当前位置:首页 » 历物理化 » 化学历史

化学历史

发布时间: 2020-11-19 19:53:24

❶ 求化学发展史论文

化 学 发 展 史

( 化工学院 x x x)

摘要:从公元前1500年到公元1650年,炼丹术士和炼金术士们,在皇宫、在教堂、在自己的家里、在深山老林的烟熏火燎中,为求得长生不老的仙丹,为求得荣华富贵的黄金,开始了最早的化学实验。记载、总结炼丹术的书籍,在中国、阿拉伯、埃及、希腊都有不少。这一时期积累了许多物质间的化学变化,为化学的进一步发展准备了丰富的素材。这是化学史上令我们惊叹的雄浑的一幕。后来,炼丹术、炼金术几经盛衰,使人们更多地看到了它荒唐的一面。化学方法转而在医药和冶金方面得到了正当发挥。在欧洲文艺复兴时期,出版了一些有关化学的书籍,第一次有了“化学”这个名词。英语的chemistry起源于alchemy,即炼金术。chemist至今还保留着两个相关的含义:化学家和药剂师。这些可以说是化学脱胎于炼金术和制药业的文化遗迹了。
关键词:燃素化学;量子论;晶体化学

自从有了人类,化学便与人类结下了不解之缘。钻木取火,用火烧煮食物,烧制陶器,冶炼青铜器和铁器,都是化学技术的应用。正是这些应用,极大地促进了当时社会生产力的发展,成为人类进步的标志。今天,化学作为一门基础学科,在科学技术和社会生活的方方面面正起着越来越大的作用。从古至今,伴随着人类社会的进步,化学历史的发展经历了哪些时期呢?
远古的工艺化学时期。这时人类的制陶、冶金、酿酒、染色等工艺,主要是在实践经验的直接启发下经过多少万年摸索而来的,化学知识还没有形成。这是化学的萌芽时期。

一、化学的来由

化学的英文词为Chemistry,法文Chimie,德文Chemie,它们都是从一个古字、即拉丁字chemia,希腊字Xηwa(Chamia),希伯莱字Chaman或Haman,阿拉伯字Chema或Kema,埃及字Chemi演化而来的.它的最早来源难以查考.从现存资料看,最早是在埃及第四世纪的记载里出现的.所以有人认为可以假定是从埃及古字Chemi来的,不过这个名字的意义很晦涩,有埃及、埃及的艺术、宗教的迷惑、隐藏、秘密或黑暗等意义。其所以有这些意义,大概因为埃及在西方是化学记载诞生的地方,也是古代化学极为发达的地方,尤其是在实用化学方面。例如,埃及在十一朝代进已有一种雕刻表示一些工人下在制造玻璃,可见至少在公元前2500年以前,埃及已知道玻璃的制造方法了。再从埃及出土的木乃伊看,可知在公元前一、二千年时已精于使用防腐剂和布帛染色等技术。所以古人用埃及或埃及的艺术来命名“化学”。至于其它几种意义,可能因为古人认为化学是一种神奇和秘密的事业以及带有宗教色彩的缘故。
中国的化学史当然也是毫不逊色的。大约5000-11000年前,我们已会制作陶器,3000多年前的商朝已有高度精美的青铜器,造纸、磁器、火药更是化学史上的伟大发明。在十六、十七世纪时,中国算得上是世界最先进的国家。“化学”二字我国在1856年开始使用。最早出现在英国传教士韦廉臣在1856年出版的《格物探原》一书中。

二、化学的几个发展阶段

远古的工艺化学时期。这时人类的制陶、冶金、酿酒、染色等工艺,主要是在实践经验的直接启发下经过多少万年摸索而来的,化学知识还没有形成。这是化学的萌芽时期。
炼丹术和医药化学时期。从公元前1500年到公元1650年,炼丹术士和炼金术士们,在皇宫、在教堂、在自己的家里、在深山老林的烟熏火燎中,为求得长生不老的仙丹,为求得荣华富贵的黄金,开始了最早的化学实验。记载、总结炼丹术的书籍,在中国、阿拉伯、埃及、希腊都有不少。这一时期积累了许多物质间的化学变化,为化学的进一步发展准备了丰富的素材。这是化学史上令我们惊叹的雄浑的一幕。后来,炼丹术、炼金术几经盛衰,使人们更多地看到了它荒唐的一面。化学方法转而在医药和冶金方面得到了正当发挥。在欧洲文艺复兴时期,出版了一些有关化学的书籍,第一次有了“化学”这个名词。。
燃素化学时期。从1650年到1775年,随着冶金工业和实验室经验的积累,人们总结感性知识,认为可燃物能够燃烧是因为它含有燃素,燃烧的过程是可燃物中燃素放出的过程,可燃物放出燃素后成为灰烬。
定量化学时期,既近代化学时期。1775年前后,拉瓦锡用定量化学实验阐述了燃烧的氧化学说,开创了定量化学时期。这一时期建立了不少化学基本定律,提出了原子学说,发现了元素周期律,发展了有机结构理论。所有这一切都为现代化学的发展奠定了坚实的基础。
科学相互渗透时期,既现代化学时期。二十世纪初,量子论的发展使化学和物理学有了共同的语言,解决了化学上许多悬而未决的问题;另一方面,化学又向生物学和地质学等学科渗透,使蛋白质、酶的结构问题得到逐步的解决。
这里主要讲述近二百多年来的化学史故事。这是化学得到快速发展的时期,是风云变幻英雄辈出的期。让我们一道去体验当年化学家所经历的艰难险阻,在近代化学史峰回路转的曲折历程中不倦跋涉,领略他们拨开重重迷雾建立新理论、发现新元素、提出新方法时的无限风光。

三、化学学科在探索中成长

化学的发展可以说是日新月异,尤其是它的边缘学科或者说是它的分支学科,譬如生物化学、物理化学、晶体化学等等,令人目不暇接。就眼下炒得过热的基因工程、克隆技术以及共轭电场论等,更是令人眼花缭乱。而古往今来,有多少化学家为化学的发展做出了难以估量的贡献。你想了解他们吗?化学名人风采将带您走近他们。
燃素说的影响 。可燃物如炭和硫磺,燃烧以后只剩下很少的一点灰烬;致密的金属煅烧后得到的锻灰较多,但很疏松。这一切给人的印象是,随着火焰的升腾,什么东西被带走了。当冶金工业得到长足发展后,人们希望总结燃烧现象本质的愿望更加强烈了。
1723年,德国哈雷大学的医学与药理学教授施塔尔出版了教科书《化学基础》。他继承并发展了他的老师贝歇尔有关燃烧现象的解释,形成了贯穿整个化学的完整、系统的理论。《化学基础》是燃素说的代表作。
施塔尔认为燃素存在于一切可燃物中,在燃烧过程中释放出来,同时发光发热。燃烧是分解过程:
可燃物==灰烬+燃素

金属==锻灰+燃素

如果将金属锻灰和木炭混合加热,锻灰就吸收木炭中的燃素,重新变为金属,同时木炭失去燃素变为灰烬。木炭、油脂、蜡都是富含燃素的物质,燃烧起来非常猛烈,而且燃烧后只剩下很少的灰烬;石头、草木灰、黄金不能燃烧,是因为它们不含燃素。酒精是燃素与水的结合物,酒精燃烧时失去燃素,便只剩下了水。
空气是带走燃素的必需媒介物。燃素和空气结合,充塞于天地之间。植物从空气中吸收燃素,动物又从植物中获得燃素。所以动植物易燃。

富含燃素的硫磺和白磷燃烧时,燃素逸去,变成了硫酸和磷酸。硫酸与富含燃素的松节油共煮,磷酸(当时指P2O5)与木炭密闭加热,便会重新夺得燃素生成硫磺和白磷。而金属和酸反应时,金属失去燃素生成氢气,氢气极富燃素。铁、锌等金属溶于胆矾(CuSO4·5H2O)溶液置换出铜,是燃素转移到铜中的结果。
燃素说尽管错误,但它把大量的化学事实统一在一个概念之下,解释了冶金过程中的化学反应。燃素说流行的一百多年间,化学家为了解释各种现象,做了大量的实验,积累了丰富的感性材料。特别是燃素说认为化学反应是一种物质转移到另一种物质的过程,化学反应中物质守恒,这些观点奠定了近、现代化学思维的基础。我们现在学习的置换反应,是物质间相互交换成分的过程;氧化还原反应是电子得失的过程;而有机化学中的取代反应是有机物某一结构位置的原子或原子团被其它原子或原子团替换的过程。这些思想方法与燃素说多么相似。
舍勒和普里斯特里发现氧气的制法 :令后人尊敬的瑞典化学家舍勒的职业是药剂师--chemist,他长期在小镇彻平的药房工作,生活贫困。白天,他在药房为病人配制各种药剂。一有时间,他就钻进他的实验室忙碌起来。有一次,后院传来一声爆鸣,店主和顾客还在惊诧之中,舍勒满脸是灰地跑来,兴奋地拉着店主去看他新合成的化合物,忘记了一切。对这样的店员,店主是又爱又气,但从来不想辞退他,因为舍勒是这个城市最好的药剂师。
到了晚上,舍勒可以自由支配时间,他更加专心致志地投入到他的实验研究中。对于当时能见到的化学书籍里的实验,他都重做一遍。他所做的大量艰苦的实验,使他合成了许多新化合物,例如氧气、氯气、焦酒石酸、锰酸盐、高锰酸盐、尿酸、硫化氢、升汞(氯化汞)、钼酸、乳酸、乙醚等等,他研究了不少物质的性质和成分,发现了白钨矿等。至今还在使用的绿色颜料舍勒绿(Scheele’s green),就是舍勒发明的亚砷酸氢铜(CuHAsO3)。如此之多的研究成果在十八世纪是绝无仅有的,但舍勒只发表了其中的一小部分。直到1942年舍勒诞生二百周年的时候,他的全部实验记录、日记和书信才经过整理正式出版,共有八卷之多。其中舍勒与当时不少化学家的通信引人注目。通信中有十分宝贵的想法和实验过程,起到了互相交流和启发的作用。法国化学家拉瓦锡对舍勒十分推崇,使得舍勒在法国的声誉比在瑞典国内还高。
在舍勒与大学教师甘恩的通信中,人们发现,由于舍勒发现了骨灰里有磷,启发甘恩后来证明了骨头里面含有磷。在这之前,人们只知道尿里有磷。
1775年2月4日,33岁的舍勒当选为瑞典科学院院士。这时店主人已经去世,舍勒继承了药店,在他简陋的实验室里继续科学实验。由于经常彻夜工作,加上寒冷和有害气体的侵蚀,舍勒得了哮喘病。他依然不顾危险经常品尝各种物质的味道--他要掌握物质各方面的性质。他品尝氢氰酸的时候,还不知道氢氰酸有剧毒。1786年5月21日,为化学的进步辛劳了一生的舍勒不幸去世,终年只有44岁。舍勒发现氧气的两种制法是在1773年。第一种方法是分别将KNO3、Mg(NO3)2、Ag2CO3、HgCO3、HgO加热分解放出氧气:

2KNO3==2KNO2+O2↑

2Mg(NO3)2 == 2MgO+4NO2↑+O2↑↑

2Ag2CO3==4Ag+2CO2↑+O2↑

2HgCO3==2Hg+2CO2↑+O2↑

2HgO==2Hg+O2↑

第二种方法是将软锰矿(MnO2)与浓硫酸共热产生氧气:
2MnO2+2H2SO4(浓)== 2MnSO4+2H2O+O2↑
舍勒研究了氧气的性质,他发现可燃物在这种气体中燃烧更为剧烈,燃烧后这种气体便消失了,因而他把氧气叫做“火气”。舍勒是燃素说的信奉者,他认为燃烧是空气中的“火气”与可燃物中的燃素结合的过程,火焰是“火气”与燃素相结合形成的化合物。他将他的发现和观点写成《论空气和火的化学》。这篇论文拖延了4年直到1777年才发表。而英国化学家普里斯特里在1774年发现氧气后,很快就发表了论文。
普里斯特里始终坚信燃素说,甚至在拉瓦锡用他们发现的氧气做实验,推翻了燃素说之后依然故我。他将氧气叫做“脱燃素气”。他写到:我把老鼠放在‘脱燃素气’里,发现它们过得非常舒服后,我自己受了好奇心的驱使,又亲自加以实验,我想读者是不会觉得惊异的。我自己实验时,是用玻璃吸管从放满这种气体的大瓶里吸取的。当时我的肺部所得的感觉,和平时吸入普通空气一样;但自从吸过这种气体以后,经过好长时间,身心一直觉得十分轻快舒畅。有谁能说这种气体将来不会变成通用品呢?不过现在只有两只老鼠和我,才有享受呼吸这种气体的权利罢了。”普里斯特里一生的大部分时间是在英国的利兹作牧师,业余爱好化学。1773年他结识了著名的美国科学家兼政治家富兰克林,他们后来成了经常书信往来的好朋友。普里斯特里受到好朋友多方的启发和鼓励。他在化学、电学、自然哲学、神学四个方面都有很多著述。
1774年普里斯特里到欧洲大陆参观旅行。在巴黎,他与拉瓦锡交换了好多化学方面的看法。正直的普里斯特里同情法国大革命,曾在英国公开做了几次演讲。英国一批反对法国大革命的人烧毁了他的住宅和实验室。普里斯特里于1794年他六十一岁的时候不得已移居美国,在宾夕法尼亚大学任化学教授。美国化学会认为他是美国最早研究化学的学者之一。他住过的房子现在已建成纪念馆,以他的名字命名的普里斯特里奖章已成为美国化学界的最高荣誉。
拉瓦锡和他的天平: 燃素说的推翻者,法国化学家拉瓦锡原来是学法律的。1763年,他20岁的时候就取得了法律学士学位,并且获得律师开业证书。他的父亲是一位律师,家里很富有。所以拉瓦锡不急于当律师,而是对植物学发生了兴趣。经常上山采集标本使他对气象学也产生了兴趣。后来,拉瓦锡在他的老师,地质学家葛太德的建议下,师从巴黎有名的鲁伊勒教授学习化学。拉瓦锡的第一篇化学论文是关于石膏成分的研究。他用硫酸和石灰合成了石膏。当他加热石膏时放出了水蒸气。拉瓦锡用天平仔细测定了不同温度下石膏失去水蒸气的质量。从此,他的老师鲁伊勒就开始使用“结晶水”这个名词了。这次成功使拉瓦锡开始经常使用天平,并总结出了质量守恒定律。质量守恒定律成为他的信念,成为他进行定量实验、思维和计算的基础。例如他曾经应用这一思想,把糖转变为酒精的发酵过程表示为下面的等式:
葡萄糖 == 碳酸(CO2)+ 酒精
这正是现代化学方程式的雏形。用等号而不用箭头表示变化过程,表明了他守恒的思想。拉瓦锡为了进一步阐明这种表达方式的深刻含义,又具体地写到:“我可以设想,把参加发酵的物质和发酵后的生成物列成一个代数式。再逐个假定方程式中的某一项是未知数,然后分别通过实验,逐个算出它们的值。这样以来,就可以用计算来检验我们的实验,再用实验来验证我们的计算。我经常卓有成效地用这种方法修正实验的初步结果,使我能通过正确的途径重新进行实验,直到获得成功。”早在拉瓦锡出生之时,多才多艺的俄罗斯科学家罗蒙诺索夫就提出了质量守恒定律,他当时称之为“物质不灭定律”,其中含有更多的哲学意蕴。但由于“物质不灭定律”缺乏丰富的实验根据,特别是当时俄罗斯的科学还很落后,西欧对沙俄的科学成果不重视,“物质不灭定律”没有得到广泛的传播。
1772年秋天,拉瓦锡照习惯称量了一定质量的白磷使之燃烧,冷却后又称量了燃烧产物P2O5的质量,发现质量增加了!他又燃烧硫磺,同样发现燃烧产物的质量大于硫磺的质量。他想这一定是什么气体被白磷和硫磺吸收了。他于是又做了更细致的实验:将白磷放在水银面上,扣上一个钟罩,钟罩里留有一部分空气。加热水银到40℃时白磷就迅速燃烧,之后水银面上升。拉瓦锡描述道:“这表明部分空气被消耗,剩下的空气不能使白磷燃烧,并可使燃烧着的蜡烛熄灭;1盎司的白磷大约可得到2.7盎司的白色粉末(P2O5,应该是2.3盎司)。增加的重量和所消耗的1/5容积的空气重量接近相同。”燃素说认为燃烧是分解过程,燃烧产物应该比可燃物质量轻。而拉瓦锡实验的结果却是截然相反。他把实验结果写成论文交给法国科学院。从此他做了很多实验来证明燃素说的错误。在1773年2月,他在实验记录本上写到:“我所做的实验使物理和化学发生了根本的变化。”他将“新化学”命名为“反燃素化学”。
1774年,拉瓦锡做了焙烧锡和铅的实验。他将称量后的金属分别放入大小不等的曲颈瓶中,密封后再称量金属和瓶的质量,然后充分加热。冷却后再次称量金属和瓶的质量,发现没有变化。打开瓶口,有空气进入,这一次质量增加了,显然增加量是进入的空气的质量(设为A)。他再次打开瓶口取出金属锻灰(在容积小的瓶中还有剩余的金属)称量,发现增加的质量正和进入瓶中的空气的质量相同(即也为A)。这表明锻灰是金属与空气的化合物。
拉瓦锡进一步想,如果设法从金属锻灰中直接分离出空气来,就更能说明问题。他曾经试图分解铁锻灰(即铁锈),但实验没有成功。
拉瓦锡制得氧气之后: 到了这年的10月,普里斯特里访问巴黎。在欢迎宴会上他谈到“从红色沉淀(HgO)和铅丹(Pb3O4)可得到‘脱燃素气’”。对于正在无奈中的拉瓦锡来说,这条信息是很直接的启发。11月,拉瓦锡加热红色的汞灰制得了氧气。在舍勒的启发下,拉瓦锡甚至制造了火车头大小的加热装置,其中心是聚光镜。平台下面是六个大轮子,以便跟着太阳随时转动。1775年,拉瓦锡的实验中心已从分解金属锻灰转移到了对氧气的研究。他发现燃烧时增加的质量恰好是氧气减少的质量。以前认为可燃物燃烧时吸收了一部分空气,其实是吸收了氧气,与氧气化合,即氧化。这就是推翻了燃素说的燃烧的氧化理论。与此同时,拉瓦锡还用动物实验,研究了呼吸作用,认为“是氧气在动物体内与碳化合,生成二氧化碳的同时放出热来。这和在实验室中燃烧有机物的情况完全一样。”这就解答了体温的来源问题。空气中既然含有1/4的氧气(数据来自原文),就应该含有其余的气体,拉瓦锡将它称为“碳气”。研究了空气的组成后,拉瓦锡总结道:“大气中不是全部空气都是可以呼吸的;金属焙烧时,与金属化合的那部分空气是合乎卫生的,最适宜呼吸的;剩下的部分是一种‘碳气’,不能维持动物的呼吸,也不能助燃。”他把燃烧与呼吸统一了起来,也结束了空气是一种纯净物质的错误见解。1777年,拉瓦锡明确地讥讽和批判了燃素说:“化学家从燃素说只能得出模糊的要素,它十分不确定,因此可以用来任意地解释各种事物。有时这一要素是有重量的,有时又没有重量;有时它是自由之火,有时又说它与土素相化合成火;有时说它能通过容器壁的微孔,有时又说它不能透过;它能同时用来解释碱性和非碱性、透明性和非透明性、有颜色和无色。它真是只变色虫,每时每刻都在改变它的面貌。” 这年的9月5日,拉瓦锡向法国科学院提交了划时代的《燃烧概论》,系统地阐述了燃烧的氧化学说,将燃素说倒立的化学正立过来。这本书后来被翻译成多国语言,逐渐扫清了燃素说的影响。化学自此切断了与古代炼丹术的联系,揭掉了神秘和臆测的面纱,代之以科学的实验和定量的研究。化学进入了定量化学(即近代化学)时期。所以我们说拉瓦锡是近代化学的奠基者。舍勒和普里斯特里先于拉瓦锡发现氧气,但由于他们思维不够广阔,更多地只是关心具体物质的性质,没有能冲破燃素说的束缚。与真理擦肩而过是很遗憾的。
拉瓦锡对化学的另一大贡献是否定了古希腊哲学家的四元素说和三要素说,辨证地阐述了建立在科学实验基础上的化学元素的概念:“如果元素表示构成物质的最简单组分,那么目前我们可能难以判断什么是元素;如果相反,我们把元素与目前化学分析最后达到的极限概念联系起来,那么,我们现在用任何方法都不能再加以分解的一切物质,对我们来说,就算是元素了。”在1789年出版的历时四年写就的《化学概要》里,拉瓦锡列出了第一张元素一览表,元素被分为四大类:
简单物质,普遍存在于动物、植物、矿物界,可以看作是物质元素:光、热、氧、氮、氢。简单的非金属物质,其氧化物为酸:硫、磷、碳、盐酸素、氟酸素、硼酸素。简单的金属物质,被氧化后生成可以中和酸的盐基:锑、银、铋、钴、铜、锡、铁、锰、汞、钼、镍、金、铂、铅、钨、锌。简单物质,能成盐的土质:石灰、镁土、钡土、铝土、硅土。拉瓦锡对燃素说和其它陈腐观点的讥讽和批判是无情和激烈的。这使他在创建科学勋绩的同时得罪了一大批同时代和老一辈的科学家。在《影响世界历史的一百位人物》中,在许多有关历史、科学史、化学史的书籍中,作者都对拉瓦锡总是突出自己的人格特点进行低调的描述和评价,指责他在《化学概要》里没有提起舍勒和普里斯特里对他的启示和帮助。但我们得看到,拉瓦锡确实具有非凡的科学洞察力和勇往直前的无畏精神。虽然不是他最先发现氧气的制法,但他通过制取氧气分析了空气的组成,建立了燃烧的氧化学说。氧气因此不同于其它气体,被赋予非凡的科学意义。拉瓦锡十分勤奋,每天六点起床,从六点到八点进行实验研究,八点到下午七点从事火药局长或法国科学院院士的工作,七点到晚上十点,又专心从事他的科学研究。星期天不休息,专门进行一整天的实验工作。拉瓦锡28岁结婚时,他的妻子只有14岁。他们一生没有孩子,但生活非常愉快。她帮助拉瓦锡实验,经常陪伴在他身边。在拉瓦锡的著作里,有很多插图都是他的妻子画的。1789年法国大革命爆发,三年后拉瓦锡被解除了火药局长的职务。1793年11月,国民议会下令逮捕旧王朝的包税官。拉瓦锡由于曾经担任过包税官而自首入狱。极左派马拉曾与拉瓦锡有过激烈的科学争论,心存嫉恨,便诬陷拉瓦锡与法国的敌人有来往,犯有叛国罪,于1794年5月8日把他送上了断头台。对此,当时科学界的很多人感到非常惋惜。著名的法籍意大利数学家拉格朗日痛心地说:“他们可以一瞬间把他的头割下,而他那样的头脑一百年也许长不出一个来。”这时,拉瓦锡正当壮年,是51岁。

四、化学学科的发展前沿

中国运动医学杂志000124 基因工程也叫遗传工程(Genetic Engineering),是20世纪70年代在分子生物学发展的基础上形成的新学科。基因工程就是在分子水平上,用人工方法提取(或合成)不同生物的遗传物质,在体外切割、拼接和重新组成,然后通过载体把重组的DNA分子引入受体细胞,使外源DNA在受体细胞中进行复制与表达。按人们的需要产生不同的产物或定向地创造生物的新性状,并使之稳定地遗传给下代[1]。基因工程技术主要包括分离基因、纯化基因和扩增基因的技术,其核心是分子克隆技术。它能帮助人们从各种复杂的生物体中分离出单一的基因,并把它纯化,再把它大量扩增,用于研究。

20多年来,基因工程技术得到了迅速地发展,特别是限制性内切酶、DNA序列分析及DNA重组技术等三大技术的发现和应用,不仅把分子生物学提高到了基因水平,而且也把生物学与医学中的其他学科引上基因研究的道路,并取得了许多揭示生命秘密和生命过程的重大成就 ......

❷ 化学的历史由来

化学的历史渊源非常古老,可以说从人类学会使用火,就开始了最早的化学实践活动。我们的祖先钻木取火、利用火烘烤食物、寒夜取暖、驱赶猛兽,充分利用燃烧时的发光发热现象。

当时这只是一种经验的积累。化学知识的形成、化学的发展经历了漫长而曲折的道路。它伴随着人类社会的进步而发展,是社会发展的必然结果。而它的发展,又促进生产力的发展,推动历史的前进。

化学在发展过程中,依照所研究的分子类别和研究手段、目的、任务的不同,派生出不同层次的许多分支。

在20世纪20年代以前,化学传统地分为无机化学、有机化学、物理化学和分析化学四个分支。20年代以后,由于世界经济的高速发展,化学键的电子理论和量子力学的诞生、电子技术和计算机技术的兴起,化学研究在理论上和实验技术上都获得了新的手段。

导致这门学科从30年代以来飞跃发展,出现了崭新的面貌。化学内容一般分为生物化学、有机化学、高分子化学、应用化学和化学工程学、物理化学、无机化学等七大类共80项,实际包括了七大分支学科。

(2)化学历史扩展阅读

化学起源说将生命的起源分为四个阶段。

第一个阶段

从无机小分子生成有机小分子的阶段,即生命起源的化学进化过程是在原始的地球条件下进行的。需要着重指出的是米勒的模拟实验。在这个实验中,一个盛有水溶液的烧瓶代表原始的海洋,其上部球型空间里含有氢气、氨气、甲烷和水蒸汽等“还原性大气”。

米勒分析其化学成分时发现,其中含有包括5种氨基酸和不同有机酸在内的各种新的有机化合物,同时还形成了氰氢酸,而氰氢酸可以合成腺嘌呤,腺嘌呤是组成核苷酸的基本单位。

米勒的实验试图向人们证实,生命起源的第一步,从无机小分子物质形成有机小分子物质,在原始地球的条件下是完全可能实现的。

第二个阶段

从有机小分子物质生成生物大分子物质。这一过程是在原始海洋中发生的,即氨基酸、核苷酸等有机小分子物质,经过长期积累,相互作用,在适当条件下(如黏土的吸附作用),通过缩合作用或聚合作用形成了原始的蛋白质分子和核酸分子。

第三个阶段

从生物大分子物质组成多分子体系。这一过程是怎样形成的?前苏联学者奥巴林提出了团聚体假说,他通过实验表明,将蛋白质、多肽、核酸、明胶、阿拉伯胶和多糖等放在合适的溶液中,它们能自动地浓缩聚集为分散的球状小滴,这些小滴就是团聚体。

第四个阶段

有机多分子体系演变为原始生命,包括以生化系统和遗传系统的建立为标志的细胞的诞生。这一阶段是在原始海洋中形成的,是生命起源过程中最复杂和最有决定意义的阶段。目前,人们还不能在实验室里验证这一过程。

❸ 化学历史上的名人

1、德米特里·伊万诺维奇·门捷列夫(俄语:Дми́трий Ива́нович Менделе́ев,1834年2月7日—1907年2月2日),俄罗斯科学家。

发现化学元素的周期性(但是真正第一位发现元素周期律的是纽兰兹,门捷列夫是后来经过总结,改进得出现在使用的元素周期律的),依照原子量,制作出世界上第一张元素周期表,并据以预见了一些尚未发现的元素。

2、约翰·道尔顿(John Dalton,1766年9月6日-1844年7月27日),英国化学家、物理学家。近代原子理论的提出者。他所提供的关键的学说,使化学领域自那时以来有了巨大的进展。 附带一提的是道尔顿患有色盲症。

这种病的症状引起了他的好奇心。他开始研究这个课题,最终发表了一篇关于色盲的论文──曾经问世的第一篇有关色盲的论文。后人为了纪念他,又把色盲症叫做道尔顿症。

3、安托万-洛朗·德·拉瓦锡(法语:Antoine-Laurent de Lavoisier,1743年8月26日-1794年5月8日),法国贵族,著名化学家、生物学家,被广泛认为是人类历史上最伟大的化学家。

拉瓦锡被后世尊称为"化学之父"(father of chemistry)、"现代化学之父"(father of modern chemistry)。

4、皮埃尔·居里(Pierre Curie,1859年5月15日 — 1906年4月19日),巴黎人,法国著名的物理学家,居里夫人的丈夫。也是“居里定律”的发现者。

1903年和居里夫人还有贝克勒尔共同获得了诺贝尔物理学奖。1906年4月19日,皮埃尔·居里在一场马车车祸中不幸遇难。

5、玛丽·居里(Marie Curie,1867年11月7日—1934年7月4日),出生于华沙,世称“居里夫人”,全名玛丽亚·斯克沃多夫斯卡·居里(Maria Skłodowska Curie),法国著名波兰裔科学家、物理学家、化学家。

❹ 化学振荡的历史发展

化学振荡反应最早是由美国科学家W.C.Bray在1921年用H2O2、和CH2(COOH)2(以H2SO4为介质,MnSO4为催化剂)进行反应时发现的。但由于当时人们无法解释其产生的原因,所以并未引起人们的重视,这就使得化学振荡反应的研究,在很长时间被人们所冷落。1873年李普曼(G.I ippman)报道了汞心实验是一种周期现象。此后,就有很多科学家发现了不少的振荡现象,其中 1958年前苏联科学家伯诺索夫的发现,在化学振荡的实验研究中是一个转折点。他在对溴酸钾、硫酸铈和柠檬酸的稀硫酸溶液的封闭体系研究中观察到浓度振荡现象。20世纪60年代,普利高津(I.Prigogine)领导下的布鲁塞尔学派在非线性非平衡态热力学研究中取得重大突破,提出了著名的耗散结构理论。该理论指出:某些远离平衡态的系统,通过耗散能量和物质,有可能达到一种时间或空间有序的状态,他们称这种状态为耗散结构。这样就从热力学上证明了化学振荡反应的发生是可能的。耗散结构理论的建立为振荡反应提供了理论基础,从此振荡反应赢得了重视,研究迅速发展。同时,Prigogine等人还给出了产生振荡的条件:(1)远离平衡态;(2)有反馈存在;(3)有多复位态存在;(4)开放系统。
近二三十年来,对化学振荡的研究则更多,研究内容包含了有关化学振荡的许多问题如化学振荡反应的热力学因素,动力学因素,用数学方法和程序软件来研究化学振荡反应,以及如何进行反馈和寻找新的振荡器等,并且不断在寻找研究化学振荡的新方法。
有些化学反应体系(如B-Z反应体系)在某些确定的外部条件下并不发展到不随时间变化的定态或平衡态,而是发展到其状态量(如某些中间物组分的浓度)随时间周期变化的状态。化学反应体系中某些状态量随时间周期变化的状态称为化学振荡,有时也称为化学钟。

❺ 化学发展的历史阶段

1、萌芽时抄期

远古的工艺化学时期。这时人类的制陶、冶金、酿酒、染色等工艺,主要是在实践经验的直接启发下经过多少万年摸索而来的,化学知识还没有形成。这是化学的萌芽时期。

2、炼丹术和医药化学时期。

从公元前1500年到公元1650年,炼丹术士和炼金术士们,在皇宫、在教堂、在自己的家里、在深山老林的烟熏火燎中,为求得长生不老的仙丹,为求得荣华富贵的黄金,开始了最早的化学实验。

3、燃素时期

这个时期从1650年到1775年,是近代化学的孕育时期。随着冶金工业和实验室经验的积累,人们总结感性知识,进行化学变化的理论研究,使化学成为自然科学的一个分支。

4、发展期

这个时期从1775年到1900年,是近代化学发展的时期。1775年前后,拉瓦锡用定量化学实验阐述了燃烧的氧化学说,开创了定量化学时期,使化学沿着正确的轨道发展。

德国化学家李比希和维勒发展了有机结构理论,这些都使化学成为一门系统的科学,也为现代化学的发展奠定了基础。

5、现代化学时期

二十世纪初,量子论的发展使化学和物理学有了共同的语言,解决了化学上许多悬而未决的问题;另一方面,化学又向生物学和地质学等学科渗透,使蛋白质、酶的结构问题得到逐步的解决。

❻ 化学吧的历史事件

2004年初
网络化学吧创建。
2008年6月28日
由于2008年奥运会即将到来,所以网络对可能造成安全隐患的所有贴吧、帖子实施清理。由于采访事件引发的魔神实验室等化学吧旗下四大实验室被封,网络将化学吧封锁,史称“08年封吧事件”。 之后在吧友的要求下,网络将化学吧的封禁改为“审核发帖”。
2009年11月19日
网络化学吧解封
2010年5月16日
某吧主ID被血色圣光所盗,所有小吧主被解职,大量会员失去会员资格,图片和视频被清空,损失惨重,当日中午开始恢复秩序。但是盗号者把会员名称改为“血你妹”并持续至月底。史称“血你妹事件”。 这里的血可以理解为是名词做动词,使动用法,为“让……出血”。
2011年8月末
第一次“化学吧民主运动”,由吧务删贴引起的不满被某些吧友着重提出,以“民主”为象征性目标和口号开始的全吧性大混乱。牵扯到吧内新老吧友的矛盾和水贴问题。最终,时任吧务辞职,事件缓和。而当时的问题并没有解决。自此,化学吧维持数年的平稳状态被打破,矛盾激化,平均每半年出现一次混乱。化学吧是网络学术贴吧中由于吧友和吧务矛盾造成混乱最多最严重的贴吧,此情况至今没有改变。
2012年2月11日
全体吧务解散,化吧陷入空前动乱,即所谓的“211事件”。当时爆吧贴水贴广告贴能才贴横行,吧规禁止的所有东西当时满贴吧都是。2012年6月26日
网络化学吧第一次网络官方授权的活动开始:晶体制作大赛。同时也小规模引起了网络贴吧的晶体制作热潮。
2012年7月28日起因是五天前爆照贴泛滥了一次,然后某爆照贴被吐槽后直接导致小规模混乱,继而升级到大规模水贴爆发,于是第一次限水开始。但这次并没能长久。
2013年2月11日
化学吧吧务大放假事件,所有吧务集体放假三天。这件事最初的原因是部分吧友对新吧规意见很大,对吧务正常的操作行为有很大的抵触情绪。而且部分老吧友也借机闹事。因此卡曼奇和活动星图提出用放假这一形式,暂停对化学吧的管理,使化学吧部分对吧务有抵触情绪的吧友转变对吧务存在必要性的想法。事情结束以后,吧友对吧务的意见不见减少,反而变得更大,甚至有部分吧友密谋推翻现任吧务,然后因为各种原因没有得逞。
2013年3月1日
时任小吧主活动星图进行了一次禁水实验,时长15天。内容大致是回帖必须15字以上,且不准发纯表情帖,禁止一切水贴等。但因为规定太过严苛,导致反对的呼声过高,最后失败
2013年7月19日
网络化学吧第一届化学竞赛开始,时间为7月19日18:30至22:30
2013年8月13日
1个月的试行禁水后,经吧友投票与化学吧吧务组决定,化学吧长期禁水,在学术性贴吧的发展道路上迈出了坚实的一步。
2014年1月30日
小吧主inlook121联合数学吧、物理吧、生物吧与云里明阳吧举办了2014第二次假面舞会,上一次假面舞会在2010年在江上清风吧举办。
2014年初
某吧友发帖为铝热反应正名,受到许多吧友以及吧务的反对。后因此掀起围攻家庭实验党事件,导致大量吧友退吧抗议。后在吧务组的努力下,才平息此事。
2014年3月22日
世界水日,吧务决定放水一天,当日产生的水贴将于晚12点删除。
2014年7月28日
时任大吧主真·凤舞九天辞职,理由据说是要去考研(这是大部分吧友的观点,不代表真实情况)
2015年3月22日
吧务首次正式开帖声明对非化学的有质量的帖子的鼓励。
初次开放的非化学帖白名单有:音乐鉴赏和新闻播报(非娱乐新闻)。

❼ 化学历史的发展经历了哪些时期

1.远古的工艺化学时期。这时人类的制陶、冶金、酿酒、染色等工艺,主要是在实践经验的直接启发下经过多少万年摸索而来的,化学知识还没有形成。这是化学的萌芽时期。
2. 炼丹术和医药化学时期。从公元前1500年到公元1650年,炼丹术士和炼金术士们,在皇宫、在教堂、在自己的家里、在深山老林的烟熏火燎中,为求得长生不老的仙丹,为求得荣华富贵的黄金,开始了最早的化学实验。记载、总结炼丹术的书籍,在中国、阿拉伯、埃及、希腊都有不少。这一时期积累了许多物质间的化学变化,为化学的进一步发展准备了丰富的素材。这是化学史上令我们惊叹的雄浑的一幕。后来,炼丹术、炼金术几经盛衰,使人们更多地看到了它荒唐的一面。化学方法转而在医药和冶金方面得到了正当发挥。在欧洲文艺复兴时期,出版了一些有关化学的书籍,第一次有了“化学”这个名词。英语的chemistry起源于alchemy,即炼金术。chemist至今还保留着两个相关的含义:化学家和药剂师。这些可以说是化学脱胎于炼金术和制药业的文化遗迹了。

3. 燃素化学时期。从1650年到1775年,随着冶金工业和实验室经验的积累,人们总结感性知识,认为可燃物能够燃烧是因为它含有燃素,燃烧的过程是可燃物中燃素放出的过程,可燃物放出燃素后成为灰烬。
4.定量化学时期,既近代化学时期。1775年前后,拉瓦锡用定量化学实验阐述了燃烧的氧化学说,开创了定量化学时期。这一时期建立了不少化学基本定律,提出了原子学说,发现了元素周期律,发展了有机结构理论。所有这一切都为现代化学的发展奠定了坚实的基础。
5. 科学相互渗透时期,既现代化学时期。二十世纪初,量子论的发展使化学和物理学有了共同的语言,解决了化学上许多悬而未决的问题;另一方面,化学又向生物学和地质学等学科渗透,使蛋白质、酶的结构问题得到逐步的解决。

❽ 化学地理历史是学什么

实行新高考后,考生将从物理、化学、生物、历史、地理、政治、技术7门课程中选考3门,即“七选三”。这7门课程中的每一门和大学里的对应专业有关。自己选考的学科今后就可以报考高校中的相关专业。
1、物理:应用物理学、地球物理学、理论与应用力学、材料科学类、电子科学类、信息与电子科学类、机械类、海洋科学类、核工程与核技术学、热能与动力工程、工程力学、测控技术与仪器、航天航空类和武器类、
2、化学:化学类(化学、应用化学)、地质学类(地球化学)、生物科学类、材料类(材料科学与工程、材料化学、冶金工程、金属材料工程、无机非金属材料工程、高分子材料与工程、复合材料与工程)、化工与制药类(化学工程与工艺、制药工程)、核工程类(核化工与核燃料工程、)、林业工程类(林产化工)、食品科学与工程类、食品科学与工程(食品质量与安全、粮食工程、乳品工程、酿酒工程)基础医学类(基础医学)、公共卫生与预防医学类(食品卫生与营养学)、医学技术类(医学检验技术、医学实验技术、卫生检验与检疫)、
3、生物:科学类(生物科学、生物技术、生物信息学、生物信息技术、动植物检疫、生物化学与分子生物学、医学信息学、植物生物技术、动物生物技术)、生物工程类(生物工程、发酵工程)、医学类(基础医学、预防医学、临床医学、口腔医学、中医医学、法医学、护理学、药学)、环境科学类(环境科学、生态学、环境资源科学)、植物生产类(农学、园艺、植物保护、茶学、烟草、植物科学与技术、种子科学和工程、应用生物科学)、草叶科学类(草业科学)、森林资源类(林雪、森林资源保护与游憩、野生动物与自然保护区管理)、环境生态类(园林、水土保持与荒漠化防治、农业资源与环境)、动物生产类(动物科学、蚕学、蜂学)、动物医学类(动物医学)、水产类(水产养殖学、海洋渔业科学与技术)、
4、政治:哲学类(哲学、逻辑学、宗教学、伦理学)、 法学类(法学、知识产权、监狱学) 、经济学类(经济学、国际经济与贸易、财政学、金融学、国民经济管理、贸易经济、保险、金融工程、税务、信用管理、网络经济学、体育经济、投资学、环境资源与发展经济学、海洋经济学)、马克思主义理论类(科学社会主义与国际共产主义运动、中国革命史与中国共产党党史)、 社会学类(社会学、社会工作、家政学、人类学) 、政治学类(政治学与行政学、国际政治、外交学、思想政治教育、国际政治经济学、国际事务)、
5、历史:历史学类(历史学、世界历史、考古学、博物馆学、民族学、文物保护技术)教育学类(教育学、学前教育、特殊教育、教育技术学、小学教育、艺术教育、人文教育、科学教育、言语听觉科学)、工商管理类(工商管理、市场营销 、会计学、财务管理、人力资源管理、旅游管理、商品学、审计学、电子商务、物流管理、国际商务、物业管理、特许经营管理)、公共管理类(行政管理、公共事业管理、劳动与社会保障、土地资源管理、公共关系学、公共政策学、城市管理、公共管理、文化产业管理、会展经济与管理、国防教育与管理、航运管理)
6、地理:水利水电类、地质勘探类、气象类专业、地图测绘类(卫星遥感、GIS专业)、城市规划类 、旅游类 、酒店管理类 、资源管理类 、地理教育类 、旅游类 、酒店管理类 、资源管理类 、地理教育类 、历史、考古学、民族学、博物馆学、历史学、世界历史、文物保护技术、另外,大学学科中关于哲学、中国共产党历史、马克思主义研究、汉语言文学、地理学科与政治学科等都与中学历史学科有很大的关系。
7:技术:技术机械类(工业设计、机械设计制造及自动化)、土建类(建筑学、土木工程、城市规划)、能源动力类(热能与动力工程、能源工程及自动化)、测绘类(测绘工程、遥感科学与技术)、工程力学类(工程力学、工程结构分析)、电气信息类(电子科学与技术、自动化、集成电路设计与集成系统、智能科学与技术)

❾ 化学界的历史大事

化 学 大 事 年 表
约50万年前
“北京人”已知用火

公元前5000~前3000年
中国已开始制作陶器

公元前4000年
中国已知酿酒

公元前3000年
埃及人采集金、银制饰物

公元前2000年
中国齐家文化遗址出土文物中有铸红铜器

公元前1400年
小亚细亚的赫梯人已知炼铁

公元前10世纪
埃及人已开始制作玻璃器皿

公元前5世纪~前3世纪
中国提出五行(金、木、水、火、土)学说

公元前4世纪
希腊德谟克利特提出朴素的原子论

希腊亚里士多德提出四元素(火、气、土、水)说

公元前2世纪
中国《神农本草经》成书

中国炼丹术兴起

中国西汉时已有利用胆水炼铜的记载

公元60年左右
罗马老普林尼提出分离金银的火试金法

公元105年
中国蔡伦监造出良纸

公元2世纪
中国魏伯阳著《周易参同契》

约公元360年
中国葛洪著《抱朴子内篇》

公元656~666年
中国颁布药典《新修本草》

公元808年
中国唐代出版的《太上圣祖金丹秘诀》所载“伏火矾法”乃是原始火药的配方

公元10世纪
阿拉伯阿维森纳著《医典》

公元1163年
中国吴悞著《丹房须知》中有较完整的蒸馏器图

公元1450年
德意志B.瓦伦丁发现铋

公元16世纪
瑞士帕拉采尔苏斯提出三要素说

公元1556年
德意志G.阿格里科拉的《坤舆格致》出版

公元1596年
中国李时珍的《本草纲目》成书
比利时J. B.van海尔蒙特作“柳树试验”

公元1637年
中国宋应星的《天工开物》出版,记载了用炉甘石制“倭铅”(金属锌)的方法

公元1661年
英国R.玻意耳的《怀疑派化学家》出版,提出化学元素的科学定义

公元1663年
英国R.玻意耳用植物色素作指示

公元1679年
德意志L.J. von孔克尔发明吹管分析

公元1703年
德意志G.E.施塔尔提出燃素说

公元1729年
法国C.J.日夫鲁瓦最早使用容量分析法

公元1750年
法国V.G.弗朗索瓦用指示剂进行酸碱滴定

公元1751年
瑞典A. F.克龙斯泰德发现镍

公元1755年
英国J.布莱克发现“固定空气”(即二氧化碳)

公元1766年
英国H.卡文迪什发现氢

公元1769~1785年
瑞典C.W.舍勒离析了多种有机酸

公元1772年
英国D.卢瑟福发现氮

公元1773年
瑞典C. W.舍勒发现氧
法国G. F.鲁伊勒发现脲

公元1774年
瑞典C. W.舍勒发现锰,制得氯

公元1775年
瑞典T.O.贝格曼提出化学亲合力论

公元1777年
法国 A.-L.拉瓦锡证明化学反应中的质量守恒定律,提出燃烧的氧化学说

公元1780年
瑞典T.O.贝格曼的《矿物的湿法分析》出版,提出重量分析法

公元1781年
瑞典C. W.舍勒发现钨

公元1782年
瑞典P. J.耶尔姆发现钼

公元1786年
法国A. -L.拉瓦锡发现酒精经氧化转变成乙酸

公元1790年
英国W.格雷哥尔发现钛

公元1797年
法国N. -L.沃克兰发现铬

公元1798年
法国N. -L.沃克兰发现铍

公元1799年
法国 J.-L.普鲁斯特提出定比定律
法国 C.-L.贝托莱指出化学反应进行的方向与参与反应的物质的量有关;化学反应可达到平衡

公元1800年
意大利A.伏打制成电堆

公元1801年
西班牙A. M.Del里奥发现钒

英国C.哈切特发现铌

公元1802年
瑞典A. G.厄克贝里发现钽

公元1806年
瑞典J.J.贝采利乌斯发现同分异构现象

公元1803年
英国J.道尔顿提出原子学说和倍比定律

英国W.H.渥拉斯顿发现钯和铑

英国W.亨利提出亨利定律

公元1807年
英国H.戴维制得金属钾和钠

公元1808年
法国J.-L.盖-吕萨克提出气体化合体积定律
法国J.-L.盖-吕萨克和L.-J.泰纳尔分别制得单质硼
英国H.戴维制得金属钙、镁、锶、钡

公元1811年
意大利A.阿伏伽德罗提出分子假说

法国B.库图瓦发现碘

公元1812年
法国A. -M.安培发现氟

公元1814年
瑞典J.J.贝采利乌斯提出化学符号和化学方程式书写规则

公元1817年
瑞典J.J.贝采利乌斯发现硒

瑞典J.A.阿弗韦聪发现锂

公元1819年
法国 P.-L.杜隆和A.T.珀替提出原子热容定律

法国P.-J.佩尔蒂埃和J.-B.卡芳杜发现萘

公元1820年
法国P.-J.佩尔蒂埃分离出奎宁

公元1824年
英国M.波拉尼提出催化反应的吸附理论

瑞典J.J.贝采利乌斯制得单质硅

法国A.J.巴拉尔发现溴

法国J.-L.盖-吕萨克用容量分析法测定银

法国S.卡诺提出卡诺定理

公元1825年
英国M.法拉第发现苯

丹麦H.C.奥斯特发现铝

公元1826年
法国J.-B.-A.杜马根据蒸气密度测定原子量

公元1827年
俄国Г.В.奥赞发现钌

公元1828年
德意志F.维勒合成脲
瑞典J.J.贝采利乌斯发现钍

公元1829年
德意志J.W.德贝莱纳提出“三元素组”的元素分类法

公元1830年
德意志 J.von李比希建立有机物中碳氢定量分析法和提出取代学说

公元1832年
德意志 J.von李比希和F.维勒提出基的概念

公元1833年
英国M.法拉第提出电解定律

法国J.-B.-A.杜马建立有机物中氮的定量分析法

德意志E.米切利希从苯甲酸脱羧制得苯

公元1834年
德意志F.F.龙格从煤焦油分离出苯胺、喹啉、苯酚

公元1835年
瑞典J.J.贝采利乌斯提出催化概念

公元1839年
美国C.古德伊尔发明橡胶硫化法

法国J.-B.-A.杜马提出有机化合物分类的类型论

公元1840年
俄国G.H.盖斯发现热总量守恒定律

公元1841年
瑞典J.J.贝采利乌斯的《化学教程》出版

德意志C.R.弗雷泽纽斯的《定性化学分析导论》出版,提出简明的阳离子系统定性分析法

公元1843年
法国 C.-F.热拉尔提出同系列概念

公元1845年
德意志C.F.舍恩拜因制得纤维素硝酸酯

公元1847年
德意志 H.von亥姆霍兹提出“力之守恒”,后发展为热力学第一定律

美国J.W.吉布斯提出热力学势概念,后经美国G.N.路易斯改称自由能

公元1848年
法国L.巴斯德发现酒石酸盐结晶的旋光性,提出光学活性是由于分子不对称产生的

英国开尔文提出热力学温标和绝对零度是温度的下限

公元1850年
德意志L.F.威廉密提出动态平衡概念。开创了化学动力学的定量研究

德意志R.克劳修斯根据法国S.卡诺研究成果提出热力学第二定律

公元1852年
英国E.弗兰克兰提出原子价概念

德意志A.比尔提出光的吸收定律

公元1853年
法国 C.-F.热拉尔把有机化合物分为水型、氢型、氯化氢型、氨型四大类型

公元1854年
法国M.贝特洛从甘油和脂肪酸合成脂肪

公元1856年
法国M.贝特洛合成甲烷和乙烯

英国W.H.Jr.珀金合成苯胺紫

公元1857年
德意志F.A.凯库勒提出碳原子的四价学说

德意志E.施魏策尔发明铜铵纤维

公元1858年
德意志F.A.凯库勒和英国A.S.库珀分别提出原子价键概念

公元1859年
法国G.普朗忒研制出铅酸蓄电池

德意志R.W.本生和G.R.基尔霍夫发明光谱分析仪

公元1860年
国际化学会议在德国卡尔斯鲁厄召开

意大利S.坎尼扎罗确证分子学说

德意志R.W.本生和G.R.基尔霍夫发现铯

公元1861年
英国W.克鲁克斯发现铊

德意志R.W.本生和G.R.基尔霍夫发现铷

俄国А.M.布特列洛夫提出化学结构理论

英国T.格雷姆提出胶体概念

公元1862年
法国M.贝特洛合成乙炔

公元1864年
挪威C.M.古尔德贝格和P.瓦格提出质量作用定律

美国J.W.吉布斯用电解分析法测定铜

公元1865年
英国J.A.R.纽兰兹提出元素八音律

德意志F.A.凯库勒提出苯的环状结构学说

德意志P.许岑贝格尔制得纤维素乙酸酯

法国G.勒克朗谢研制出第一只实用干电池

德意志R.克劳修斯提出熵概念

公元1867年
瑞典A.B.诺贝尔发明达纳炸药

公元1869年
俄国Д.И.门捷列夫提出元素周期律

德意志C.格雷贝等合成茜素

美国J.W.海厄特制成赛璐珞

瑞士J.F.米舍尔发现核酸

公元1873年
俄国А.M.布特列洛夫发现异丁烯的聚合反应

公元1874年
荷兰J.H.范托夫和法国 J.-A.勒贝尔分别提出立体化学概念和碳的四面体构型学说

公元1875年
德国F.W.G.科尔劳施提出当量电导概念

法国 P.-E.L.de布瓦博德朗发现镓

公元1876年
美国J.W.布吉斯发现相律

公元1880年
瑞士J.C.G.de马里尼亚克发现钆

德国A.von拜耳合成靛蓝

公元1881年
英国J.J.汤姆孙提出阴极射线是带负电的粒子流,1897年测定了它的质荷比,并命名为电子

公元1884年
荷兰J.H.范托夫的《化学动力学研究》出版

公元1886年
德国C.温克勒尔发现锗

法国H.穆瓦桑制得单质氟

荷兰J.H.范托夫建立稀溶液理论

公元1887年
瑞典S.A.阿伦尼乌斯提出电离理论

德国W.奥斯特瓦尔德与荷兰J.H.范托夫创办德文《物理化学》杂志

法国 F.-M.拉乌尔提出拉乌尔定律

公元1888年
德国 A.von拜耳提出几何异构概念

法国 H.-L.勒夏忒列提出勒夏忒列原理

公元1889年
德国W.H.能斯脱提出电极电势与溶液浓度的关系式

瑞典S.A.阿伦尼乌斯提出活化分子和活化热概念

公元1890年
德国E.费歇尔合成果糖和葡萄糖

公元1892年
日内瓦国际化学会议确定有机化合物系统命名法

英国C.F.克罗斯和E.J.比万制成粘胶纤维

公元1893年
瑞士A.韦尔纳提出络合物的配位理论

公元1894年
英国W.拉姆齐和瑞利发现氩

公元1895年
德国W.奥斯特瓦尔德提出催化剂概念

英国W.拉姆齐发现氦

公元1896年
法国H.贝可勒尔发现铀的放射性

法国P.萨巴蒂埃用镍为催化剂进行催化氢化反应

公元1898年
法国M.居里和英国G.C.N.施密特分别发现钍盐的放射性

法国M.居里和P.居里创建放射化学方法并发现钋和镭

英国W.拉姆齐和M.W.特拉弗斯发现氖、氪、氙

公元1899年
英国R.B.欧文斯和E.卢瑟福发现氡220
法国A.-L.德比埃尔内发现锕

公元1900年
英国E.卢瑟福和法国M.居里发现镭辐射由α、β、γ射线组成

德国F.E.多恩发现氡222

美国M.冈伯格发现三苯甲基自由基

公元1901年
美国G.N.路易斯提出逸度概念

法国 F.-A.V.格利雅发明格利雅试剂

公元1902年
法国M.居里和P.居里分离出90毫克氯化镭

德国W.奥斯特瓦尔德对催化下了确切的定义

公元1903年
英国E.卢瑟福和F.索迪提出放射性嬗变理论

公元1906年
俄国M.С.茨维特发明色谱分析法

德国H.费歇尔提出蛋白质的多肽结构并合成分子量为1000的多肽

公元1907年
美国G.N.路易斯提出活度概念

公元1909年
美国L.H.贝克兰制成酚醛树脂

德国F.哈伯合成氨试验成功

公元1910年
俄国C.B.列别捷夫制成丁钠橡胶

公元1911年
英国E.卢瑟福提出原子的核模型

公元1912年
奥地利F.普雷格尔建立有机元素微量分析法

德国W.H.能斯脱提出热力学第三定律

德国M.von劳厄发现晶体对X射线的衍射

瑞典G.C.de赫维西和德国F.A.帕内特创立放射性示踪原子法

德国F.克拉特和A.罗莱特制成聚乙酸乙烯酯

公元1913年
丹麦N.玻尔提出量子力学的氢原子结构理论

英国W.L.布喇格和俄国Г.В.武尔夫分别得出布喇格-武尔夫方程

英国F.索迪提出同位素概念

美国K.法扬斯发现镤234

英国H.G.J.莫塞莱证实原子序数与原子核内的正电荷数相等

德国M.博登施坦提出化学反应中的链反应概念

英国J.J.汤姆孙和F.W.阿斯顿发现氖有稳定同位素氖20和氖22

公元1916年
德国W.科塞尔提出电价键理论

美国G.N.路易斯提出共价键理论

美国I.朗缪尔导出吸附等温方程

荷兰P.德拜和瑞士P.谢乐发明 X射线粉末法

公元1919年
英国F.W.阿斯顿制成质谱仪

英国E.卢瑟福发现人工核反应

公元1920年
德国H.施陶丁格创立高分子线链型学说

公元1921年
德国O.哈恩发现同质异能素

公元1922年
捷克斯洛伐克J.海洛夫斯基发明极谱法

公元1923年
丹麦J.N.布伦斯惕提出酸碱质子理论

美国G.N.路易斯提出路易斯酸碱理论

英国P.德拜和德国E.休克尔提出强电解质稀溶液静电理论

公元1924年
德国W.O.赫尔曼和W.黑内尔制成聚乙烯醇

法国 L.-V.德布罗意提出电子等微粒具有波粒二象性假说

公元1925年
美国H.S.泰勒提出催化的活性中心理论

公元1926年
奥地利E.薛定谔提出微粒运动的波动方程

丹麦N.J.布耶鲁姆提出离子缔合概念

公元1927年
苏联H.H.谢苗诺夫和英国C.N.欣谢尔伍德分别提出支链反应理论

德国H.戈尔德施米特提出结晶化学规律

公元1928年
印度C.V.喇曼发现喇曼光谱

英国W.H.海特勒、F.W.伦敦和奥

地利E.薛定谔创立分子轨道理论

德国O.P.H.狄尔斯和K.阿尔德发现双烯合成

公元1929年
英国A.弗莱明发现青霉素

德国A.F.J.布特南特等分离并阐明性激素结构

公元1930年
英国C.N.欣谢尔伍德提出催化中间化合物理论

公元1931年
美国H.C.尤里发现氘(重氢)

美国L.C.鲍林和J.C.斯莱特提出杂化轨道理论

公元1932年
英国J.查德威克发现中子

中国化学会成立

公元1933年
美国L.C.鲍林提出共振论

E.春克尔制成丁苯橡胶

公元1934年
法国F.约里奥-居里和I.约里奥-居里发现人工放射性
英国E.W.福西特等制成高压聚乙烯
英国E.卢瑟福发现氚
W.库恩提出高分子链的统计理论

公元1935年
美国H.艾林、英国J.C.波拉尼和A.G.埃文斯提出反应速率的过渡态理论
美国W.H.卡罗瑟斯制成聚己二酰己二胺
英国B.A.亚当斯和E.L.霍姆斯合成离子交换树脂

公元1937年
意大利C.佩列尔和美国E.G.塞格雷人工制得锝
德国O.拜尔制成聚氨酯
英国帝国化学工业公司生产软质聚氯乙烯

公元1938年
德国P.施拉克制成聚己内酰胺
德国O.哈恩等发现铀的核裂变现象

公元1939年
法国M.佩雷发现钫
美国P.J.弗洛里提出缩聚反应动力学方程

公元1940年
美国E.M.麦克米伦和P.H.艾贝尔森人工制得镎
美国G.T.西博格和E.M.麦克米伦等人工制得钚
美国D.R.科森和E.G.塞格雷等发现砹

苏联Г.Н.弗廖罗夫和К.А.彼得扎克发现自发裂变

公元1941年
英国J.R.温菲尔德和J.T.迪克森制成聚对苯二甲酸乙二酯

公元1942年
意大利E.费密等在美国建成核反应堆
美国P.J.弗洛里和M.L.哈金斯提出高分子溶液理论

公元1943年
美国S.A.瓦克斯曼从链霉菌中析离出链霉素

公元1944年
美国G.T.西博格、R.A.詹姆斯和L.O.摩根人工制得镅
美国G.T.西博格、R.A.詹姆斯和A.吉奥索人工制得锔
美国R.B.伍德沃德合成奎宁碱
美国G.T.西博格建立锕系理论

公元1945年
瑞士G.K.施瓦岑巴赫利用乙二胺四乙酸二钠盐进行络合滴定
S.鲁宾研究出扣式电池
美国J.A.马林斯基和L.E.格伦丁宁等分离出钷

公元1949年
美国S.G.汤普森、A.吉奥索和G.T.西博格人工制得锫

公元1950年
美国 S.G.汤普森、K.Jr.斯特里特、A.吉奥索和G.T.西博格人工制得锎
苏联В.А.卡尔金提出非晶态高聚物的三个物理状态(玻璃态、高弹态、粘流态)

公元1952年
美国A.吉奥索等从氢弹试验后的沉降物中发现锿和镄
日本福井谦一提出前线轨道理论
英国A.T.詹姆斯和A.J.P.马丁发明气相色谱法
美国L.E.奥格尔提出配位场理论

公元1953年
美国J.D.沃森和英国F.H.C.克里克提出脱氧核糖核酸的双螺旋结构模型
联邦德国K.齐格勒发现烷基铝和四氯化钛可在常温常压下催化乙烯聚合

公元1953~1954年
联邦德国K.齐格勒和意大利G.纳塔发明齐格勒-纳塔催化剂

公元1954年
联邦德国E.G.维蒂希发现维蒂希试剂
美国R.B.伍德沃德合成番木鳖碱
意大利 G.纳塔等用齐格勒-纳塔催化剂制成等规聚丙烯

公元1955年
美国A.吉奥索、S.G.汤普森、G.T.西博格等人工制得钔
英国F.桑格测定了胰岛素的一级结构
美国杜邦公司制成聚酰亚胺
澳大利亚A.沃尔什发明原子吸收光谱法

公元1956年
英国帝国化学工业公司生产活性染料

公元1957年
英国J.C.肯德鲁测定了鲸肌红蛋白的晶体结构
英国A.凯勒制得聚乙烯单晶并提出高分子链的折叠理论

公元1958年
美国A.吉奥索等和苏联Г.Н.弗廖洛夫等分别人工制得锘
联邦德国R.L.穆斯堡尔发现穆斯堡尔谱
美国古德里奇公司制成顺式-聚异戊二烯

公元1950~1959年
美国R.B.伍德沃德、英国R.罗宾森、英国J.W.康福思和美国W.S.约翰森等完成胆甾醇、可的松、表雄酮和睾丸酮等的全合成

公元1960年
美国R.B.伍德沃德合成叶绿素
美国R.S.耶洛等提出放射免疫分析法
P.B魏斯用分子筛做择形催化剂·P.B.哈密顿用液相色谱法分离氨基酸

公元1961年
国际纯粹与应用化学联合会通过12C=12的原子量基准
美国A.吉奥索等人工制得铹
美国C.S.马维尔等制成聚苯并咪唑

公元1962年
英国N.巴利特合成六氟合铂酸氙
美国R.B.梅里菲尔德发明多肽固相合成法

公元1963年
美国R.G.皮尔孙提出软硬酸碱理论

公元1964年
苏联Г. Н. 弗廖洛夫等人工制得104号元素

公元1965年
美国R.B.伍德沃德和R.霍夫曼提出分子轨道对称守恒原理
中国全合成结晶牛胰岛素
美国通用电气公司制成聚苯醚

公元1967年
美国菲利普斯公司制成聚苯硫醚

公元1968年
美国A.吉奥索等人工制得104 号元素
苏联Г. Н. 弗廖洛夫等人工制得105号元素

公元1969年
比利时I.普里戈金提出耗散结构理论

公元1970年
美国A.吉奥索等人工制得105 号元素

公元1973年
美国R.B.伍德沃德全合成维生素B12
美国杜邦公司合成聚对苯二甲酰对苯二胺

公元1974年
苏联Г.Н.弗廖洛夫等和美国A.吉奥索等分别人工制得 106号元素

公元1976年
苏联Г. Н. 弗廖洛夫等人工制得107号元素

公元1981年
联邦德国G.明岑贝格等人工制得107号元素

公元1982年
联邦德国G.明岑贝格等人工制得109号元素

公元1984年
联邦德国G.明岑贝格等人工制得108号元素

热点内容
二时限目数学科 发布:2025-06-10 09:27:21 浏览:265
老师离别诗 发布:2025-06-10 07:34:51 浏览:527
联合英语 发布:2025-06-10 07:20:10 浏览:991
英语联想记忆 发布:2025-06-10 07:05:54 浏览:987
人教版初中英语单词表 发布:2025-06-10 06:20:31 浏览:118
数学分析ppt 发布:2025-06-10 03:34:54 浏览:310
桌面图标箭头怎么去掉 发布:2025-06-10 00:00:29 浏览:717
音标怎么读 发布:2025-06-09 23:44:49 浏览:274
瓷儿木老师 发布:2025-06-09 22:27:45 浏览:728
网球教育 发布:2025-06-09 22:01:28 浏览:240