高中数学指数函数
⑴ 高中数学指数函数
你确定这是高中的?高中指数函数里,底数是不能为负数和1的。
⑵ 高中数学指数函数运算
你好,关于指数运算,若是乘法就相加,若是除法就相减
⑶ 高中数学的指数函数
f(a)<f(b<f(c)
a=-1/5或3
⑷ 高一数学 函数 指数函数 f(x)
(1)
令x1=x,x2=0
f(x1+x2)=f(x+0)=f(x)=f(x)·f(0)
f(x)[f(0)-1]=0
对于任意实数x,f(x)是变量,要等式成立,只有f(0)-1=0
f(0)=1
令x1=x,x2=-x,x>0,则-x<0
f(x-x)=f(0)=f(x)·f(-x)=1
函数在R上递增,f(x)>f(0)=1>0,又f(x)·f(-x)=1>0
因此f(-x)>0
综上,x>0时,f(x)>0,f(-x)>0,又f(0)=1>0,函数在R上恒有f(x)>0
(2)
令x1=x,x2=-x
f(x-x)=f(0)=f(x)·f(-x)=1
f(-x)=1/f(x)
f(x1-x2)=f(x1)·f(-x2)=f(x1)/f(x2)
(3)
令x1=x,x2=△x,(△x>0)
f(x2)-f(x1)=f(x+△x)-f(x)
=f(x)·f(△x)-f(x)
=f(x)[f(△x)-1]
△x>0,函数在R上单调递增,f(△x)>f(0)=1
f(△x)-1>0,又f(x)>0,因此f(x2)>f(x1)
函数在R上单调递增
f(1)=2
f(2)=f(1+1)=f(1)·f(1)=2·2=4
4f(x)=f(2)·f(x)=f(x+2)
f(3x)>f(x+2)
函数在R上单调递增
3x>x+2
2x>2
x>1
不等式的解集为(1,+∞)
⑸ 高一数学 指数函数的图像和性质
是用换元法的,x定义域是R么?如果不是你自己算一下
⑹ 高一数学 指数函数求详细的
如图
⑺ 高中数学 指数函数定义
指数函数的一般形式为y=a^x(a>0且≠1) (x∈R).它是初等函数中的一种.它是定义在实数域上的单调、下凸、无上界的可微正值函数.
定义域是一切实数R
⑻ 高中数学——指数函数及其性质
f(x)+g(x)=a^x
f(-x)+g(-x)=a^-x
-f(x)+g(x)=a^-x
g(x)=(a^x+a^-x)/2
f(x)=(a^x-a^-x)/2
f(2x)=(a^2x-a^-2x)/2
2f(x)乘g(x)= 2[(a^x+a^-x)/2)][(a^x-a^-x)/2]=2(a^2x-a^-2x)/4
=(a^2x-a^-2x)/2
f(2x)=2f(x)乘g(x).
⑼ 高一数学指数函数
这个指数函数的定义域就是x²-2x的范围,x²-2x∈[-1,+∞),则y=(1/3)^(x²-2x)的值域为(0,3],其实很好理解的!
⑽ 高一数学必修一指数函数全部知识点
二、函数的有关概念
1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.
注意:
1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。
求函数的定义域时列不等式组的主要依据是:
(1)分式的分母不等于零;
(2)偶次方根的被开方数不小于零;
(3)对数式的真数必须大于零;
(4)指数、对数式的底必须大于零且不等于1.
(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.
(6)指数为零底不可以等于零,
(7)实际问题中的函数的定义域还要保证实际问题有意义.
相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)
(见课本21页相关例2)
2.值域 : 先考虑其定义域
(1)观察法
(2)配方法
(3)代换法
3. 函数图象知识归纳
(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .
(2) 画法
A、 描点法:
B、 图象变换法
常用变换方法有三种
1) 平移变换
2) 伸缩变换
3) 对称变换
4.区间的概念
(1)区间的分类:开区间、闭区间、半开半闭区间
(2)无穷区间
(3)区间的数轴表示.
5.映射
一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。记作f:A→B
6.分段函数
(1)在定义域的不同部分上有不同的解析表达式的函数。
(2)各部分的自变量的取值情况.
(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.
补充:复合函数
如果y=f(u)(u∈M),u=g(x)(x∈A),则 y=f[g(x)]=F(x)(x∈A) 称为f、g的复合函数。
二.函数的性质
1.函数的单调性(局部性质)
(1)增函数
设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间.
如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2 时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.
注意:函数的单调性是函数的局部性质;
(2) 图象的特点
如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.
(3).函数单调区间与单调性的判定方法
(A) 定义法:
○1 任取x1,x2∈D,且x1<x2;
○2 作差f(x1)-f(x2);
○3 变形(通常是因式分解和配方);
○4 定号(即判断差f(x1)-f(x2)的正负);
○5 下结论(指出函数f(x)在给定的区间D上的单调性).
(B)图象法(从图象上看升降)
(C)复合函数的单调性
复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”
注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.
8.函数的奇偶性(整体性质)
(1)偶函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.
(2).奇函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.
(3)具有奇偶性的函数的图象的特征
偶函数的图象关于y轴对称;奇函数的图象关于原点对称.
利用定义判断函数奇偶性的步骤:
○1首先确定函数的定义域,并判断其是否关于原点对称;
○2确定f(-x)与f(x)的关系;
○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.
(2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;
(3)利用定理,或借助函数的图象判定 .
9、函数的解析表达式
(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.
(2)求函数的解析式的主要方法有:
1) 凑配法
2) 待定系数法
3) 换元法
4) 消参法
10.函数最大(小)值(定义见课本p36页)
○1 利用二次函数的性质(配方法)求函数的最大(小)值
○2 利用图象求函数的最大(小)值
○3 利用函数单调性的判断函数的最大(小)值:
如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);
如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);
例题:
1.求下列函数的定义域:
⑴ ⑵
2.设函数 的定义域为 ,则函数 的定义域为_ _
3.若函数 的定义域为 ,则函数 的定义域是
4.函数 ,若 ,则 =
6.已知函数 ,求函数 , 的解析式
7.已知函数 满足 ,则 = 。
8.设 是R上的奇函数,且当 时, ,则当 时 =
在R上的解析式为
9.求下列函数的单调区间:
⑴ (2)
10.判断函数 的单调性并证明你的结论.
11.设函数 判断它的奇偶性并且求证: .
以上来自网络知道