当前位置:首页 » 语数英语 » 数学分解法

数学分解法

发布时间: 2021-08-22 06:56:52

『壹』 数学因式分解法解方程详细过程

用因式分解法解一元二次方程的一般步骤:
一,将方程右边化为( 0) ,
二,方程左边分解为(两个 )因式的乘积,
三,令每个一次式分别为( 0)得到两个一元一次方程,
四,两个一元一次方程的解,就是所求一元二次方程的解。
举例:
1).9(2x+3)²-(2x-5)²=0
∴[3(2x+3)]²-(2x-5)²=0
∴(6x+9+2x-5)(6x+9-2x+5)=0
即(8x+4)(4x+14)=0
解得:x=-1/2或x=-7/2
∴x₁=-1/2,x₂=-7/2
2).14(4-x)²+9(x-4)-65=0
∵14(x-4)²+9(x-4)-65=0
∴[7(x-4)-13]*[2(x-4)+5]=0
∴(7x-41)(2x-3)=0
解得x=41/7或x=3/2
∴x₁=41/7,x₂=3/2
3.x²-2x+2a-a²=0
(x²-a²)-2(x-a)=0
(x-a)(x+a-2)=0
解得:x=a或x=2-a
∴x₁=a,x₂=2-a

『贰』 幼儿园数学分解法怎么

幼儿园数学分解教法如下:

1、利用食物分解。

2、如一篮水果有5个,一个放在一个盘子里,另外四个放在一个盘子里。

3、让孩子发现5能分成1和4。

4、同样1和4能组成5。

5、还有5能分成2和3,3和2,4和1。

(2)数学分解法扩展阅读:

数学教学方法对于激发学生学习数学的兴趣,实现数学教学目的,提高数学教学质量,都起着重要的作用。

常用的数学教学方法有:启发、讲解、谈话、练习、讨论、演示、实习、观察、复习等,其中,启发、讲解、谈话、练习等用得较多。当前国内外正在实验的数学教学方法有:发现、研究、自学辅导、程序教学、最优化教学、算法化教学、“读读、议议、讲讲、练练”等。

『叁』 数学因式分解的12种方法

因式分解的十二种方法
把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。因式分解的方法多种多样,现总结如下:
1、 提公因法
如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
例1、 分解因式x -2x -x(2003淮安市中考题)
x -2x -x=x(x -2x-1)
2、 应用公式法
由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。
例2、分解因式a +4ab+4b (2003南通市中考题)
解:a +4ab+4b =(a+2b)
3、 分组分解法
要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)
例3、分解因式m +5n-mn-5m
解:m +5n-mn-5m= m -5m -mn+5n
= (m -5m )+(-mn+5n)
=m(m-5)-n(m-5)
=(m-5)(m-n)
4、 十字相乘法
对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)
例4、分解因式7x -19x-6
分析: 1 -3
7 2
2-21=-19
解:7x -19x-6=(7x+2)(x-3)
5、配方法
对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
例5、分解因式x +3x-40
解x +3x-40=x +3x+( ) -( ) -40
=(x+ ) -( )
=(x+ + )(x+ - )
=(x+8)(x-5)
6、拆、添项法
可以把多项式拆成若干部分,再用进行因式分解。
例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)
解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)
=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)
=c(c-a)(b+a)+b(a+b)(c-a)
=(c+b)(c-a)(a+b)
7、 换元法
有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。
例7、分解因式2x -x -6x -x+2
解:2x -x -6x -x+2=2(x +1)-x(x +1)-6x
=x [2(x + )-(x+ )-6
令y=x+ , x [2(x + )-(x+ )-6
= x [2(y -2)-y-6]
= x (2y -y-10)
=x (y+2)(2y-5)
=x (x+ +2)(2x+ -5)
= (x +2x+1) (2x -5x+2)
=(x+1) (2x-1)(x-2)
8、 求根法
令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x )
例8、分解因式2x +7x -2x -13x+6
解:令f(x)=2x +7x -2x -13x+6=0
通过综合除法可知,f(x)=0根为 ,-3,-2,1
则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1)
9、 图象法
令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x ,x ,x ,……x ,则多项式可因式分解为f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x )
例9、因式分解x +2x -5x-6
解:令y= x +2x -5x-6
作出其图象,见右图,与x轴交点为-3,-1,2
则x +2x -5x-6=(x+1)(x+3)(x-2)
10、 主元法
先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。
例10、分解因式a (b-c)+b (c-a)+c (a-b)
分析:此题可选定a为主元,将其按次数从高到低排列
解:a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b)
=(b-c) [a -a(b+c)+bc]
=(b-c)(a-b)(a-c)
11、 利用特殊值法
将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。
例11、分解因式x +9x +23x+15
解:令x=2,则x +9x +23x+15=8+36+46+15=105
将105分解成3个质因数的积,即105=3×5×7
注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值
则x +9x +23x+15=(x+1)(x+3)(x+5)
12、待定系数法
首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。
例12、分解因式x -x -5x -6x-4
分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式。
解:设x -x -5x -6x-4=(x +ax+b)(x +cx+d)
= x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd
所以 解得
则x -x -5x -6x-4 =(x +x+1)(x -2x-4)

『肆』 一年级数学分解题15-9=15下面可分成和10,下面连着10下面连着9,怎么解

15可以分成5和10,10减9等于1,5加1等于6。

过程如下:

”15下面可分成?和10“表示15=5+10,方框内填5

”10下面连着9“表示10-9=1,连线下方框内应填1

”方框(5)下面连着方框(1)“表示5+1=6,最总结果是6 。

这道题主要考察的是“破十法”。

(4)数学分解法扩展阅读:

破十法:一种计算方法、当个位不够减时,就用10减去减数,剩下的数和个位上的数相加,即破十法、比如,11-3,说“1-3不够,还差2个,我们从10里拿出一个2就等8了。

破十法的计算是从减法的意义出发进行思考的,学生通过操作活动,能直观地理解算理、形成算法。可思考过程比较复杂,学生至少需要两步思考—先减再加。相比用数数的方法和想加算减的方法显得比较难理解,主要在于学生已有的数数计算习惯。

『伍』 什么是数学分解法

刚刚帮别人回答过这道题目,不知道是不是你问的。
(1)提公因式法
①公因式:各项都含有的公共的因式叫做这个多项式各项的~.

②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.

am+bm+cm=m(a+b+c)
③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的.如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的.
(2)运用公式法
①平方差公式:.a^2-b^2=(a+b)(a-b)
②完全平方公式:a^2±2ab+b^2=(a±b)^2

※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.
(3)分组分解法

分组分解法:把一个多项式分组后,再进行分解因式的方法.

分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式.
(4)拆项、补项法

拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的
原则进行变形.
※多项式因式分解的一般步骤:
①如果多项式的各项有公因式,那么先提公因式;
②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;
④分解因式,必须进行到每一个多项式因式都不能再分解为止。
(5)配方法:对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
(6)换元法:有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。
(7)待定系数法:首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。

『陆』 数学分解法怎么写

刚刚帮别人回答过这道题目,不知道是不是你问的。

(1)提公因式法

①公因式:各项都含有的公共的因式叫做这个多项式各项的~.

②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.

am+bm+cm=m(a+b+c)

③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的.如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的.

(2)运用公式法

①平方差公式:.a^2-b^2=(a+b)(a-b)

②完全平方公式:a^2±2ab+b^2=(a±b)^2


※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.

(3)分组分解法

分组分解法:把一个多项式分组后,再进行分解因式的方法.

分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式.

(4)拆项、补项法拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的
原则进行变形.

※多项式因式分解的一般步骤:

①如果多项式的各项有公因式,那么先提公因式;

②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;

③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;

④分解因式,必须进行到每一个多项式因式都不能再分解为止。

(5)配方法:对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。

(6)换元法:有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。

(7)待定系数法:首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。

『柒』 如何教孩子数学分解法

1.制定预习计划。2.严格遵守。3.测试检测。
预习计划包含在作息计划内,坚持把好的作息养成习惯起决定性作用,假期的预习不同于开学后的预习。假期的预习锻炼增长孩子的自学能力。开学后的预习非常重要,首先安排固定时间,通常是家庭作业完成后每科择20分钟左右时间,内容要衔接住第二天所开新课上。例如数学,预习要达到熟悉知识内容、能遇到未知难点,尝试做题。一堂课40分钟,孩子很难全堂的时间注意力集中,通过预习孩子能知道自己要学会、要听明白的是什么,由被灌改为想听,这样能减少反感度、增加兴趣,易于养成抓住重点,初步形成脑子里有重点知识脉络的方法。
辅导:
学校有作息时间,校外家庭时间也必须有作息时间。无论设定什么时候写作业,首先都要根据作业量设定时间段。在段内时间写完了才出现检查,发现问题,辅导等行为。
家长会的,必须批不改,有错让孩子自己回课本复习解决,家长给予指导的是以锻炼孩子掌握知识为重、锻炼孩子自我能力为重,单就一题纠缠不利于以后发展,以后数百数千次的考试中孩子遇到的都应该是新题,只能孩子用自己的知识运用能力解决战斗。
家长不会的,要掌握孩子学习进程,掌握住孩子书包里有答案的测试题,虽然不会做题讲题,但是能批结果,就能知道孩子各章节的水准,就好提示孩子的侧重点。

『捌』 数学分解法学前班

学前阶段数学认知拓展

如果认为学会100以内加减法,就算数学厉害了,我觉得有些狭隘。算术是研究数和数的运算的,然而数学要比算术广泛得多。简单地说,数学包括所有一切,但又比这一切更为广泛。数与形是两大基石,下面关于学前阶段数学认知拓展的建议。

① 数

→ 生活中数无处不在,形式也不同,去拓宽孩子数的认知范围吧。

今天坐的公交车是几路车?325路,这串数字倒过来是多少呢?

② 形

多去用眼观察,动手触碰,动脑思考,鼓励孩子提出问题,建立初步的空间几何认知。小朋友们,你们玩过积木吗?想想这些形状有什么特点,能说出它们得不同或相同之处吗?

通过,找差别类题目训练孩子观察力,通过搭积木,拼拼图,七巧板等培养图形认知以及图形组合能力。

③ 其他认知

认识左右,上下,前后等方位。认识奇数偶数,认识轻重,认识时间,认识镜面对称,观察物体,认识钱币,认识长短,大小等等。随时随地都是课堂,只要家长肯上心。

『玖』 数学做题如何步骤分解

数学的解题方法是随着对数学对象的研究的深入而发展起来的。教师钻研习题、精通解题方法,可以促进教师进一步熟练地掌握中学数学教材,练好解题的基本功,提高解题技巧,积累教学资料,提高业务水平和教学能力。

下面介绍的解题方法,都是初中数学中最常用的,有些方法也是中学教学大纲要求掌握的。

1、配方法

所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法

因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法

换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理

一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法

在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。

『拾』 一年级数学5分解式

答: 提问的意思表达的不够清楚,可能是问数字5的几种分解方法,则回答如下:
分解成两个不相同的数,可有两种分法
5 <¹₄ (即 5=1+4,分解成1和4); 5 <²₃(即5=2+3,分解成2和3);
如果分解成几个数 并且允许有重复的数,则分解方法就有多个,比如
5=1+1+3, 5=1+2+2, 5=1+1+1+2, 5=1+1+1+1+1。

热点内容
天才的英语 发布:2025-05-19 19:40:53 浏览:547
2016继续教育考试答案 发布:2025-05-19 17:57:30 浏览:128
学生喜欢的教师 发布:2025-05-19 17:55:49 浏览:778
白凉粉是什么原料做的 发布:2025-05-19 17:32:44 浏览:381
2017年四川数学卷 发布:2025-05-18 00:16:14 浏览:719
中国社会科学院暑期 发布:2025-05-17 23:31:35 浏览:687
简单广场舞教学 发布:2025-05-17 20:37:48 浏览:13
二级学科博士点 发布:2025-05-17 19:10:15 浏览:125
永兴教师招聘 发布:2025-05-17 19:10:15 浏览:664
高中教师资格证考试用书 发布:2025-05-17 16:29:17 浏览:52