数学美论文
① 建筑中的数学之美 论文
建筑中的数学之美
这个问题,
,能搞定的,
② “数学之美”论文,可以从哪些角度思考呢~~
从数学美的性质,特征,反映形式等方面来写会容易些,可查的资料多。也容版易找。权
在国内,有这样一些描述:“数学美是一种人的本质力量通过宜人的数学思维结构的呈现”、“数学美是数学创造的自由形式”、“数学美是真与善的统一”、“数学美的本质在于序”等等。
数学美的客观性
数学美的社会性
数学美的物质性
数学美的宜人性
数学美的主要内容一般反映在简明美、对称美、奇异美、序列美等方面。
③ 谁知道《数学美》的论文
中国古代著名哲学家庄子说:“判天地之美,析万物之理。”日本物理学家,诺贝尔奖得主汤川秀树把这两句话印在他的书的扉页上,作为现代物理的指导思想及最高美学原则。这两句话也是我们学习与研究数学的指导思想和最高美学原则。通过本讲座,我们将展现数学精神的魅力,阐述数学推理之妙谛。但数学之美的面纱是慢慢揭开的,数学推理的妙谛是逐渐展现的。这涉及到科学与艺术的关系,而艺术与科学的联系是天然的。实际上,一切科学、哲学、数学和艺术的研究对象不外乎,天———大宇宙;地,自然界及其中一切动植物———中宇宙;人———最精密、最完善的小宇宙。既然科学和艺术的研究对象是相同的,所以它们必然是相辅相成的两个领域。著名物理学家李政道说得好:“科学和艺术是不可分割的,正像一枚硬币的两面。它们共同的基础是人类的创造力,它们追求的目标都是真理的普遍性。”
顺便指出,数学本身就是美学的四大构件之一。这四大构件是,史诗、音乐、造型(绘画、建筑等)和数学。因而数学教育是审美素质教育的一部分。
数学追求的目标是,从混沌中找出秩序,使经验升华为规律,将复杂还原为基本。所有这些都是美的标志。但长期以来,我们忽视对数学的美的教育。讲述数学之美有利于培养鉴赏力。值得注意的是,在历史上,重大课题的选择与结果的评价,美学价值是一个重要的标准。例如,正电子的猜想便是狄拉克从数学对称美的角度大胆预言出来的。他唯一的根据就是从电子运动的方程得出正负两个解。几年之后,这个预言得到了物理学家的证实。狄拉克后来说:“理论物理学家把数学美的要求当作信仰的行为,它没有什么使人非信不可的理由,但过去已经证明了这是有益的目标。”
为什么把美看得这样重要?因为人类的生存是按照美的原则来构建世界的。发现美、认识美和运用美,这是人类生存的要求。反过来,美又是人类进步的动力。追求美的实质就是追求自然界的数学美。人类一步一步地揭示自然界的数学规律,人类就越了解我们所处的宇宙的美。希腊箴言说,美是真理的光辉。因而追求美就是追求真。英国诗人济慈写道:
美就是真,
真就是美—这就是
你所知道的,
和你应该知道的。
法国数学家阿达玛说:“数学家的美感犹如一个筛子,没有它的人永远成不了数学家。”可见,数学美感和审美能力是进行一切数学研究和创造的基础。
那么,什么是美呢?美有两条标准:一、一切绝妙的美都显示出奇异的均衡关系(培根),二、“美是各部分之间以及各部分与整体之间固有的和谐。”(海森堡)。这是科学和艺术共同追求的东西。希尔伯特说:“我们无比热爱的科学把我们团结在一起。它像一座鲜花盛开的花园展现在我们眼前。在这个花园熟悉的小道上,你可以悠闲地观赏,尽情地享受,不需费多大力气,与心领神会的伙伴一起更是如此。但我们更喜欢寻找幽隐的小道,发现许多意想不到的令人愉快的美景;当其中一条小道向我们显示出这一美景时,我们会共同欣赏它,我们的欢乐也达到尽善尽美的境地。”
对美的追求起源于古代。毕达哥拉斯发现,在相同张力作用下的弦,当它们的长度成简单的整数比时,击弦发出的声音听起来是和谐的。正是基于这种认识,毕达哥拉斯学派定出了音律。顺便指出,我国在古代也以同样的方式确定了音律。这是人类第一次确立了可理解的东西与美之间的内在联系,是人类历史上一个真正重大的发现。牛顿的万有引力公式,爱因斯坦的质能转换公式,既是美,又是真。
数学的美表现在什么地方呢?表现在简单、对称、完备、统一和谐和奇异。
为什么我们这样重视美?并把它作为数学发展的动力与价值标准的一个重要因素呢?因为人们常常忽视它。人们只重视实用方面、科学方面,而对于审美情趣、智力挑战、心灵的愉悦诸方面,要么不予承认,即使承认,也认为只不过是次要的因素。但事实上,实用的、科学的、美学的和哲学的因素共同促进了数学的形成。把这些作出贡献、产生影响的因素除去任何一个,或抬高一个而贬低另一个都是违反数学发展史的。
④ 以(数学中的美)为题目的论文
什么是数学美呢?它的本质是什么呢?从国内的研究来看,有这样一些描述:“数学美是一种人的本质力量通过宜人的数学思维结构的呈现”,“数学美是数学创造的自由形式”,“数学美是真与善的统一”,“数学美的本质在于序”……等等。
数学美的客观性:即指客观存在于数学领域中的审美对象是不以审美主体是否承认、是否意识到为转移的,尽管因审美主体的主观条件的不同,并不是所有的或特定的数学美都能为审美主体所感知,但这并不能改变这数学美的存在。
数学美的社会性:数学美是一种社会现象,因为数学美是对人而言的。数学家通过数学实践活动(特别是数学理论创造的实践活动),使自己的本质力量“对象化”了,或者说“自然人化”了。所谓的“人化”就是人格化,即自然物具有人的本质的印记,实质上就是社会化。这种社会化的内容正是数学美的内容,它是数学美产生的本原。
数学美的物质性:数学美的内容――人的本质力量必须通过某种形式呈现出来,必需要有附体,数学美的这种形式或附体,即数学美的物质属性。
数学美的宜人性:即数学美形式应该使审美主体感到愉悦。审美主体的愉悦性,一方面自然是由审美主体的心理和生理的原因造成的,另一方面,也是最根本的,还在于对象本身是具有足以引起主体愉悦的属性和条件。简言之,数学美的形式必须与人的认识、人类心灵深处的渴望的本质上相吻合。
首先要提到的当推古希腊时期的毕达哥拉斯,毕达哥拉斯学派第一次提出了“美是和谐与比例”的观点,认为宇宙的和谐是由数决定的,他运用这一美学思想形成了点子数(即形数)理论;并以所谓亲和数与完全数来反映体现宇宙和谐的“亲和”与“完全”。
作为古希腊唯心主义哲学的主要代表人物,柏拉图认为数学的美是一种纯抽象的美,尽管柏拉图的理念世界是抽象的世界,但他却第一次提出了理念世界是“真善美的统一”的见解。
17世纪,笛卡儿所创立的解析几何是数学史上极其杰出的成果,它使几何与代数得到完美的统一,充分揭示了数学的协调美和统一美。
18世纪,该世纪著名数学家欧拉的数学美思想在其《无穷小分析引论》中得到生动的体现,这是一部极其优美的数学专著。
19世纪,有人称19世纪的数学是“革命的数学”,数学美学思想在这一时期也极为活跃,拉普拉斯、高斯、哈密尔顿、黎曼等人在这方面都作出了贡献。
20世纪,数学家们开始自觉地运用数学美学方法,总结数学审美标准,探讨数学发明中的审定心理,其突出代表人物是19世纪末及20世纪初的庞加莱及被誉为“超人的天才”的冯·诺伊曼,还有研究数学领域中的发明心理学的法国著名数学家雅克·阿达玛。
数学美的表现形式
简单性 是数学美的基本表现形式之一。作为反映现实世界量及其关系规律的数学来说,那种最简洁的数学理论最能给人以美的享受。
简单性又是数学发现与创造中的美学因素之一。最简单的例子便是代数运算中之乘法与幂的运算的引进是源于避免重复的加法运算和重复的乘法运算:
统一性 是指部分与部分,部分与整体之间的内在联系或共同规律所呈现出来的和谐、协调、一致。
数学美中的统一性在数学中有很多体现。数学推理的严谨性和矛盾性体现了和谐;表现在一定意义上的不变性,反映了不同对象的协调一致。例如,数的概念的一次次扩张和数系的统一,运算法则的不变性;几何中的圆幂定理是相交弦定理、切、割线定理的统一形式。
对称性 是指组成某一事物或对象的两个部分的对等性。数学形式和结构的对称性、数学命题关系中的对偶性、数学方法中的对偶原理方法都是对称美的自然表现。毕达哥拉斯说:“一切立体图形中,最美的是球形,一切平面图形中最美的是圆形。”因为这两种形体在各个方向上都是对称的。此外,象正多边形、正多面体、旋转体和圆锥曲线等都给人以完善、对称的美感。在代数中轮换对称式表明了代数式中字母可以互换的对称关系。在数学解题方面,对称方法和反射方法往往使问题解决的过程简捷明快。
秩序性,就其愿意而言,秩序是事物在空间或时间上排列的先后、也可作为层次等等的理解。数学中的“秩序”具有极其重要的、决定性的意义,意大利数学家G·卡雷里认为,“数学是而且将总是一门被看作关系系统的序的科学。当涉及形式时,它从不会与它们的实质有关,而仅仅与这些形式之间可陈述的联系有关。单一元素只能在使之有序化的系统联系之中才得到决定并因而获得意义。”
奇异性,奇异性是指数学中原有的习惯法则和统一格局被新的事物(思想、方法、理论)所突破,或出乎意料、超乎想象的结果所带来的新颖和奇特。
数学美学方法的特点
1、直觉性,审美直觉是数学直觉中的一种重要类型,数学美学方法主要还是一种受审美直觉所驱动,而作出美学考虑的方法。正因为如此,数学美学方法的成功运用与主体的直觉能力就有很大关系。这一特点也说明,运用它所得到的结论,最终还要通过逻辑方法的检验才能成立。
2、情感性
数学美学方法的运用是建立在审美主体的数学美感之上的,和任何美感一样,人们对于数学的美感也具有强烈的感情色彩。愉悦、平和、明快、困惑、兴趣盎然、心满意足乃至于激动与惊异……数学美学方法总是是伴随着这种种感情体验,这与逻辑方法所具有纯粹理性形成了鲜明的对比。
3、选择性
数学美学方法是自觉地依据美学的考虑来作出选择的方法,它是“非常自足的、美学的、不受(近乎不受)经验的影响。”这种选择性使美学方法并不成为解决数学问题或获得数学发现的具体方法,而是一种确定方向、原则的策略方法。这种选择性是导致数学发现发明的指路灯,因此,它又使数学美学方法具有创造性。
4、评价性
数学美学方法常常表现为对已获数学成果的一种鉴赏与评价,一般来讲,逻辑方法的运用以问题的解决为方法的终结,而美学方法不仅关注问题是否解决,更主要是考虑问题的解决优美?前者着意于数学问题的“真”,后者着意于“真、善、美的统一”。庞加莱指出:“这并非华而不实的作风”,数学发展的历史已表明,美学方法的评价性对于“数学理论的富有成果性”来讲是不可或缺的。
数学美学方法运用的基本途径
1、增强审美自我意识,善于发现数学美因
在数学活动中,活动者的审美意识是客观存在的审美对象在活动者头脑中的能动反映,一般意义上也称为美感。它包括审美兴趣、审美倾向、审美能力、审美理想、审美感受等等。美感尽管表现为主观的,但它最终是来源于数学活动实践,数学中丰富的美的形式和美的因素(简称为美因)是美感产生的客观基础。只有在美因促使主体美感产生的条件下,主体才能作出美学的考虑。因此,善于发现数学美因,“识得庐山真面目”,是运用数学美学方法的前提。
2、在数学审美活动中,注意逻辑方法与直觉方法的结合。
美感的产生一般而言是直觉的,但这并不意味理性思维与审美无关,美学研究表明,理性思维在审美中是有重大作用的(数学审美更是如此)。在数学活动中,发获得真正的审美要,必须把逻辑思维方法与直觉方法结合起来。逻辑思维在数学审美中可以起到规范知觉、想象的趋向作用,前者渗透溶化于后者之中,才使审美感受不是一种初级的感性知觉,或一堆空幻的主观想象,而是对数学对象本质的某种能动的反映。
3、在数学认识、评价及创造过程中,自觉地以数学审美标准作指导。
审美教育的特征
1、和谐性:“和谐”是美学的一条重要的原理。中学数学教学中有许多内容是和谐性教育的好题材,和谐性也有助于开拓解题思路,培养学生解题的能力。
2、形象性:美育是一种形象性的教育,它总是通过审美对象的鲜明形象来诱发和感染教育者的。数学中直观教具、精美图形以及数形转化的方法都能产生审美教育中的形象性。
3、情感性:美育通过审美对象来激发人的审美情感,受教育者将有一定情绪体验,得到一定的情绪陶冶和心理满足,若能通过富有艺术性的教学活动激发起学生情感的涟漪,那无异于为学习添加了催化剂。
4、自由性:美育给人以自由感,人对客观事物的感受只有进入自由境界才能产生美感,因此,在审美教育中,要注意学生心理和生理的发展规律,善于引导和启发。
5、鲜明性:审美教育伴随着情感的激动,使受教育者不知不觉地在心灵中留下鲜明的印象,有时,即使知识被遗忘,而那触动情感的形象,却终生难忘。
⑤ 关于数学之美的论文咋写啊跪求…给个建议啊…>…<~
数学之美在以下几个方面:
(1)应用之美
(2)简洁之美
(3)思维之美
⑥ 求一篇关于数学之美的作文1000字
“Enjoy every day” 享受每一天,这句《泰坦尼克》中的Jack的经典台词真可谓一语道破生活的真谛——把生活看作是一个享受的过程,真正发现生活的可爱之处。孔子曰:“学有三境——知学者不如好学者,好学者不如乐学者。” 而这个乐又何尝不是学生学习的最大动力呢?
许多人认为数学是一门抽象的科学,不在于付出多少努力,而在于你的智力的高低。我却不以为然,数学,是一切自然中不可缺少的部分,它不需要华丽的词藻来修饰,也不需要人们过多的夸奖,它是一中既朴实又高超的智慧。
要想学好数学,第一步离不开勤奋,勇于实践的精神,有人把数学比作万宝山。然而它的大门却不像游览胜地那样,可以让人门自由进出,对一些学习上的懦夫懒汉来说,面对金光四射的数学大门,却犹如隔窗观花,可望不可及。至于那些畏惧崎岖山路的人,他一生只是在万宝山徘徊空叹。只有那些敢于奋进的勇士,才有可能打开数学之门,满载而归。
数学,作为一门逻辑性极强的学科,其性质决定了她是神秘的、深奥的,她比起其他的学科来似乎更枯燥一些、无味一些。但她又的的确确的是美丽的、耐人寻味的,她是思想与思想的大胆碰撞,是智慧与智慧的平等交流,更是情感与情感的浸润融合。 无尽的数学知识正像辽阔的海洋,那大海深处蕴含着一个五彩缤纷的世界。让我们一起带着孩子们畅游其中,为这无垠海洋中数不尽的奇珍的美而陶醉,甚而我们或者我们的学生会有幸步入龙宫,见到更加奇伟怪丽、五彩斑斓的景象,一窥数学的美境。哥德巴赫猜想激励着人们不断去探索或研究,它的证明将会给人带来无尽的惊奇、无穷的乐趣;数学史上的许多高峰也正等待后人们去攀登。山越高,路才越奇,越奇才越有惊美的发现。
平淡中见新奇、新奇中才有艺术。明明在“意料之外”但又在“情理之中”。未曾料到才能引人人胜,峰回路转,柳暗花明,这也正是数学的魅力、数学的美。
我不是擅长格律的诗人,但我愿意谱写享受数学的绝妙诗歌。我不是擅长丹青的画师,但我愿意为享受数学涂抹一笔亮色。我不是擅长音律的舞者,但我愿意为享受数学狂舞亦歌。我不是热衷探险的勇者,但我愿意在享受数学的漫漫道路上不断探索……
数学知识像海洋那样辽阔,像大山那样宏伟。一个人无论天资多么高,精力多么充沛,毅力多么顽强,学习条件多么优越,也不可能把所有数学知识学到手。有的同学总想学到一切,他们希望一串串熟了的葡萄旁边又开放着朵朵鲜花,可是,事实告诉我们:这是不可能的呀!我们必须从第一步起,一步一个脚印,脚塌实地的走下去,才有可能度过那个辽阔的大海、攀上那座宏伟的大山。
数学知识的学习,单靠认真听讲、死记硬背是不行的。相传有一个人巧遇一位仙翁,仙翁点石成金送给他,但他不要金子,而要仙翁点石成金的指头。这个人为什么要指头呢?因为他懂得,不管送自己多少金子,金子总是有限的,但如果有了点石成金的指头,那就可以随心所欲了。我常常给学生讲这个故事,但我却启发学生:仙翁的指头固然好,但那毕竟是别人的。如果我们拿来使用是否灵呢?可见,我们更应该学到仙翁的点金之术。古人说:“受之以鱼,只供一饭之需,教人已渔,则终身受用无穷”,也就是这个道理。
⑦ 数学与美的论文
数 学 与 美
中国古代著名哲学家庄子说:“判天地之美,析万物之理。”日本物理学家,诺贝尔奖得主汤川秀树把这两句话印在他的书的扉页上,作为现代物理的指导思想及最高美学原则。这两句话也是我们学习与研究数学的指导思想和最高美学原则。通过本讲座,我们将展现数学精神的魅力,阐述数学推理之妙谛。但数学之美的面纱是慢慢揭开的,数学推理的妙谛是逐渐展现的。这涉及到科学与艺术的关系,而艺术与科学的联系是天然的。实际上,一切科学、哲学、数学和艺术的研究对象不外乎,天———大宇宙;地,自然界及其中一切动植物———中宇宙;人———最精密、最完善的小宇宙。既然科学和艺术的研究对象是相同的,所以它们必然是相辅相成的两个领域。著名物理学家李政道说得好:“科学和艺术是不可分割的,正像一枚硬币的两面。它们共同的基础是人类的创造力,它们追求的目标都是真理的普遍性。”
顺便指出,数学本身就是美学的四大构件之一。这四大构件是,史诗、音乐、造型(绘画、建筑等)和数学。因而数学教育是审美素质教育的一部分。
数学追求的目标是,从混沌中找出秩序,使经验升华为规律,将复杂还原为基本。所有这些都是美的标志。但长期以来,我们忽视对数学的美的教育。讲述数学之美有利于培养鉴赏力。值得注意的是,在历史上,重大课题的选择与结果的评价,美学价值是一个重要的标准。例如,正电子的猜想便是狄拉克从数学对称美的角度大胆预言出来的。他唯一的根据就是从电子运动的方程得出正负两个解。几年之后,这个预言得到了物理学家的证实。狄拉克后来说:“理论物理学家把数学美的要求当作信仰的行为,它没有什么使人非信不可的理由,但过去已经证明了这是有益的目标。”
为什么把美看得这样重要?因为人类的生存是按照美的原则来构建世界的。发现美、认识美和运用美,这是人类生存的要求。反过来,美又是人类进步的动力。追求美的实质就是追求自然界的数学美。人类一步一步地揭示自然界的数学规律,人类就越了解我们所处的宇宙的美。希腊箴言说,美是真理的光辉。因而追求美就是追求真。英国诗人济慈写道:
美就是真,
真就是美—这就是
你所知道的,
和你应该知道的。
法国数学家阿达玛说:“数学家的美感犹如一个筛子,没有它的人永远成不了数学家。”可见,数学美感和审美能力是进行一切数学研究和创造的基础。
那么,什么是美呢?美有两条标准:一、一切绝妙的美都显示出奇异的均衡关系(培根),二、“美是各部分之间以及各部分与整体之间固有的和谐。”(海森堡)。这是科学和艺术共同追求的东西。希尔伯特说:“我们无比热爱的科学把我们团结在一起。它像一座鲜花盛开的花园展现在我们眼前。在这个花园熟悉的小道上,你可以悠闲地观赏,尽情地享受,不需费多大力气,与心领神会的伙伴一起更是如此。但我们更喜欢寻找幽隐的小道,发现许多意想不到的令人愉快的美景;当其中一条小道向我们显示出这一美景时,我们会共同欣赏它,我们的欢乐也达到尽善尽美的境地。”
对美的追求起源于古代。毕达哥拉斯发现,在相同张力作用下的弦,当它们的长度成简单的整数比时,击弦发出的声音听起来是和谐的。正是基于这种认识,毕达哥拉斯学派定出了音律。顺便指出,我国在古代也以同样的方式确定了音律。这是人类第一次确立了可理解的东西与美之间的内在联系,是人类历史上一个真正重大的发现。牛顿的万有引力公式,爱因斯坦的质能转换公式,既是美,又是真。
数学的美表现在什么地方呢?表现在简单、对称、完备、统一和谐和奇异。
为什么我们这样重视美?并把它作为数学发展的动力与价值标准的一个重要因素呢?因为人们常常忽视它。人们只重视实用方面、科学方面,而对于审美情趣、智力挑战、心灵的愉悦诸方面,要么不予承认,即使承认,也认为只不过是次要的因素。但事实上,实用的、科学的、美学的和哲学的因素共同促进了数学的形成。把这些作出贡献、产生影响的因素除去任何一个,或抬高一个而贬低另一个都是违反数学发展史的。
谈数学与美
数学组 庞艳霞
说起美育,总觉得那是属于音、体、美及文学范畴的。
数学,作为一门自然科学,与美似乎没有多大联系。其实,数学蕴含着其它科学难以表达的美。
一、数学的美美在思维。
数学,一开始就以抽象的形式出现。有些同学说数学枯燥,除了概念就是公式,毫无感情色彩。针对这种情况,通过数学概念的教学,让学生领会到数学思维美所在。
例如讲椭圆概念时,首先让学生举出椭圆的实例,然后问:所有这些椭圆上的点都有什么共同的特点?同学们很有兴趣地想这个问题。这时,把模型拿出来演示,大家聚精会神地看,最后恍然大悟,总结出椭圆定义。同时告诉他们在所举的例子中,椭圆内的两个定点都能找到。使他们认识到数学概念能透过事物现象深入本质,使人们对客观世界有统一的认识。
这样的概念教学,学生把学习数学当成很有乐趣的一件事,感觉抽象不是数学的缺点,而是其优点。只有抽象,才能把事物搞得更清楚;也只有抽象,才能使所含的内容更为丰富。
二、数学的美美在作用。
数学是研究“数量关系”与“空间形式”的科学。
哪儿有数,哪儿有形,哪儿就少不了用数学。数学,在改造人类生存环境方面起着很大的作用。由于数学能揭示事物的普遍规律,就有一法多用性和一理多用性,因而已渗透到各门学科中,人们研究任何一门自然学科都离不开数学的基本原理。
具体到课堂上,向学生渗透数学的作用美时,要向学生阐明 ,每个数学概念都不是人们凭空想象出来的,而是来自我们周围的客观世界,使学生确实感受到数学来源于物质世界。
例如,讲圆柱和棱柱的表面积和体积公式时,教师可问:“大树干为什么是圆柱形而不是棱柱形呢?”学生会对这个问题特别感兴趣,并能说出各种各样的理由,这时教师画图讲解:当等高的圆柱和棱柱表面积相等时,演算得出 :圆柱的体积最大,所以圆柱形树干和其它柱体相比,在等面积条件下,能够向树枝输送更多的养分。
由此看出,大自然是最伟大的,她总是以最合理的方式生存。于是,同学们又联想到生活中见到的管道为什么是圆柱形,因为它用料最少且输送量最大。
这说明数学不仅有用才产生,还因为它有用才发展。
三、数学的美美在形式。
数学具有美的、和谐的形式,具有对称、平衡、比例、规则性和秩序性等特征。而这一切特征在数学中都有具体的表现。
著名的美学规律“黄金分割”把一条线段分成长短两节,使短节和长节的比恰好等于长节与全长的比。实践表明这一比例是最美妙的比例。美神维纳斯的美,关键一点是她的身材比例恰好符合黄金分割律。
由于数学是使人产生美感的基础,人们在认识世界的过程中。都有意无意的应用数学知识。在我们日常生活和艺术活动中,随处可见有数学的形式美。我们的房屋建筑、我们用的桌椅、甚至茶杯,都具有优美的几何形状,既美观又实用。在教学中适当的给学生讲讲与数学形式美有关的小知识,不仅能拓宽他们的视野,还能激发他们的学习兴趣。
所以,数学也是一种美,学习数学更是一种美的享受。
⑧ 有关数学逻辑之美的论文
谈起数学,人们很自然会联想到小学数学里的算术,中学的代数、平面几何、三角函数、立体几何等等。在人们的心目中,算术似乎不是数学。数学推理周密,判断准确,给人以严格的逻辑思维训练,而这种演绎的思维方法有时甚至比学到的数学知识还要重要,无怪乎一些人在学过平面几何以后,深深地被它的内部结构的美迷住了,连爱因斯坦也感叹地说:“世界第一次目睹了一个逻辑体系的奇迹,这个逻辑体系如此精密一步一步推进,以致它的每一个命题都是绝对不容质疑的——我这里说的是欧几里得几何。推理的这种可赞叹的胜利,使人类理智获得了为取得以后的成就所必需的信心。”数学,果真如人们理解的那样没有演绎逻辑推理吗?其实不然。什么是数学?数学分为两类:一类是研究现实世界的数量关系的,一类是研究空间形式的。数学一数和形的性质、变化、变换和它们的关系作为研究对象,探索它们的有关规律,给出对对象性质的系统分析和描述。这里所说的数量关系就包括了数学,数学同样有很严密的逻辑推理。例如:
【例1】一个班有48人,班主任在班会上问:“谁做完语文作业?”这时有37人举手,又问:“谁做完数学作业?”这时有42人举手,最后问:“谁语文和数学都没有做完?”这时没有人举手。你算算看:这个班语文和数学都做完的人有多少?
【例2】求1+2+3+…+99+100=?
例1中要求“语文、数学都做完的有多少人?”“已知语文做完的有37人、做完数学的有42人,没有人语文、数学都没有做完。”可知37人做完语文作业中包含了一部分数学作业做完的,42人做完数学作业中也包含了一部分做完语文作业的。所以37+52比48多的部分就是语文和数学都做完的。
此题渗透了集合论的思想方法。教师在讲此类的题型时,有必要将这种思维方法告诉给学生,作为培养学生素质的一个方面,教会他们养成严密思考推理的良好思维方式,逐步形成严密的逻辑思维。
例2中要求1+2+3…+99+99+100=?
此题硬算当然可以算出来,但是教师必须引导学生发现其中的规律:1+100=101,2+99=101,3+98=101……其中有100÷2=50个101,所以:
1+2+3…+99+100=101×50=5050
此题渗透了数列中前几项和的思想,教师要有意识培养学生观察、分析、归纳的能力。
可以说,逻辑推理五十不在数学里体现出来,就连人名理解的仅算算而已的加、减、乘、除其运算法则也是通过严密推理归纳出来的:
如:324+137
=(300+20+4)+(100+30+7)
=(300+100)+(20+30)+(4+7)
(若干个数的和加上若干个数的和的性质)
=(300+100)+(20+30)+(1+3+7)
=(300+100)+(20+30+10)+1
(加法集合的推广)
=(400+60+1)
=461
单就数而言,本无所谓审美的问题,但是当数与数之间存在逻辑联系,情况就不一样了。数学中的每一个问题都有逻辑联系,数与数之间的组合、运算、转换、变化都是因逻辑关系而产生的。可以说,有了逻辑推理,数字就变得多姿多彩,奥妙无穷了。一方面,这时数学问题本身因一定的条件而产生的规律,另一番方面,在逻辑推理中解决数学问题,显示了人人的本质力量,显示了数学逻辑所体现的数之美,显示了无穷的审美价值。为此,教师必须抓住逻辑推理这个关键来进行教学运算,让学生体会到数字之间的“诗情画意”,在愉快的审美享受中掌握好数学知识。
转贴于论文联盟 http://www.lwlm.com
⑨ 从学习立体几何谈数学美论文一篇
“哪里有数学,哪里就有美!”——古希腊数学家普洛克拉斯。 一提到美,人们总是不禁想到“绕梁三日”的音乐之美;或是想到“巧夺天工”的艺术之美,或是想到“江山如此多娇”的自然之美……然而,现在的绝大多数学生都不会把高中数学和美联系到一起,这也在一定程度上说明我们数学美学教育的欠缺。据调查分析,现在的学生对数学的兴趣是建立在他们优异的初中数学成绩上,而进入高中后,数学难度骤增,导致多数学生的数学成绩骤降,从而一下子失去了对数学的热爱。由爱转恨来的如此的突然就是由于他们对数学是一种“假”的兴趣。而在数学教育中渗透美学教育,能激发学生对数学的“真”的兴趣,而这样的兴趣正是学生最好的老师。 人的爱美天性在青少年时期表现尤为突出,数学教师应当抓住这个最佳时期,不失时机地向学生揭示数学之美,从而愉悦他们的心境,激发他们的兴趣,陶冶他们的性情,塑造他们的灵魂,进而让学生领悟数学美,欣赏数学美,创造数学美。大数学家克莱因认为:“音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。” 那什么是数学美呢?罗素说:“数学,不但拥有真理,而且也具有至高的美,真正雕刻的美,是一种冷而严肃的美!”数学美不同于绘画,音乐等艺术之美,也不同于鲜花,彩虹等自然之美,它是一种科学力量的感性与理性的显现,是一种人的本质力量通过数学思维结构的呈现,这是一种真实的美,是反映客观世界并能改造客观世界的科学美。数学美不仅有形式的和谐美,而且有内容的严谨美;不仅有具体的公式、定理美,而且有结构、整体美;不仅有语言的简明、精巧美,而且有方法与思路的奇异、统一美;不仅有逻辑、抽象美,而且有创造、应用美。而作为新一代的教师,正是要不断的去挖掘数学美,不断的去传授数学美,让学生感受到数学美,从而激发学生学习数学的兴趣。 新课标背景下,更是要求教师要在数学教育过程中实施美学教育,培养学生的审美能力,从而形成美的心灵,美的灵魂。而如何将美学教育贯彻到数学教学中呢,笔者在近些年的教学过程中,对此感触颇多。 一:简洁的数学美 爱因斯坦说过:“美,本质上终究是简单性。”而数学中的简洁美简直是无处不在。欧拉公式——“V+F-E=2”堪称简洁美的典范。世间的凸多面体无穷无尽,但是他们的面数,顶点数,棱数都符合这个简单的公式。此外,为大家熟知的勾股定理,用一个简单的二次式“ ”描述了全体直角三角形的直角边和斜边的关系。微积分基本定理更是用一个简洁的式子“ ”描述了定积分和原函数之间的关系。纵观整个数学史,伟大的数学家们无不为了追求更加简洁更加通用的定理而付出毕生精力。其中一些像是哥德巴赫猜想这样的富含简洁美的猜想正被无数的数学爱好者们努力攻破着。 我国著名数学家陈省身说过:“数学世界中,简单性和优雅性是压倒一切的。”作为新一代的教育者的我们,必须善于挖掘教材中的简洁美,适时的总结数学公式的简洁与通用,让他们感受到数学的简洁美,从而抓住他们的心。 二.统一的数学美 浩瀚宇宙,包罗万物。宇宙中的天体无穷无尽,而探究宇宙的奥秘一直是人类的追求梦想。面对无数的天体运动,人们研究出它们运行的轨迹或是椭圆,或是双曲线,或是抛物线,而数学上用仅用一句话就能将其统一起来:“到定点的距离与它到定直线的距离比是常数e的轨迹。当时,轨迹是椭圆;当时,轨迹是抛物线;当时,轨迹是双曲线。”数学中的统一美可见一斑。此外,立体几何中,台体的表面积和体积公式更是将椎体和柱体的表面积和体积公式和谐的统一起来。三角函数中,“万能公式”更是将正弦、余弦、正切统一的用正切来表示。何其统一啊,何其美啊! 而统一美的在教学中尤为重要,教师不仅要善于发现总结统一美,更要及时的将其向学生传授,正是在各种各样的统一美的介绍和学习过程中,让学生进行分析比较,从而从本质上突破难点重点,感受数学的统一美。 三.奇异的数学美 毕达哥拉斯说:“凡物皆数。”他将自然界和数和谐统一起来了。有一次,他的朋友问他:“我和你交朋友,和数有关吗?”他回答说:“朋友是你灵魂的倩影,要象220与284一样亲密。”望着困惑不解的人们,毕达哥拉斯解释道: 220的全部真因子1、2、4、5、10、11、20、22、44、55、110之和为284;而284的全部真因子1、2、4、71、142之和又恰为220。这就是亲密无间的亲和数。真正的朋友也象它们那样。奇异的数学美让听者无不折服,至今还有不少学者对亲和数津津乐道。此外,他还用完美数——所有的真因子和等于本身的数来形容美满的婚姻。高中数学里,圆锥曲线部分,离心率e的值是0.9999的时候,轨迹还是一个椭圆;而当它变成1时,轨迹却是抛物线;当它再变成1.0001时,轨迹又变成了双曲线。丁点的变化,却导致图像的截然不同,真是奇异啊。数学中确实是存在着许多奇异美,而正要通过我们的悉心挖掘,让学生感受到数学的神奇。 四.自然的数学美 新课标提出:“数学源自生活,并应用于生活。”生活中的数学处处可见,例如,黄金分割数0.618, 它是最和谐的比例关系,具有很高的美学价值。人的肚脐高度和人体总高度之比接近等于0.618;主持人主持节目时,站在舞台的黄金分割点位置,不显得呆板,声音传播效果最好;在建筑造型上,黄金分割处布置腰线或装饰物,则可使整幢大楼显得雄伟雅致。蜜蜂房呈六角形,角度也很精确,钝角 109 ° 32 ′,这样的巢不但节省材料,而且结实坚固,令人类工程师惊叹不已!更另人惊奇的是蜜蜂还知道两点间的最短距离,蜜蜂在花间随意来去采集花蜜后它知道取最直接的路线回到蜂房。 而善于利用自然界以及生活中的数学实例,展示数学的美和自然生活的完美结合,往往能让学生感受到数学的实用性,让学生真正的对数学产生兴趣。 有人说:如果把数学当作诗集来读,那么摆在面前的任何一本数学教程,就会突然从一堆死气沉沉的公式变成洋溢着和谐、充满着绝妙和浸透了对称美的一部诗集。只要我们把数学美融于数学的教学中,那么不但我们的授课变的轻松自然,而且学生也会如释重负,不断提高对数学的兴趣,使教与学达到和谐、完美、统一。 诚然,数学中蕴含的美是博大精深的,数学美不仅以上几点,它几乎贯穿于数学的方方面面。此外数学定理公式的对称性,相似性,和谐性,传递性等都是美的体现;有时候甚至是数学问题都展示着美,解体方法也散发着美的味道。当然数学不像是一首好曲子或是一件旷世的艺术品一样能一眼品出它的美,特别对课业繁重的学生而言,他们受阅历水平,基础知识,数学训练等影响,很难把各色的数学美都品味出来。这就要求教师们需要精心研究,不断从相对枯燥的教材中去发现美,并不失时机的加以引导和培养。展望未来的教育趋势,美育教学和数学教学的结合是必要的,必然的,不仅仅为了唤醒学生日益减弱的数学兴趣,更是为了提高学生的审美能力,从而培养下一代的创造美的能力。