当前位置:首页 » 语数英语 » 数学教学四基

数学教学四基

发布时间: 2021-08-15 18:22:22

数学教学的“四基”,“三能”指的是什么

数学教学的“四基”是:1.基础知识;2.基本技能;3.基本数学思想方法;4.基本数学活动经验。
“三能”是:1.运算能力;2.空间想象能力;3.逻辑思维能力.

② 国家数学课程标准中的“四基”指的是什么三能指的是什么

研讨内容: 1.? 《国家数学课程标准》已经把“双基”扩展为“四基”,即基础知识、基本技能,增加“基本数学活动经验”与“基本数学思想方法”。重视基础是为了发展,数学教育改革中坚持“四基”,不仅可以更好地促进学生发展,而且也更加突出数学的学科性质。三能:(一)运算能力(二)空间想象能力(三)逻辑思维能力其中逻辑思维能力应是分析,综合、比较、抽象、概括、转化等能力的综合体,数学能力的培养是在教学过程中完成的。因此,有效利用教学时间,合理、有序、有度培养数学能力,显得尤为重要。 2.数学“四基”之间的关系 关于数学“双基”的涵义非常丰富,可以有知识形态、教学形态与个体形态等三种表现形式[12].从教学的角度,邵光华教授与顾泠沅先生指出:“双基教学重视基础知识、基本技能的传授,讲究精讲多练,主张‘练中学’,相信‘熟能生巧’,追求基础知识的记忆和掌握、基本技能的操演和熟练,以使学生获得扎实的基础知识、熟练的基本技能和较高的学科能力为其主要的教学目标.”[13]其中的“精讲多练”、“练中学”、“熟能生巧”等主要是围绕“演绎活动”而展开的,其目的是让学生获得形式化的结果知识——用数学术语或数学公式所表述的系统知识.基本活动经验则主要是指在数学基本活动中形成和积累的过程知识.由于在我国的数学教学中过分强调“演绎活动”而削弱甚至忽视了“归纳活动”,因此,基本活动经验更加强调关于归纳活动的经验.在数学学习过程中,“双基”与基本活动经验是相互依存、相互促进的,也是可以相互转化的,在二者的不断融合、多次的实际应用中,通过反思提炼而形成的一种具有奠基作用和普遍指导意义的知识经验便是数学基本思想.由此,我们可以给出数学“四基”的如下关系结构: 从知识的角度来看,“双基”是一种理性的、形式化的结果性知识,而基本活动经验则是一种感性的、情景化的过程性知识,它们各强调了数学知识的一个侧面,前者形成的是一种知识系统,而后者形成的是一种经验系统,二者的有机结合才能形成完整的数学知识结构.就方法而言,“双基”主要以演绎法为主,演绎法只是一种依据固定的前提(定义、公理、定理等),利用相对固定的推理程序(三段论),得出固定结论的方法,而结论的预测与发现,推理思路的探索与调整以及知识的实际应用等,靠演绎法是推不出来的,从这个意义上讲,“儿童不可能通过演绎法学会新的数学知识!” 关于“双基”的学习需要有一个意义建构的过程,此过程是以原有经验为基础的,又是从操作性的经验开始的,并且所建构的意义最终是以经验的形态储存学生的大脑当中的,就如著名教育家陶行知所作的关于人获得知识过程的嫁接树枝的比喻:“我们要有自己的经验做根,以这经验所发生的知识做枝,然后别人的知识才能接得上去,别人的知识方才成为我们知识的一个有机体部分.” 因此,“双基”只有通过经验化才能真正成长为学生的数学素养.相对于“双基”而言,“基本活动经验”是比较模糊的、不太严谨的,缺乏明晰的结构体系,尤其是那些没有经过加工的“原始经验”,含有许多主观的、片面的非本质因素,就像数学家克里斯戈尔所描述那样:“数学活动过程中所获得的知识总是不够精确的和片面的,其整体结构好像一片原始森林,或者说是交相缠绕的树枝.” 因此,要使“基本活动经验”更加确切、合理而有效,就需要经历一个概念化与形式化的过程,虽然,在问题解决的过程中,某些经验本身就具有很好的指导作用和实用价值,但毕竟数学知识本质上是追求严谨性与确定性的.经过概念化与形式化,“基本活动经验”就可以转化或融入到“双基”之中,不但使“基本活动经验”得到了升华,也使“双基”因为充满了学生的感受而获得了某种生命的活力. 数学活动经验是指学习者在参与数学活动的过程中所形成的感性知识、情绪体验和应用意识.感性知识是指具有学生个人意义的过程性知识,也包括学生大脑中那些未经训练的、不那么严格的数学知识;情绪体验是指对数学的好奇心和求知欲、在数学学习活动中获得的成功体验、对数学严谨性与数学结果确定性的感受以及对数学美的感受与欣赏等;应用意识包括“数学有用”的信念、应用数学知识的信心、从数学的角度提出问题与思考问题的意识以及拓展数学知识应用领域的创新意识,而且应用意识是数学基本活动经验的核心成分 史宁中教授指出:“‘基本思想’主要是指演绎和归纳,这应当是整个数学教学的主线,是最上位的思想.”[7] 关于数学基本思想,在以往的文献中有诸多论述.胡炯涛先生认为:“最高层次的基本数学思想是数学教材的基础与起点,整个中学数学的内容均循着基本数学思想的轨迹而展开.……‘符号化与变换思想’,‘集合与对应思想’以及‘公理化与结构思想’,它们构成了最高层次的基本数学思想.”[15]在中学数学教学中影响比较大的是任子朝先生提出的四种基本思想:数形结合的思想,分类讨论的思想,函数与方程的思想,化归的思想[16].然而,在众多的数学思想中起着奠基性、引领性作用的还应该是归纳思想与演绎思想.如“化归思想”,在探索化归的方向、发现问题的结论、寻找解决问题的途径时,主要运用的是归纳思想;在链接“中间问题”、整理和表述化归结果时,则需运用演绎思想,而且化归的主要策略——“一般化”与“特殊化”本身就是归纳思想与演绎思想的具体体现.从形成过程来看,演绎思想主要是在“双基”的形式化训练中练就的,而归纳思想则主要是在“基本活动经验”的不断积累中逐步孕育的.归纳思想与演绎思想是数学思想体系的两翼,二者的协同发展,才能使数学知识健康、和谐地成长为学生的智慧. 总之,数学基础知识、基本技能、基本活动经验与基本思想既是数学学习活动的核心内容与主要目标,也是学生数学素养最为重要的组成部分,它们共同构筑了学生的数学知识结构。

③ 数学教学的“四基”,“三能”指的是什么

四基:(一)基础知识(二)基本技能(三)基本思想(四)基本活动经验 《国家数学课程标准》已经把“双基”扩展为“四基”,即增加“基本数学活动经验”与“基本数学思想方法”。重视基础是为了发展,数学教育改革中坚持“四基”,不仅可以更好地促进学生发展,而且也更加突出数学的学科性质 三能:(一)运算能力(二)空间想象能力(三)逻辑思维能力 其中逻辑思维能力应是分析,综合、比较、抽象、概括、转化等能力的综合体,数学能力的培养是在教学过程中完成的。因此,有效利用教学时间,合理、有序、有度培养数学能力,显得尤为重要。

④ “课标”中所说的“四基”是什么,为什么要提出“四基

A.过程与结果
B.直观与抽象
C.直接经验与间接经验
D.
归纳与演绎
2.关于应用意识的培养,下列说法不恰当的是:(
D

A.
注重知识的来龙去脉
B.
在整个数学教育的过程中都应该培养学生的应用意识
C.
综合实践活动是培养应用意识很好的载体
D.
鼓励“质疑”、
“发现和提出问题”
3.下列说法不恰当的是:(
D

A.
数感主要是指关于数与数量、数量关系、运算结果估计等方面的感悟。
B.
符号意识主要是指能够理解并且运用符号表示数、数量关系和变化规律;知道使用符号可以进行运算和推理,得到的结论具有一般性。
C.符号可以用来表示一类东西,符号可以表示两类事物的关系
D.
空间观念主要是指利用图形描述和分析问题
4.模型思想的建立是学生体会和理解数学与外部世界联系的基本途径。建立和求解模型的过程包括:(
ABC

A.
从现实生活或具体情境中抽象出数学问题,
B.
用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律
C.
求出结果、并讨论结果的意义
D.
关注不同的量之间的联系
设立核心概念有重要的意义:这些核心概念的内涵在性质上是体现的学习主体——学生的特征,它们涉及的是学生在数学学习中应该建立和培养的关于数学的感悟、观念、意识、思想、能力等,可以认为,它们是学生在义务教育阶段数学课程中最应培养的数学素养,是促进学生发展的重要方面。核心概念往往是一类课程内容的核心或聚焦点,它有利于我们把握课程内容的线索和层次,抓住教学中的关键,并在数学内容的教学中有机地去发展学生的数学素养。核心概念本质上体现的是数学的基本思想,这些思想是数学学习中的重要目标。这启示我们,核心概念的教学要更关注其数学思想本质。这些核心概念都是数学课程的目标点,也应该成为数学课堂教学的目标,并通过教师的教学予以落实。
“四基”是指数学的基础知识、基本技能、基本思想、基本活动经验。
提出四基的原因有:第一、因为“双基”仅仅涉及三维目标中的一个目标——“知识与技能”新增加的两条则还涉及三维目标中的另外两个目标——“过程与方法”和“情感态度与价值观”。第二、因为某些教师片面地理解“双基”,往往在实施中“以本为本”,见物不见人;而教学必须以人为本,人的因素第一,新增加的“数学思想”和“活动经验”就直接与人相关,也符合“素质教育”的理念。第三、因为仅有“双基”还难以培养创新型人才,“双基”是培养创新型人才的一个基础,但创新型人才不能仅靠熟练掌握已有的知识和技能来培养,思维训练和积累经验等十分重要,所以新增加了两条。

⑤ 数学课程标准数学" 四基"和" 四能"有哪些

2011版数学新课标“四基”和“四能”
“四基”: 基础知识、基本技能、内基本思想、基本活动经验容
“四能”: 发现问题能力、提出问题能力、分析问题能力、解决问题能力

《义务教育数学课程标准(2011年版)》的课程目标从"双基"到"四基"、从"两能"到"四能",在原有"双基"基础上增加了"基本思想"和"基本活动经验",在原有"两能"基础上增加了"发现和提出问题的能力"。

⑥ 数学课程标准数学" 四基"和" 四能"有哪些

“四基”是指: 基础知识、基本技能、基本思想、基本活动经验 。

“四能”是指: 发现问内题能力、提容出问题能力、分析问题能力、解决问题能力。

《义务教育数学课程标准(2011年版)》的课程目标从"双基"到"四基"、从"两能"到"四能",在原有"双基"基础上增加了"基本思想"和"基本活动经验",在原有"两能"基础上增加了"发现和提出问题的能力"。义务教育阶段的数学课程具有公共基础的地位,要着眼于学生整体素质的提高,促进学生全面、持续、和谐发展。

(6)数学教学四基扩展阅读

数学学业质量水平是六个数学学科核心素养水平的综合表现。每一个数学学科核心素养划分成三个水平,每个水平通过核心素养的具体表现和体现核心素养的四个方面进行质量表述,这四个方面为:情景与问题,知识与技能,思维与表达,交流与反思。

数学学业质量分为三个水平:数学学业质量水平一是高中毕业应当达到的要求,也是高中毕业的数学学业水平考试的命题依据;

数学学业质量水平二是高考的要求,也是数学高考的命题依据;

数学学业质量水平三是基于必修、选择性必修和选修课程的某些内容对数学学科核心素养的达成提出的要求,可以作为大学自主招生的参考。

⑦ 数学四基是指什么

四基是指数学的基础知识、基本技能、基本思想、基本活动经验。


把学生的数学素养体现在这四个方面,也就是说传统的数学教育仅仅重视基础知识、基本技能,基础知识、基本技能是学生打好基础的一个非常重要的两个方面,但学生只有知识技能是不够的,学生还要学会思考,还要去经历,还要有体验,而后边的基本思想和基本活动经验,是在知识技能这个基础上发展的,这个发展其实就是让学生学会进行数学的思考。

⑧ 课标中的四基是什么,为什么要提出四基

新课标中的四基是:基础知识,基本技能,基本思想,基本活动经念。 在新时代的发展下,传统数学中的双基(基础知识,基本技能)已不能适应现代数学教学,甚至影响着数学课程的改革和发展。 新课标提出的四基是对学生进行良好的数学教育的重要体现,关系到学生当前学习和发展。四基应当贯穿整个数学教学,在不同学段和不同领域的教学中都应当体现四基。在具体的教学实践中,无论是教学目标的定位,教学活动的设计,教学内容的呈现还是教学的展开过程都应当考虑如何关注四基,体现四基。 四基更强调的是学生两种能力的培养,即发现问题和提出问题的能力,分析问题和解决问题的能力。两种能力体现了学生创新学习的基本过程,也是一个完整的探索研究的过程。只有对课标与课程理解透彻,具体,才能处理好知识,技能。能力三者之间的关系,才能提高数学教学的实效性。

⑨ 在日常数学教学中我们如何把握“四基”

这意味着,数学教学目标由传统的“双基”发展为“四基”。 基础知识、基本技能→基础知识、基本技能、基本数学思想、基本活动经验 “双基”是“基础知识、基本技能”的简称,这一个提法至少可以追朔到30多年前。而“基础知识扎实,基本技能熟练”的基本含义是: 深刻理解、牢固记忆数学定理;准确、迅速地运用公式、法则进行运算;正确、熟练地从事几何证明等。 注重“双基”的教学是我国数学教学的重要特色。 我们知道,教育有着强烈的时代烙印,那么,今天的“双基”与昨天的“双基”相比,有哪些改变呢?请两位老师谈谈自己的看法。 一、双基内涵应当与时俱进 我认为,随着时代的发展,知识在更新,技术也在突飞猛进,从而,“双基”的内涵也不能墨守成规,必须与时俱进。比如,一、二百年前,有一手好毛笔字是读书人的基础,但现在已经不是必备的了;类似地,熟练的珠算技能曾经为小学生必备、熟练地使用计算尺曾经是中学生的基本技能。现在,由于计算器和电子机的普及,它们也都不是必备的技能了。相反,《标准》中提到的估算、算法、认识和处理数据、数学建模初步等以往没有涉及的内容,由于在当今社会生活中常常被用到,所以应当成为学生必备的基本技能。 就好像今天的士兵的基本功主要不是拳术、刀技,而是枪法,甚至是使用高科技准备的技能。 按照《标准》的说明,这些基础应当是学生“适应社会生活和进一步发展所必需的”,具体说,就是:学生后继学习的基础,未来社会生活的基础。 《标准》继续保留了“双基”意味着:数学教学应该继续注重学生在“基础知识”、“基本技能”的发展。长期以来,广大教师基于对“双基”的认识,摸索出了一套较为固定的“双基”教学程序,教学效果也比较好。那么,基于今天对“双基”的认识,我们教学该怎么做呢? 二、“双基”教学方法也应与时俱进 我们认为,教师的“启发式”讲授仍然是“双基”数学教学的主要方法。根据教学内容适当采用以往常用的“精讲多练”、“变式练习”,以及现在较多使用的“自主探究”、“小组合作交流”的方法,也常常是有效的。 需要注意的是:“双基”的教学应该注重“理解和掌握”。《标准》中说:学生掌握数学知识,不能依赖死记硬背,而应以理解为基础,并在知识的应用中不断巩固和深化;在基本技能的教学中,不仅要使学生掌握技能操作的程序和步骤,还要使学生理解程序和步骤的道理。 所以,数学概念、定理和公式的教学,要注重来龙去脉、与相关数学知识之间的联系、与其他的学科知识之间的关联。特别是与学生日常生活、社会生活的联系。而不是仅仅记住这些表述。 我们知道,基本技能的形成和熟练,必须要有一定量的训练和重复,但是,这种训练不是僵化的训练,这种重复不是呆板的重复。尤其应该注意的是,为了达到“熟练”的程度,训练和重复应该掌握适当的“度”,否则物极必反。近年来,在习题训练方面,有些教师选编数学开放题进行教学,或者加强数学应用题的解题训练,由此开展数学“双基”的教学,应当得到提倡。 相对而言,教师对于“双基”的教学比较熟悉,但对“基本数学思想”和“基本数学活动经验”的实践较为缺乏。下面我们就聊聊这方面的内容。 三、以知识和技能为载体,引导学生感悟数学思想,积累数学活动经验 首先,数学思想不是单独存在的,而是融于数学知识、技能和方法之中的,而且数学思想的获得在不同的数学内容教学中通过提炼、总结、理解、应用等循环往复的过程。学生只有经历这样的过程,才能逐步“悟”出数学知识、技能中蕴涵的数学思想; 数学活动经验也是在学习和掌握知识、技能的活动过程中,通过经历观察、试验、猜测、验证、推理与交流、抽象概括、符号表示、运算求解、数据处理、反思与建构等活动方式才能够逐步积累的。 所以,我们提倡:以知识和技能为载体,引导学生感悟数学思想,积累数学活动经验。特别地,《标准》明确指出:综合与实践领域的学习应当成为帮助学生有效积累数学活动经验的主要途径。 有些结论不一定是老师给出的,最有价值的活动是老师在教学过程中让学生自己通过探究得到结论,因此在讲课的过程中,老师显得稍微“拙”一点不要紧,确切地说教师是学生学习的“合作者”,这样的话,老师一步步启发学生思考,最终让学生得到结论,这样的活动有利于学生获得活动经验,和创新意识的培养。 延伸问题:传统的技能训练方法中,哪些需要保持、哪些需要改进? 新课程标准的基本理念强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程".在初中数学教材中,模型无处不在.建立数学模型对于提高学生解题能力、解决实际问题的能力有着重要的作用.所以,在课堂教学中,教师要引导学生充分经历从数学原型到数学模型的创造过程,培养学生的“数学建模”能力。现结合本人教学实践谈谈几点感想: 首先利用课本知识的教学,在学生学习知识的过程中渗透数学建模的思想。例如认识比例的教学中,把图形的扩大、缩小与比例知识的学习联系起来,渗透数形结合的思想。 其次创设生活情节情景,引导学生抽象、概括、建立数学模型。探求问题解决的方法 使学生进一步体验数学思想方法。例如在教学连加连减时,创设连续飞来的蝴蝶情景,引导学生根据图形列出算式,总结概括出连加的计算顺序。 最后通过归纳总结提炼数学思想方法,拓展应用数学模型。 在课堂教学小结、单元复习时,适时对某种数学思想方法进行概括和强化,不仅可以使学生从数学思想方法的高度把握知识的本质和内在的规律,而且可使学生逐步体会数学思想方法的精神实质。 总之,作为教师在日常教学中,要认真发掘教材中隐含的数学思想方法,渗透到每一个环节中,使学生在探究学习中亲身经历、感受、理解。

热点内容
煤的历史 发布:2025-06-18 07:46:05 浏览:909
课堂教学效率 发布:2025-06-18 05:00:11 浏览:389
物理培优补差工作计划 发布:2025-06-18 04:45:06 浏览:773
南师教育 发布:2025-06-18 03:29:49 浏览:932
合肥航太电物理 发布:2025-06-18 02:33:21 浏览:104
四年级上册语文期中复习 发布:2025-06-18 01:54:42 浏览:168
篮球三步篮视频教学 发布:2025-06-18 01:52:28 浏览:596
全国二理科数学试卷 发布:2025-06-18 01:38:06 浏览:563
语文师徒结对活动记录表 发布:2025-06-18 01:33:16 浏览:84
美术经理 发布:2025-06-18 00:51:11 浏览:509