数学定理证明
❶ 用数学定理证明
n^3-(n-1)^3=3n^2-3n+1
(n-1)^3-(n-2)^3=3n^2-9n+7=3(n-1)^2-3(n-1)+1
........
2^3-1^3=3*2^2-3*2+1
累加
把1^3移去等号右边又1^3=3*1^2-3*1+1
n^3=3[1+4+9+````+n^2]-3(1+2+``+n)+n
1+4+9+````+n^2=[n^3-3n(n+1)/2-n]/3==[n(n+1)(2n+1)]/6
n得3
4
5
6
·····次方的和都是这样求的
❷ 高中数学公式定理证明
数学公式
抛物线:y = ax *+ bx + c
就是y等于ax 的平方加上 bx再加上 c
a > 0时开口向上
a < 0时开口向下
c = 0时抛物线经过原点
b = 0时抛物线对称轴为y轴
还有顶点式y = a(x+h)* + k
就是y等于a乘以(x+h)的平方+k
-h是顶点坐标的x
k是顶点坐标的y
一般用于求最大值与最小值
抛物线标准方程:y^2=2px
它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2
由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py
圆:体积=4/3(pi)(r^3)
面积=(pi)(r^2)
周长=2(pi)r
圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
(一)椭圆周长计算公式
椭圆周长公式:L=2πb+4(a-b)
椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
(二)椭圆面积计算公式
椭圆面积公式: S=πab
椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。
椭圆形物体 体积计算公式椭圆 的 长半径*短半径*PAI*高
三角函数:
两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)
倍角公式
tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
·万能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
cotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
1^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系 x1+x2=-b/a x1*x2=c/a 注:韦达定理
判别式 b2-4a=0 注:方程有相等的两实根
b2-4ac>0 注:方程有两个不相等的个实根
b2-4ac<0 注:方程有共轭复数根
公式分类 公式表达式
圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h
正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2
圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l
弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s*h 圆柱体 V=pi*r2h
图形周长 面积 体积公式
长方形的周长=(长+宽)×2
正方形的周长=边长×4
长方形的面积=长×宽
正方形的面积=边长×边长
三角形的面积
已知三角形底a,高h,则S=ah/2
已知三角形三边a,b,c,半周长p,则S= √[p(p - a)(p - b)(p - c)] (海伦公式)(p=(a+b+c)/2)
和:(a+b+c)*(a+b-c)*1/4
已知三角形两边a,b,这两边夹角C,则S=absinC/2
设三角形三边分别为a、b、c,内切圆半径为r
则三角形面积=(a+b+c)r/2
设三角形三边分别为a、b、c,外接圆半径为r
则三角形面积=abc/4r
已知三角形三边a、b、c,则S= √{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求积” 南宋秦九韶)
| a b 1 |
S△=1/2 * | c d 1 |
| e f 1 |
【| a b 1 |
| c d 1 | 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC
| e f 1 |
选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!】
秦九韶三角形中线面积公式:
S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3
其中Ma,Mb,Mc为三角形的中线长.
平行四边形的面积=底×高
梯形的面积=(上底+下底)×高÷2
直径=半径×2 半径=直径÷2
圆的周长=圆周率×直径=
圆周率×半径×2
圆的面积=圆周率×半径×半径
长方体的表面积=
(长×宽+长×高+宽×高)×2
长方体的体积 =长×宽×高
正方体的表面积=棱长×棱长×6
正方体的体积=棱长×棱长×棱长
圆柱的侧面积=底面圆的周长×高
圆柱的表面积=上下底面面积+侧面积
圆柱的体积=底面积×高
圆锥的体积=底面积×高÷3
长方体(正方体、圆柱体)
的体积=底面积×高
平面图形
名称 符号 周长C和面积S
正方形 a—边长 C=4a
S=a2
长方形 a和b-边长 C=2(a+b)
S=ab
三角形 a,b,c-三边长
h-a边上的高
s-周长的一半
A,B,C-内角
其中s=(a+b+c)/2 S=ah/2
=ab/2?sinC
=[s(s-a)(s-b)(s-c)]1/2
=a2sinBsinC/(2sinA)
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等
24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(sss) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论 2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48定理 四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理 n边形的内角的和等于(n-2)×180°
51推论 任意多边的外角和等于360°
52平行四边形性质定理1 平行四边形的对角相等
53平行四边形性质定理2 平行四边形的对边相等
54推论 夹在两条平行线间的平行线段相等
55平行四边形性质定理3 平行四边形的对角线互相平分
56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60矩形性质定理1 矩形的四个角都是直角
61矩形性质定理2 矩形的对角线相等
62矩形判定定理1 有三个角是直角的四边形是矩形
63矩形判定定理2 对角线相等的平行四边形是矩形
64菱形性质定理1 菱形的四条边都相等
65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66菱形面积=对角线乘积的一半,即s=(a×b)÷2
67菱形判定定理1 四边都相等的四边形是菱形
68菱形判定定理2 对角线互相垂直的平行四边形是菱形
69正方形性质定理1 正方形的四个角都是直角,四条边都相等
70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71定理1 关于中心对称的两个图形是全等的
72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
74等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75等腰梯形的两条对角线相等
76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
77对角线相等的梯形是等腰梯形
78平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边
81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半
82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 l=(a+b)÷2 s=l×h
83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d
84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d
85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b
86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例
87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91 相似三角形判定定理1 两角对应相等,两三角形相似(asa)
92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)
94 判定定理3 三边对应成比例,两三角形相似(sss)
95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
97 性质定理2 相似三角形周长的比等于相似比
98 性质定理3 相似三角形面积的比等于相似比的平方
99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等
于它的余角的正弦值
100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
101圆是定点的距离等于定长的点的集合
102圆的内部可以看作是圆心的距离小于半径的点的集合
103圆的外部可以看作是圆心的距离大于半径的点的集合
104同圆或等圆的半径相等
105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
107到已知角的两边距离相等的点的轨迹,是这个角的平分线
108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
109定理 不在同一直线上的三点确定一个圆。
110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112推论2 圆的两条平行弦所夹的弧相等
113圆是以圆心为对称中心的中心对称图形
114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116定理 一条弧所对的圆周角等于它所对的圆心角的一半
117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径
119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
121①直线l和⊙o相交 d<r
②直线l和⊙o相切 d=r
③直线l和⊙o相离 d>r
122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
123切线的性质定理 圆的切线垂直于经过切点的半径
124推论1 经过圆心且垂直于切线的直线必经过切点
125推论2 经过切点且垂直于切线的直线必经过圆心
126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
127圆的外切四边形的两组对边的和相等
128弦切角定理 弦切角等于它所夹的弧对的圆周角
129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等
131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的
两条线段的比例中项
132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割
线与圆交点的两条线段长的比例中项
133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
134如果两个圆相切,那么切点一定在连心线上
135①两圆外离 d>r+r ②两圆外切 d=r+r
③两圆相交 r-r<d<r+r(r>r)
④两圆内切 d=r-r(r>r) ⑤两圆内含d<r-r(r>r)
136定理 相交两圆的连心线垂直平分两圆的公共弦
137定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139正n边形的每个内角都等于(n-2)×180°/n
140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141正n边形的面积sn=pnrn/2 p表示正n边形的周长
142正三角形面积√3a/4 a表示边长
143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为
360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144弧长计算公式:l=nπr/180
145扇形面积公式:s扇形=nπr2/360=lr/2
146内公切线长= d-(r-r) 外公切线长= d-(r+r)
147等腰三角形的两个底脚相等
148等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合
149如果一个三角形的两个角相等,那么这两个角所对的边也相等
150三条边都相等的三角形叫做等边三角形
❸ 一个数学定理证明
解:连接DE并倍长到P.连接BP,FP,EF.
在△DEC和△PEB中
∵DE=EP,∠BEP=∠DEC,BE=EC.
∴△DEC≌△PEB(SAS).
∴CD=BP.S△DEC=S△PEB.
又∵DE平行且等于1/2AC,DE=EP.
∴EP平行且等于1/2AC.
即EP平行且等于AF.
∴四边形AEPF为平行四边形(对边平行且相等的四边形为平行四边形)
∴AE=FP.S△EFP=S△AEF.
这样△ABC的三条中线CD,BF,AE就构成了△BFP.
∵BF为中线,平分△ABC面积.
∴S△BAF=S△BFC.
又∵EF为△BFC中线,平分△BFC面积.
∴S△BEF=S△EFC=1/4S△ABC.
又∵CD为△ABC中线,平分△ABC面积.
∴S△ADC=S△BDC.
又∵DE平分△BDC面积.
∴S△BDE=S△DEC=1/4S△ABC.
∴S△BEP=S△DEC=1/4S△ABC.
∵AE为△ABC中线,平分△ABC面积.
∴S△BAE=S△AEC.
又∵EF平分△AEC.
∴S△AEF=S△EFC.
∴S△AFE=S△EFP=1/4S△ABC
∵S△BFP=S△BEF+S△BEP+S△EFP
=1/4S△ABC+1/4S△ABC+1/4S△ABC
=3/4S△ABC
也可以是证明如下:
记原来三角形为ABC
三边上中线分别为AD BE CF
三中线交与一点记为G
延长AD至M使DM=DG
连接CM
容易得到
CM=BG=2/3 BE
MG=AG=2/3 AD
CG=2/3 CF
则由三中线为线段的三角形面积就是三角形CMG面积的9/4
而三角形CMG面积=三角形CMD+三角形CDG=三角形CDG+三角形BDG=三角形CBG=1/3 三角形ABC
即三中线为线段的三角形面积=9/4三角形CMG=9/4*(1/3 三角形ABC)=3/4三角形ABC
❹ 数学定理的推导问题
sin(A+B)=sinAcosB+cosAsinB证明
如图
我们先来证明cos(A-B)=cosAcosB+sinAsinB
在标准圆中.AB为直径.长度为1
由圆的性质可知角ADB和角ACB为90度.另做一条垂直线CE于AD上.
令角A为角BAC
角B为角DAC
则角(A-B)为角BAD
证明如下:
cos(A-B)=AD/AB=AD
①cosA=AC/AB=AC
②sinA=BC/AB=BC
③cosB=AE/AC
④sinB=CE/AC
联立①③可知
cosB=AE/cosA
即cosAcosB=AE.
所以要证明cos(A-B)=cosAcosB+sinAsinB即要证明AD=AE+sinAsinB
又AD=AE+ED
即只要证明sinAsinB=ED即可
即要证明BC*CE/AC=ED
即要证明CE/AC=ED/BC
注意到三角形CEF相似于三角形BDF(三个角相同),则可知道ED/BC=EF/CF(相似三角形定理)
所以要证明命题.只需要证明CE/AC=EF/CF
注意到角ECF+角ECA=90度并且角ECA+角CAE=90度可知角ECF=角EAC.又角CEF=角AEC=90度.可推出三角形AEC相似于三角形CEF
即可以证明CE/AC=EF/CF
即证明了cos(A-B)=cosAcosB+sinA+sinB
由sinθ=cos(-θ)
得:sin(α+β)=cos[-(α+β)]
=cos[(-α)-β]
=cos(-α)cosβ+sin(-α)sinβ
又∵cos(-α)=sinα
sin(-α)=cosα
∴sin(α+β)=sinαcosβ+cosαsinβ
❺ 有关数学的定理公式以及证明
去网络吧!
❻ 哪些数学定理在直觉上是对的,但证明起来很困难
郭敦顒回答:
每个大于4的偶数都是两个素数之和,这就是哥德巴赫猜想,写成数学表达式是:
偶数2N>4,PⅠ、PⅡ都是素数(在中小学将素数称为质数),则
2N=PⅠ+PⅡ,PⅠ≤PⅡ≤N
很多数学家也将其简记为(1+1)或“1+1”。
——摘自郭敦顒《哥德巴赫猜想证明》(2009年发表于博客中国,为网络快迅收录)——
证明哥德巴赫猜想是很困难的,虽然有不少人自己宣称证明了哥德巴赫猜想,但均尚未得到数学权威人士的认可。
常有人问“1+1等于几?”
一,1+1=2。
二,为什么1+1=2?
1+1=2这属于公理,属于公理系统的。孩子掰着手指开始学识数——
1+1=2,2+1=3,3+1=4,4+1=5,6+1=7,7+1=8,8+1=9,9+1=10。
双手的手指都用完了,正好是10,这就是十进位制的来源。
自然数的皮亚诺公设与加法定义:
卡尔·亨佩尔在其论文《论数学真理的本性》中介绍了作为数学基础的皮亚诺的公理系统——
现在考察一个公设系统,从它可以导出自然数的整个算术.这个系统是由意大利数学家和逻辑学家皮亚诺(1858—1932)设计的.…术语“数” 则专指自然数0,1,2,3….自然数n的后继有时简称n′,它用来指按自然顺序紧跟n的那个自然数.皮亚诺系统包含下列五个公设:
P⒈ 0是一个数.
P⒉ 任何数的后继是一个数.
P⒊ 不存在有同一后继的两个数.
P⒋ 0不是任何数的后继.
P⒌ 如果P是一个性质,使(a)0具有性质P,(b)当一个数n具有性质P时,
n的后继也具有性质P,那么每一个数都具有性质P.
1+1=2,而不能是1+1=3。
1+1=2,2是1的后继是唯一的,若1+1=3,则3是1的后继,这样1的后继是3和2,这不符合“不存在有同一后继的两个数”的公理,所以1+1=2,1+1不能等于3或其它别的数值。
三,另外1+1加了引号“”成为“1+1”,是特有所指的,那是一个代号,是指偶数的哥德巴赫猜想——每个不小于6的偶数都是二个素数之和.例如,6=3+3又如,24=11+13等等.这需要证明。
这一命题是一七四二年,哥德巴赫写信给欧拉时提出的。
但不少人把作为哥德巴赫猜想代号的“1+1”与普通义意上1+1=2混为一谈,产生了误解,这是需要纠正的。
在二进制中,1+1=10。
❼ 数学定理证明
设圆内接四边形的一边为a,另一边为b
则对角线r=根号(a方+b方)
所以a方+b方=根号(a方+b方)x根号(a方+b方)
a方+b方=a方+b方
所以圆内接四边形对角线长度的乘积等于对边长度乘积之和
❽ 数学上有哪些还未给出证明的定理
1.P(多项式算法)问题对NP(非多项式算法)问题
在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook)于1971年陈述的。
2.霍奇(Hodge)猜想
二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。
3.庞加莱(Poincare)猜想
如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即黎曼(Riemann)假设 有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2,3,5,7,等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼蔡塔函数z(s$的性态。著名的黎曼假设断言,方程z(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。变得无比困难,从那时起,数学家们就在为此奋斗。
4.黎曼(Riemann)假设
有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2,3,5,7,等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼蔡塔函数z(s$的性态。著名的黎曼假设断言,方程z(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。
5.杨-米尔斯(Yang-Mills)存在性和质量缺口
量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。特别是,被大多数物理学家所确认、并且在他们的对于 “夸克”的不可见性的解释中应用的“质量缺口”假设,从来没有得到一个数学上令人满意的证实。在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念。
6.纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性
起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶-斯托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托克斯方程中的奥秘。
7.贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想
数学家总是被诸如x^2+y^2=z^2那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上,正如马蒂雅谢维奇(Yu.V.Matiyasevich)指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方法是否有一个整数解。当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解),相反,如果z(1)不等于0,那么只存在有限多个这样的点。
8.几何尺规作图问题
这里所说的“几何尺规作图问题”是指做图限制只能用直尺、圆规,而这里的直尺是指没有刻度只能画直线的尺。“几何尺规作图问题”包括以下四个问题 1.化圆为方-求作一正方形使其面积等於一已知圆; 2.三等分任意角; 3.倍立方-求作一立方体使其体积是一已知立方体的二倍。 4.做正十七边形。 以上四个问题一直困扰数学家二千多年都不得其解,而实际上这前三大问题都已证明不可能用直尺圆规经有限步骤可解决的。第四个问题是高斯用代数的方法解决的,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。
9.哥德巴赫猜想
公元1742年6月7日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想: (a) 任何一个>=6之偶数,都可以表示成两个奇质数之和。 (b) 任何一个>=9之奇数,都可以表示成三个奇质数之和。 从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。
10.四色猜想
1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。” 1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。 1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。四色猜想的计算机证明,轰动了世界。
❾ 初中数学所有定理的证明
三角形三条边的关系 定理:三角形两边的和大于第三边 推论:三角形两边的差小于第三边 三角形内角和 三角形内角和定理 三角形三个内角的和等于180° 推论1 直角三角形的两个锐角互余 推论2 三角形的一个外角等于和它不相邻的两个内角和 推论3 三角形的一个外角大雨任何一个和它不相邻的内角 角的平分线 性质定理 在角的平分线上的点到这个角的两边的距离相等 几何语言: ∵OC是∠AOB的角平分线(或者∠AOC=∠BOC) PE⊥OA,PF⊥OB 点P在OC上 ∴PE=PF(角平分线性质定理) 判定定理 到一个角的两边的距离相等的点,在这个角的平分线上 几何语言: ∵PE⊥OA,PF⊥OB PE=PF ∴点P在∠AOB的角平分线上(角平分线判定定理) 等腰三角形的性质 等腰三角形的性质定理 等腰三角形的两底角相等 几何语言: ∵AB=AC ∴∠B=∠C(等边对等角) 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 几何语言: (1)∵AB=AC,BD=DC ∴∠1=∠2,AD⊥BC(等腰三角形顶角的平分线垂直平分底边) (2)∵AB=AC,∠1=∠2 ∴AD⊥BC,BD=DC(等腰三角形顶角的平分线垂直平分底边) (3)∵AB=AC,AD⊥BC ∴∠1=∠2,BD=DC(等腰三角形顶角的平分线垂直平分底边) 推论2 等边三角形的各角都相等,并且每一个角等于60° 几何语言: ∵AB=AC=BC ∴∠A=∠B=∠C=60°(等边三角形的各角都相等,并且每一个角都等于60°) 等腰三角形的判定 判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等 几何语言: ∵∠B=∠C ∴AB=AC(等角对等边) 推论1 三个角都相等的三角形是等边三角形 几何语言: ∵∠A=∠B=∠C ∴AB=AC=BC(三个角都相等的三角形是等边三角形) 推论2 有一个角等于60°的等腰三角形是等边三角形 几何语言: ∵AB=AC,∠A=60°(∠B=60°或者∠C=60°) ∴AB=AC=BC(有一个角等于60°的等腰三角形是等边三角形) 推论3 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半 几何语言: ∵∠C=90°,∠B=30° ∴BC= AB或者AB=2BC(在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半) 线段的垂直平分线 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 几何语言: ∵MN⊥AB于C,AB=BC,(MN垂直平分AB) 点P为MN上任一点 ∴PA=PB(线段垂直平分线性质) 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 几何语言: ∵PA=PB ∴点P在线段AB的垂直平分线上(线段垂直平分线判定) 轴对称和轴对称图形 定理1 关于某条之间对称的两个图形是全等形 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 定理3 两个图形关于某直线对称,若它们的对应线段或延长线相交,那么交点在对称轴上 逆定理 若两个图形的对应点连线被同一条直线垂直平分,那这两个图形关于这条直线对称 勾股定理 勾股定理 直角三角形两直角边a、b的平方和,等于斜边c的平方,即 a2 + b2 = c2 勾股定理的逆定理 勾股定理的逆定理 如果三角形的三边长a、b、c有关系,那么这个三角形是直角三角形 四边形 定理 任意四边形的内角和等于360° 多边形内角和 定理 多边形内角和定理n边形的内角的和等于(n - 2)·180° 推论 任意多边形的外角和等于360° 平行四边形及其性质 性质定理1 平行四边形的对角相等 性质定理2 平行四边形的对边相等 推论 夹在两条平行线间的平行线段相等 性质定理3 平行四边形的对角线互相平分 几何语言: ∵四边形ABCD是平行四边形 ∴AD‖BC,AB‖CD(平行四边形的对角相等) ∠A=∠C,∠B=∠D(平行四边形的对边相等) AO=CO,BO=DO(平行四边形的对角线互相平分) 平行四边形的判定 判定定理1 两组对边分别平行的四边形是平行四边形 几何语言: ∵AD‖BC,AB‖CD ∴四边形ABCD是平行四边形 (两组对边分别平行的四边形是平行四边形) 判定定理2 两组对角分别相等的四边形是平行四边形 几何语言: ∵∠A=∠C,∠B=∠D ∴四边形ABCD是平行四边形 (两组对角分别相等的四边形是平行四边形) 判定定理3 两组对边分别相等的四边形是平行四边形 几何语言: ∵AD=BC,AB=CD ∴四边形ABCD是平行四边形 (两组对边分别相等的四边形是平行四边形) 判定定理4 对角线互相平分的四边形是平行四边形 几何语言: ∵AO=CO,BO=DO ∴四边形ABCD是平行四边形 (对角线互相平分的四边形是平行四边形) 判定定理5 一组对边平行且相等的四边形是平行四边形 几何语言: ∵AD‖BC,AD=BC ∴四边形ABCD是平行四边形 (一组对边平行且相等的四边形是平行四边形) 矩形 性质定理1 矩形的四个角都是直角 性质定理2 矩形的对角线相等 几何语言: ∵四边形ABCD是矩形 ∴AC=BD(矩形的对角线相等) ∠A=∠B=∠C=∠D=90°(矩形的四个角都是直角) 推论 直角三角形斜边上的中线等于斜边的一半 几何语言: ∵△ABC为直角三角形,AO=OC ∴BO= AC(直角三角形斜边上的中线等于斜边的一半) 判定定理1 有三个角是直角的四边形是矩形 几何语言: ∵∠A=∠B=∠C=90° ∴四边形ABCD是矩形(有三个角是直角的四边形是矩形) 判定定理2 对角线相等的平行四边形是矩形 几何语言: ∵AC=BD ∴四边形ABCD是矩形(对角线相等的平行四边形是矩形) 菱形 性质定理1 菱形的四条边都相等 性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 几何语言: ∵四边形ABCD是菱形 ∴AB=BC=CD=AD(菱形的四条边都相等) AC⊥BD,AC平分∠DAB和∠DCB,BD平分∠ABC和∠ADC (菱形的对角线互相垂直,并且每一条对角线平分一组对角) 判定定理1 四边都相等的四边形是菱形 几何语言: ∵AB=BC=CD=AD ∴四边形ABCD是菱形(四边都相等的四边形是菱形) 判定定理2 对角线互相垂直的平行四边形是菱形 几何语言: ∵AC⊥BD,AO=CO,BO=DO ∴四边形ABCD是菱形(对角线互相垂直的平行四边形是菱形) 正方形 性质定理1 正方形的四个角都是直角,四条边都相等 性质定理2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 中心对称和中心对称图形 定理1 关于中心对称的两个图形是全等形 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称 梯形 等腰梯形性质定理 等腰梯形在同一底上的两个角相等 几何语言: ∵四边形ABCD是等腰梯形 ∴∠A=∠B,∠C=∠D(等腰梯形在同一底上的两个角相等) 等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 几何语言: ∵∠A=∠B,∠C=∠D ∴四边形ABCD是等腰梯形(在同一底上的两个角相等的梯形是等腰梯形) 三角形、梯形中位线 三角形中位线定理 三角形的中位线平行与第三边,并且等于它的一半 几何语言: ∵EF是三角形的中位线 ∴EF= AB(三角形中位线定理) 梯形中位线定理 梯形的中位线平行与两底,并且等于两底和的一半 几何语言: ∵EF是梯形的中位线 ∴EF= (AB+CD)(梯形中位线定理) 比例线段 1、 比例的基本性质 如果a∶b=c∶d,那么ad=bc 2、 合比性质 3、 等比性质 平行线分线段成比例定理 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例 几何语言: ∵l‖p‖a (三条平行线截两条直线,所得的对应线段成比例) 推论 平行与三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行与三角形的第三边 垂直于弦的直径 垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧 几何语言: ∵OC⊥AB,OC过圆心 (垂径定理) 推论1 (1) 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 几何语言: ∵OC⊥AB,AC=BC,AB不是直径 (平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧) (2) 弦的垂直平分线过圆心,并且平分弦所对的两条弧 几何语言: ∵AC=BC,OC过圆心 (弦的垂直平分线过圆心,并且平分弦所对的两条弧) (3) 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 几何语言: (平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧) 推论2 圆的两条平分弦所夹的弧相等 几何语言:∵AB‖CD 圆心角、弧、弦、弦心距之间的关系 定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距也相等 推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等 圆周角 定理 一条弧所对的圆周角等于它所对的圆心角的一半 推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直角 推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 圆的内接四边形 定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角 几何语言: ∵四边形ABCD是⊙O的内接四边形 ∴∠A+∠C=180°,∠B+∠ADB=180°,∠B=∠ADE 切线的判定和性质 切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 几何语言:∵l ⊥OA,点A在⊙O上 ∴直线l是⊙O的切线(切线判定定理) 切线的性质定理 圆的切线垂直于经过切点半径 几何语言:∵OA是⊙O的半径,直线l切⊙O于点A ∴l ⊥OA(切线性质定理) 推论1 经过圆心且垂直于切线的直径必经过切点 推论2 经过切点且垂直于切线的直线必经过圆心 切线长定理 定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角 几何语言:∵弦PB、PD切⊙O于A、C两点 ∴PA=PC,∠APO=∠CPO(切线长定理) 弦切角 弦切角定理 弦切角等于它所夹的弧对的圆周角 几何语言:∵∠BCN所夹的是 ,∠A所对的是 ∴∠BCN=∠A 推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 几何语言:∵∠BCN所夹的是 ,∠ACM所对的是 , = ∴∠BCN=∠ACM 和圆有关的比例线段 相交弦定理:圆内的两条相交弦,被焦点分成的两条线段长的积相等 几何语言:∵弦AB、CD交于点P ∴PA·PB=PC·PD(相交弦定理) 推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项 几何语言:∵AB是直径,CD⊥AB于点P ∴PC2=PA·PB(相交弦定理推论) 切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆焦点的两条线段长的比例中项 几何语言:∵PT切⊙O于点T,PBA是⊙O的割线 ∴PT2=PA·PB(切割线定理) 推论 从圆外一点因圆的两条割线,这一点到每条割线与圆的焦点的两条线段长的积相等 几何语言:∵PBA、PDC是⊙O的割线 ∴PT2=PA·PB(切割线定理推论)