数学基础课
专业基础课有数学分析、高等代数、解析几何、概率论与数理统计:这三者是老三门,将来如果考研时要用到的;近代数学的新三门是:拓扑学、实变函数与泛函分析、近世代数(也叫抽象代数);另外其他的一些常见的分支包括楼上所说的复变函数、常微分、运筹、最优化,数学模型。
2. 数学的几门课程的难度比较
计算方法:理论简单,计算繁琐,估计做作业要花很多时间;
运筹学:理论有难度;
数学模型:需要数学综合知识,有些部分简单,有些部分很难,考试应该很容易过;
工程中的有限元方法:难;
泛函分析:需要扎实的数学基础,难,考试应该不会难;
现代数学基础:不清楚你们的这门课包括哪些内容,有可能会是实变函数或近世代数之类(如果以前没学过这些内容的话),如果是这两门或其中一门,那也比较难。
既然你说你数学不大好,又希望学得轻松些,建议从前三门中选,当然这里说什么其实都不重要,重要的是看代课老师,这几门课不同的老师可以讲出差异很大的难度。
另外:工程中的有限元这门课建议不要考虑,你们连计算方法都没学过,有限元肯定听不懂的。
3. 数学专业有哪些课程
你现在是高中生吧,那么我先推荐你看两本书
1.《数学分析》
这是数学系的基础课程回答,非常重要.有的学校叫做《微积分》或《高等数学》,相对《数学分析》来说比较简单.难的一般都叫做《数学分析》.
有很多版本了,随便挑一本看看就可以了.当然如果想学好的话,还是要看名校用的教材,如
《数学分析教程》-高等教育出版社(分上下册)
2.《线形代数》
这也是数学系的基础课程,非常重要.有的学校叫做《高等代数》也是相对《线性代数》来说比较简单,一般叫《线形代数>的比较难一些.
如
《线形代数》-李尚志 编著-高等教育出版社
此外,还有一些课程,有
《初等数论>,《解析几何》(这两门课程也可以看一看)
(以下不推荐提前看)
《实变函数》(很难),《复变函数》,《近世代数》(很难),《微分几何》,《常微分方程》, 《偏微分方程》,《拓扑学》,《概率论》,《数理统计》,《运筹学》,《数值分析》,《数值代数》等等众多课程
4. 数学专业有哪些专业课程
数学专业的专业课程有:
一、数学分析
又称高级微积分,分析学中最古老、最基本的分支。一般指以微积分学和无穷级数一般理论为主要内容,并包括它们的理论基础(实数、函数和极限的基本理论)的一个较为完整的数学学科。它也是大学数学专业的一门基础课程。
数学中的分析分支是专门研究实数与复数及其函数的数学分支。它的发展由微积分开始,并扩展到函数的连续性、可微分及可积分等各种特性。这些特性,有助我们应用在对物理世界的研究,研究及发现自然界的规律。
二、高等代数
初等代数从最简单的一元一次方程开始,初等代数一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组,也叫线性方程组的同时还研究次数更高的一元方程组。
发展到这个阶段,就叫做高等代数。高等代数是代数学发展到高级阶段的总称,它包括许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数、多项式代数。
三、复变函数论
复变函数论是数学中一个基本的分支学科,它的研究对象是复变数的函数。复变函数论历史悠久,内容丰富,理论十分完美。它在数学许多分支、力学以及工程技术科学中有着广泛的应用。 复数起源于求代数方程的根。
复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。在很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。复数的一般形式是:a+bi,其中i是虚数单位。
四、抽象代数
抽象代数(Abstract algebra)又称近世代数(Modern algebra),它产生于十九世纪。伽罗瓦〔1811-1832〕在1832年运用「群」的概念彻底解决了用根式求解代数方程的可能性问题。
他是第一个提出「群」的概念的数学家,一般称他为近世代数创始人。他使代数学由作为解方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数。
五、近世代数
近世代数即抽象代数。 代数是数学的其中一门分支,当中可大致分为初等代数学和抽象代数学两部分。初等代数学是指19世纪上半叶以前发展的代数方程理论,主要研究某一代数方程(组)是否可解,如何求出代数方程所有的根〔包括近似根〕,以及代数方程的根有何性质等问题。
法国数学家伽罗瓦在1832年运用「群」的思想彻底解决了用根式求解多项式方程的可能性问题。他是第一个提出「群」的思想的数学家,一般称他为近世代数创始人。他使代数学由作为解代数方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数即近世代数时期。
参考资料来源:
网络—数学分析
网络—高等代数
网络—复变函数论
网络—抽象代数
网络—近世代数
5. 数学基础课程有那些
是数学系主干课吗?
数学分析、高等代数、解析几何,
复变函数、常微分方程,
实变函数、泛函分析、抽象代数、点集拓扑,
微分几何、微分流形、偏微分方程、初等数论
6. 大学数学专业都有哪些课程要详细
专业基础类课程:
解析几何
数学分析I、II、III
高等代数I、II
常微分方专程
抽象代数
概率论基础
复变函数
近世属代数
专业核心课程:
实变函数
偏微分方程
概率论
拓扑学
泛函分析
微分几何
数理方程
专业选修课:
离散数学(大二上学期)
数值计算与实验(大二下学期)
分析学(1)
代数学(1)
伽罗瓦理论
复分析
代数数论
动力系统引论
基础数论
偏微分方程(续)
一般拓扑学
理论力学
数学建模
微分拓扑
调和分析
常微分方程几何理论
分析专题选讲
组合数学与图论
范畴论
紧黎曼曲面
黎曼几何初步
偏微近代理论
交换代数
代数拓扑
同调代数
流形与几何
小波与调和分析
李群李代数
分析学Ⅱ
代数学Ⅱ
代数K理论
代数几何
多复变基础
泛函分析(续)
7. 基础数学专业课程学习顺序是什么本人想先自学,该按怎样的顺序学习
首先学数分,线性代数和抽象代数。线性代数和抽代可以同时学,抽代我指的是群环模域。数分学好可以学点集拓扑,复分析,实分析,泛函分析。线代和抽代学完可以学交换代数和同调代数。导出范畴很重要,在学同调代数的时候一定要学。线代和点集拓扑学完其实就可以学微分流形,然后是黎曼几何,复几何,辛几何。复几何需要懂复分析,辛几何只需要流形的知识。点集拓扑和抽代学过以后就可以学代数拓扑。
至此,除方程应数以外,研究生一年级的标准内容已经差不多了。你会发现,数分,抽代,点集拓扑学完你几乎可以学上边提到的各种东西。再往后就要看个人兴趣,各种东西需要的基础知识就比较多了。
8. 数学基础课程有哪些
微积分,立体几何,概率和统计,线性代数,这三个要学好。
这些不是基本的,不过也用得着:离散数学,拓扑数学,模糊数学。
9. 数学0基础,如何从头学
学习数学并不是看一本书籍就能够将数学学好的,而是经过慢慢的积累、自身的研究才能学精学好的。
如果从初一就没有好好学的话,那么从哪里跌倒就要从哪里站起来,你可以先从初一开始看初中生的教科书,初中的数学非常简单,初一到初三不需要多久自学就可以学会初中数学知识,初中数学主要是为了提高学生对数学这门学科的兴趣,重点是对计算能力上的培养,所以难度方面几乎没有。
接下来就要看高中数学书,高中数学是初等数学的一个统筹,可以说是学习数学的一个基础在学习高中数学时就应该要多做些高中习题,将高中这个初等数学阶段打好基础。高中数学总体上有代数,几何两部分之分,细节上有数列,概率,解析几何,平面几何,立体几何等等之分,按照高中生学习知识内容顺序辅以习题就可以了。
然后将进入高等数学的学习,或者可以称之为微积分的学习,其就是大学数学的内容了,学习高等数学就会产生一些困难的,一些抽象的理解和复杂的公式是一大难点,但是不要急,辅以习题慢慢攻克也是不难的。
学习完这些之后,还可以对概率统计,线性代数,数值计算,运筹学这些课程进行自学,如果将这些课程的习题都能自行解答那么你的数学功底就已经算得上很不错了,当然对于专业学习数学的人来说可能还差很多,但是对于本科生,研究生来说已经旗鼓相当了。
学习数学不能急躁,要有钻研,有自己独立思考的精神,希望你的数学学习之路成功~