正,因为他在书中已注明这个解法是塔氏告诉他的,而且塔氏也没有给出证明。卡尔丹不仅将塔氏方法推广到一般情形的三次方程,并且补充了几何证明。书中对三次方程求解中的所谓“不可约”情形感到困惑(不可约情形就是判别式),实质上它涉及到实数的复数表示问题。在卡氏去世后四年的1572年,意大利数学家邦贝利(R.Bombelli, 约1526~1573)在其所著教科书《代数》中引进了虚数,用以解决三次方程不可约情况,并以dimrq11表示?-11.卡尔丹认为复根是成对出现的(这一推测后来被牛顿(Newton,1642~1727)在其《普遍的算术》中所证明),认识到三次方程有三个根,四次方程有四个根。在此基础上,荷兰人吉拉德(Albert Girard,1593~1632)于《代数新发现》(1629)中又作进一步的推断:对于n次多项式方程,如果把不可能的(复数根)考虑在内,并包括重根,则应有 n个根。不过,没有给出证明。卡尔丹还发现了三次方程的三根之和等于x2项的系数的相反数,每两根乘积之和等于x项的系数,等等,这种根与系数的关系问题后来由韦达(f.vieta,1540~1603)、牛顿和格列高里 (James Gregory,1638~1675) 等人作出系统阐述。
在法国,数学家韦达也写过《分析方法入门》(1591)、《论方程的整理与修正》(1615)与《有效的数值解法》(1600)等几本方程论著作,韦达给出代数方程的近似解法与代数方程的多项式分解因式解法。1637年,笛卡儿(Descartes,1596~1650)首次应用待定系数法将四次方程分解成两个二次方程求解。今天所说的因式分解定理,最早由笛卡儿在其《几何学》中提出,他说:f (x) 能为 (x-a) 整除,当且仅当a 是f (x) = 0的一个根。他还证明了:若有理系数的三次方程有一个有理根,则此多项式可表示为有理系数因子的乘积,并且引用了待定系数法原理。笛卡儿在《几何学》中也未加证明叙述了,n次多项式方程应有 n个根的论断,以及今天所谓的“笛卡儿符号法则”:多项式方程f (x) = 0 的正根的最多个数等于系数变号的次数,负根的最多个数等于两个正号与两个负号连续出现的次数。综览笛卡儿的工作,容易发现他已初步建立了多项式方程有理根的现代方法。
文艺复兴时期欧洲方程论与代数学研究是数学史上精彩的一页,意大利人在三、四次方程解法方面的工作是整个17、18世纪数学关于高次代数方程理论的一系列漫长而影响深远的探索的起始点。
代数上的进步还在于引用了较好的符号体系,这对于代数学本身的发展以及分析学的发展来说,至为重要。正是由于符号化体系的建立,才使代数有可能成为一门科学。近现代数学一个最为明显、突出的标志,就是普遍地使用了数学符号,它体现了数学学科的高度抽象与简练。文艺复兴时期代数学的另一重大进展,便是系统地引入符号代数。
尽管埃及、希腊与印度人都曾零星地使用过缩写文字和符号,中国宋元时期的数学家也引入天元、地元、人元、物元等来表示未知数,但他们都无意识到这样做的重要意义。只有丢番图(Diophantus)自觉地运用符号以使代数的思路与书写更加紧凑有效。或许由于印刷术传入欧洲带来的结果,十五世纪及十六世纪初的欧洲数学著作的书写形式尽管主要是文章式的,但流行着使用一些特殊词语的缩写与特定的数学符号,在意大利修道士帕奇欧里(L.Pacioli,约1445~1509)的《算术、几何及比例性质之摘要》(1494)、德国人斯蒂费尔(Stifel,1486?~1567)的《综合算术》(1544),以及鲁道夫(C.Rudolff, 约1500~约1545)的《求根术》等书中尤为显著。
数学符号系统化首先归功于法国数学家韦达,由于他的符号体系的引入导致代数性质上产生最重大变革。韦达原是律师与政治家,业余时间研究数学。他曾在布列塔尼(Brittany)议会工作,后任那瓦尔的亨瑞(Henry)亲王的枢密顾问官,他在政治上失意的1584~1589年间,献身于数学研究,曾研究过卡尔丹、塔塔利亚、邦贝利、史蒂文(Stevin, 1548~1620)和丢番图等人的著作,从这些著作特别是丢番图的著作中获得了使用字母的想法,在他的《分析引论》(1591)中,第一次有意识地使用系统的代数字母与符号,辅音字母表示已知量,元音字母表示未知量,他把符号性代数称作“类的算术”。同时规定了算术与代数的分界,认为代数(logistica speciosa)运算施行于事物的类或形式,算术运算(logistica numerosa)施行于具体的数。这就使代数成为研究一般类型的形式和方程的学问,因其抽象而应用更为广泛。
韦达的这种做法受到后人的赞赏,并被吉拉德的《代数新发现》和奥特雷德(Oughtred,1575~1660)的《实用分析术》所继承,灵活地加以运用,特别是通过后者的著作使采用数学符号的风气流行起来。对韦达所使用的代数法的改进工作是由笛卡儿完成的,他首先用拉丁字母的前几个(a, b, c, d, …)表示已知量,后几个(x, y, z, w, …)表示未知量,成为今天的习惯,他改变了韦达的做法,毫无区别地采用文字系数。韦达的符号代数保留着齐性原则,要求方程中各项都是“齐性”的,即体积与体积相加,面积与面积相加。这一障碍随着笛卡儿解析几何的诞生也得到消除。
到十七世纪末,欧洲数学家已普遍认识到,数学中特意使用符号具有很好的功效。并且使数学问题具有一般性。不过当时随意引入的符号太多,我们今天所使用的符号,实际是这些符号经过长期淘汰后剩下来的。
5. 世界近代三大数学难题各是什么,内容
1、费马大定理
费马大定理,又被称为“费马最后的定理”,由17世纪法国数学家皮耶·德·费玛提出。
内容:当整数n >2时,关于x, y, z的方程 xⁿ + yⁿ = zⁿ没有正整数解。
2、四色问题
四色问题又称四色猜想、四色定理,是世界近代三大数学难题之一。地图四色定理最先是由一位叫古德里的英国大学生提出来的。
四色问题的内容:任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。也就是说在不引起混淆的情况下一张地图只需四种颜色来标记就行。
用数学语言表示:将平面任意地细分为不相重叠的区域,每一个区域总可以用1234这四个数字之一来标记而不会使相邻的两个区域得到相同的数字。
3、哥德巴赫猜想
1742年6月7日,哥德巴赫提出了著名的哥德巴赫猜想。
内容:随便取某一个奇数,比如77,可以把它写成三个素数之和,即77=53+17+7;再任取一个奇数,比如461,可以表示成461=449+7+5,也是三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。例子多了,即发现“任何大于5的奇数都是三个素数之和。”
(5)近代数学扩展阅读
1、费马大定理
史上最精彩的一个数学谜题。证明费马大定理的过程是一部数学史。费马大定理起源于三百多年前,挑战人类3个世纪,多次震惊全世界,耗尽人类众多最杰出大脑的精力,也让千千万万业余者痴迷。
2、四色定理的本质正是二维平面的固有属性,即平面内不可出现交叉而没有公共点的两条直线。很多人证明了二维平面内无法构造五个或五个以上两两相连区域,但却没有将其上升到逻辑关系和二维固有属性的层面,以致出现了很多伪反例。不过这些恰恰是对图论严密性的考证和发展推动。
计算机证明虽然做了百亿次判断,终究只是在庞大的数量优势上取得成功,这并不符合数学严密的逻辑体系,至今仍有无数数学爱好者投身其中研究。
3、从关于偶数的哥德巴赫猜想,可推出:任一大于7的奇数都可写成三个质数之和的猜想。后者称为“弱哥德巴赫猜想”或“关于奇数的哥德巴赫猜想”。
若关于偶数的哥德巴赫猜想是对的,则关于奇数的哥德巴赫猜想也会是对的。2013年5月,巴黎高等师范学院研究员哈洛德·贺欧夫各特发表了两篇论文,宣布彻底证明了弱哥德巴赫猜想。
6. 近代数学的兴起读后感
数学在人类文明的发展中起着非常重要的作用,数学推动了重大科学技术的进步,在早期社会发展的历史上,限于技术条件,依据数学推理和推算所作的预见,往往要多年之后才能实现,数学为人类生产和生活带来的效益容易被忽视.进入二十世纪,尤其式到了二十世纪中叶以后,科学技术发展到现在的程度,数学理论研究与实际应用之间的时间已大大缩短,特别是当前,随着电脑应用的普及,信息的数字化和信息通道的大规模联网,依据数学所作的创造设想已达到即时试、即时实施的地步,数学技术将是一种应用最广泛、最直接、最及时、最富创造力和重要的技术,故而当今和未来的发展将更倚重数学的发展.
数学对人的影响也式非常深刻的,“数学是锻炼思维的体操”,数学的重要性不仅仅是它蕴含在各个知识领域之中,而且更重要的是它能很好地锻炼人的思维,有效地提高能力,而能力(理解能力、分析能力、运算能力)则是关系到学习效率的更重要因素.
在我国建国60年来,我国数学科学的发展更是取得了辉煌的成就,涌现了一批如:华罗庚、吴文俊等站在数学发展最前沿的,代表数学发展方向的,享誉世界的数学家,对比其他国家数学科学的发展,我国的数学发展可谓一波三折.
与美国相比,自二战以后,为了迎接越来越大的内外挑战,美国经历了四次重大的教育改革实践,由二十世纪50年代末前苏联在“外层空间”的挑战而引发的“学科结构”为运动发端的教育大讨论,70年代初兴起了改变职教与普教分离的“生计教育”,至70年代中期又展开了强调基础知识与基础技能训练的“回归基础”运动,而80年代则掀起了波澜壮阔的综合教育改革运动,如果说美国80年代以前的教育具有明显的“应时性”特征的话,那么进入80年代后则更多地呈现出综合性与前瞻性的特点,并以四个著名的教育改革文献——《国家处于危机之中:教育改革势在必行》,《2061计划:面向全体美国人的科学》,《美国2000年教育战略》,《2000年目标:美国教育法》为标志,向世界呈现了一副21世纪的教育蓝图.
从我国第一部数学著作,九章算术开始,中国的数学事业,便蓬勃的发展.算筹,割圆术,杨辉三角等等发现或者理论,祖冲之,秦九韶等数学家,都为中国在世界数学史上增辉添彩,许多数学理论,都领先外国多年.但是中国传统数学,有一个明显的特点,就是数学著作都以社会生产和生活实践中的问题为纲,这些问题基本按社会、生活领域进行分类,过分重实用,不利于抽象概念和命题的形成.而且,中国传统数学始终置于政府控制之下,直接受制于统治阶级的意识形态和社会的需求,特别的,明代封建统治者的政策不利于数学发展.这些都导致后期中国数学发展缓慢,无法与世界接轨.
至于中国近现代的数学发展,1919年五四运动以后,中国近代数学的研究才真正开始.这期间,浮现了诸多伟大的数学家,苏步青,赵元任,他们中的多数回国后成为著名数学家和数学教育家,为中国近现代数学发展做出重要贡献.从北大1912年成立时建立的数学系起,中国各地的数学教育日渐成熟,培养了许多数学领域的人才,在诸多领域都取得了伟大的成就(PS:具体LZ自己网络一下吧,很容易的,太长了)但是值得注意的是,自从改革开放,中国的经济实力不断增强,与外界的合作也日渐增多.但是,这给人们带来的功利,浮躁心理,也不容忽视.试看现在中国的数学教育,人人都在搞竞赛(虽然现在国家限制),各种培训班培养出来的,很多都是没有兴趣的做题机器,这种人,是很难在数学领域有所长足发展的.
中国在不断强大,我们新一代的年轻人,要有理想,不能急功近利的只关注高收益的学科与专业,更应注重基础学科的发展,一个国家的科技水平,不仅体现在工业领域,基础理论也是科学不可分割一部分.纵观中国的数学发展史,不管时代如何,代代都有才人出.希望,中国的数学,将会在我们这一代,有长足的发展,不要让中国悠久的历史,在我们这一代蒙羞.
7. 世界近现代著名的数学家
Green 格林(有很多姓绿的人,反正都很牛)
S.Lie 李 (创造了著名的Lie群,是近代数学物理中最重要的一个概念)
Euler 欧拉(后来双目失明了,但是其伟大很少有人能与之相比)Gauss 高斯(有些人不需要说明,Gauss就是一个)
Sturm 斯图谟(那个Liouvel-Sturm定理的人,项武义先生很推崇他)
Riemann 黎曼(不知道这个名字,就是说不知道世界上存在着数学家)
Neumann 诺伊曼(造了第一台电脑,人类历史上最后一个数学物理的全才)
Caratheodory 卡拉西奥多礼(外测度的创立者,曾经是贵族)
Newton 牛顿(名字带牛,实在是牛)
Jordan 约当(Jordan标准型,Poincare前的法国数学界精神领袖)
Laplace 拉普拉斯(这人的东西太多了,到处都有)
Wiener 维纳(集天才变态于一身的大家,后来在MIT做教授)
Thales 泰勒斯(古希腊著名哲学家,有一个他囤积居奇发财的轶事)
Maxwell 麦克斯韦(电磁学中的Maxwell方程组)
Riesz 黎茨(泛函里的Riesz表示定理,当年匈牙利数学竞赛第一)
Fourier 傅立叶(巨烦无比的Fourier变换,他当年黑过Galois)
Noether 诺特(最最伟大的女数学家,抽象代数之母)
Kepler 开普勒(研究行星怎么绕着太阳转的人)
Kolmogorov 柯尔莫戈洛夫(苏联的超级牛人烂人,一生桀骜不驯)
Borel 波莱尔(学过数学分析和实分析都知道此人)
Sobolev 所伯列夫(著名的Sobolev空间,改变了现代PDE的写法)
Dirchlet 狄利克雷(Riemann的老师,伟大如他者廖若星辰)
Lebesgue 勒贝格(实分析的开山之人,他的名字经常用来修饰测度这个名词)
Leibniz 莱不尼兹(和Newton争谁发明微积分,他的记号使微积分容易掌握)
Abel 阿贝尔(天才,有形容词形式的名字不多,Abelian就是一个)
Lagrange 拉格朗日(法国姓L的伟人有三个,他,Laplace,Legendre)
Ramanujan 拉曼奴阳(天资异禀,死于思乡病)
Ljapunov 李雅普诺夫(爱微分方程和动力系统,但更爱他的妻子)
Holder 赫尔得(Holder不等式,L-p空间里的那个)
Poisson 泊松(概率中的Poisson过程,也是纯数学家)
Nikodym 发音很难的说(有著名的Ladon-Nikodym定理)
H.Hopf 霍普夫(微分几何大师,陈省身先生的好朋友)
Pythagoras 毕达哥拉斯(就是勾股定理在西方的发现者)
Baire 贝尔(著名的Baire纲)
Haar 哈尔(有个Haar测度,一度哥廷根的大红人)
Fermat 费马(Fermat大定理,最牛的业余数学家,吹牛很牛的)
Kronecker 克罗内克(牛人,迫害Cantor至疯人院)
E.Laudau 朗道(巨富的数学家,解析数论超牛)
Markov 马尔可夫(Markov过程)
Wronski 朗斯基(微分方程中有个Wronski行列式,用来解线性方程组的)
Zermelo 策梅罗(集合论的专家,有以他的名字命名的公理体系)
Rouche 儒契(在复变中有Rouche定理Rouche函数)
Taylor 泰勒(Taylor有很多,最熟的一个恐怕是Taylor展开的那个)
Urysohn 乌里松(在拓扑中有著名的Urysohn定理)Frechet 发音巨难的说,泛函中的Frechet空间
Picard 皮卡(大小Picard定理,心高气敖,很没有人缘)
Schauder 肖德尔(泛函中有Schauder基Schauder不动点定理)
Poincare 彭加莱(数学界的莎士比亚)Peano 皮亚诺(有Peano公理,和数学归纳法有关系)Zorn 佐恩(Zorn引理,看起来显然的东西都用这个证明)
8. 中国近代数学发展史
1919年五四运动以后,中国近代数学的研究才真正开始。 近现代数学发展时期 这一时期是从20世纪初至今的一段时间,常以1949年新中国成立为标志划分为两个阶段。 中国近3年留日的冯祖荀,1908年留美的郑之蕃,1910年留美的胡明复和赵元任,1911年留美的姜立夫,1912年留法的何鲁,1913年留日的陈建功和留比利时的熊庆来(1915年转留法),1919年留日的苏步青等人。他们中的多数回国后成为著名数学家和数学教育家,为中国近现代数学发展做出重要贡献。其中胡明复1917年取得美国哈佛大学博士学位,成为第一位获得博士学位的中国数学家。随着留学人员的回国,各地大学的数学教育有了起色。最初只有北京大学1912年成立时建立的数学系,1920年姜立夫在天津南开大学创建数学系,1921年和1926年熊庆来分别在东南大学(今南京大学)和清华大学建立数学系,不久武汉大学、齐鲁大学、浙江大学、中山大学陆续设立了数学系,到1932年各地已有32所大学设立了数学系或数理系。1930年熊庆来在清华大学首创数学研究部,开始招收研究生,陈省身、吴大任成为国内最早的数学研究生。三十年代出国学习数学的还有江泽涵(1927)、陈省身(1934)、华罗庚(1936)、许宝騄(1936)等人,他们都成为中国现代数学发展的骨干力量。同时外国数学家也有来华讲学的,例如英国的罗素(1920),美国的伯克霍夫(1934)、奥斯古德(1934)、维纳(1935),法国的阿达马(1936)等人。1935年中国数学会成立大会在上海召开,共有33名代表出席。1936年《中国数学会学报》和《数学杂志》相继问世,这些标志着中国现代数学研究的进一步发展。 解放以前的数学研究集中在纯数学领域,在国内外共发表论着600余种。在分析学方面,陈建功的三角级数论,熊庆来的亚纯函数与整函数论研究是代表作,另外还有泛函分析、变分法、微分方程与积分方程的成果;在数论与代数方面,华罗庚等人的解析数论、几何数论和代数数论以及近世代数研究取得令世人瞩目的成果;在几何与拓扑学方面,苏步青的微分几何学,江泽涵的代数拓扑学,陈省身的纤维丛理论和示性类理论等研究做了开创性的工作:在概率论与数理统计方面,许宝騄在一元和多元分析方面得到许多基本定理及严密证明。此外,李俨和钱宝琮开创了中国数学史的研究,他们在古算史料的注释整理和考证分析方面做了许多奠基性的工作,使我国的民族文化遗产重放光彩。 1949年11月即成立中国科学院。1951年3月《中国数学学报》复刊(1952年改为《数学学报》),1951年10月《中国数学杂志》复刊(1953年改为《数学通报》)。1951年8月中国数学会召开建国后第一次全国代表大会,讨论了数学发展方向和各类学校数学教学改革问题。 建国后的数学研究取现代数学开始于清末民初的留学活动。较早出国学习数学的有:190得长足进步。50年代初期就出版了华罗庚的《堆栈素数论》(1953)、苏步青的《射影曲线概论》(1954)、陈建功的《直角函数级数的和》(1954)和李俨的《中算史论丛》(5辑,1954-1955)等专着,到1966年,共发表各种数学论文约2万余篇。除了在数论、代数、几何、拓扑、函数论、概率论与数理统计、数学史等学科继续取得新成果外,还在微分方程、计算技术、运筹学、数理逻辑与数学基础等分支有所突破,有许多论著达到世界先进水平,同时培养和成长起一大批优秀数学家。 60年代后期,中国的数学研究基本停止,教育瘫痪、人员丧失、对外交流中断,后经多方努力状况略有改变。1970年《数学学报》恢复出版,并创刊《数学的实践与认识》。1973年陈景润在《中国科学》上发表《大偶数表示为一个素数及一个不超过二个素数的乘积之和》的论文,在哥德巴赫猜想的研究中取得突出成就。此外中国数学家在函数论、马尔可夫过程、概率应用、运筹学、优选法等方面也有一定创见。 1978年11月中国数学会召开第三次代表大会,标志着中国数学的复苏。1978年恢复全国数学竞赛,1985年中国开始参加国际数学奥林匹克数学竞赛。1981年陈景润等数学家获国家自然科学奖励。1983年国家首批授于18名中青年学者以博士学位,其中数学工作者占2/3。1986年中国第一次派代表参加国际数学家大会,加入国际数学联合会,吴文俊应邀作了关于中国古代数学史的45分钟演讲。近十几年来数学研究硕果累累,发表论文专著的数量成倍增长,质量不断上升。1985年庆祝中国数学会成立50周年年会上,已确定中国数学发展的长远目标。代表们立志要不懈地努力,争取使中国在世界上早日成为新的数学大国。
9. 近代数学家
史丰收
他的脑子比电脑快
史丰收速算法不仅获得了国人的认可和青睐,也受到国际人士的关注。1987年8月,联合国教科文组织总干事姆博访华,特意会见了史丰收教授,并看了他的速算表演,惊叹不已。他当即邀请史丰收出席联合国教科文组织第24届大会。10月23日中午,在联合国教科文组织大厦,史丰收为参加大会的158个会员国的代表进行了速算表演。出第一道题的是斯里兰卡驻联合国教科文组织代表的夫人,当这位夫人把891876乘9写在黑板上,手中的粉笔还没有放下的时候,史丰收已经把答案写了出来:8026884。随后,裁判手中的计算器也显示出了相同的答案。接着一位非洲国家的代表出了一道用17个个位数字相加的题目,史丰收不假思索地就得出了答案,而裁判此时还在一个数一个数地在计算器上相加呢!黑板上又出了一道多位数相乘的题目:43879乘以7089。史丰收略一思索,得出了答案:311058231。而这时裁判手中只有8位数字的计算器却无论如何也显示不出9位数的答案,引起了在座观众的一阵大笑。在半个多小时的表演中,史丰收进行了多位数的加、减、乘、除、开方等数学运算,并向观众介绍了速算的原理和推广情况,获得了一阵阵掌声。担任裁判的印尼大使握着这位年轻速算专家的手风趣地说:“我的结论是,你的脑子比计算机的电脑快!”