次生物质
『壹』 抗生物质
木霉产生一系列挥发性物质及非挥发性次级代谢物,其中一些物质即使不与其他微生物物理接触,也能对它们产生抑制作用。这些具有抑制性作用的物质被称为抗生素。木霉产生的抗真菌代谢物一般有木霉素、绿色菌素、绿粘帚霉素(Howell et al.,1983),而椰子香味的6-n-戊基-2H-吡喃-2酮(PPT)(Claydon et al.,1987)是一些木霉分离株特有的。据统计,木霉产生的抗生性次级代谢产物在200种以上(详见第6章)。
最初,Weindling等(1936)认为木素木霉(T.lignorum)产生木霉素,而 Brian等(1945)认为T.viride产生木霉素和绿胶霉素。1945年,Brian和McGowan首次从T.virens中分离得到了绿胶霉素,证实它能抑制一些真菌孢子的萌发。绿胶霉素和胶霉毒素都与T.virens对马铃薯黑痣病的生物防治有关。最近,T.virens产生的绿胶霉素被证实可抑制R.solani,P.ultinum的生长和S.rolfsii菌核的萌发。绿毛菌醇是绿胶霉素合成途径的终产物,绿胶霉素是绿毛菌醇前体。绿毛菌醇是一种有效的植物毒素,能导致萌发中种子幼根的严重坏死,可作为芽前除草剂使用,它对很多杂草有效,并且生产这种植物毒素的成本也不高。Moffatt等(1969)认为T.viride产生绿毛菌醇,但它很有可能是一株绿粘帚霉。近期研究结果显示,绿粘帚霉(Gliocladium virens)与木霉的关系更近,因此将其划归到木霉属,即绿木霉(T.virens)。
Dennis等(1971b)最初概括性地提出木霉属真菌产生的抗生素在植物生防中发挥作用,他们认为将木霉培养基提取物中的不挥发性化合物的抗生活性归因于单瑞胞霉烯化合物和多肽抗生素。他们随后发现一些分离物的抗生活性是由于产生了挥发性化合物,并指出活性分离物释放出强烈的椰子气味。
1991年,Maiti等报道T.virens产生的挥发性抑制剂能在一定程度上抑制白绢病菌在培养基上的生长(Maiti et al.,1991)。T.viride所散发出的椰子气味的主要成分经鉴定是6-戊基-吡喃酮,并且已证明它对许多植物病原体具有生防活性。这种化合物已从T.harzianum,T.viride,T.koningli和T.hamatum中分离出来,并有抑制莴苣苗萌发的活性。
抗生作用只是一个非常复杂的系统中的其中一个机制,生防效果成功的木霉菌株多与抗生素产生有关,并且水解酶和抗生素的协同拮抗效果明显高于单一作用效果,例如T.harzianum内切几丁质酶和木霉素(gliotoxin)、水解酶和类抗菌肽(peptaibols)协同抑制B.cinerea分生孢子萌发的效果已众所周知。
『贰』 高次元生物能控制低次元生物吗
肯定可以。高次元控制低次元这是宇宙的定律!
『叁』 生物质是一次能源还是二次能源拜托各位了 3Q
二次能源 详细资料: http://ke..com/view/40397.htm
『肆』 什么是次生物质
由生物体内主要物质蛋白质、糖、脂肪衍生的物质,如酚类、类萜和生物碱等。早期认版为它们是代权谢的副产品,不具有生理意义。实际并非完全如此。例如植物中赤霉素、脱落酸属于类萜,它们对生长发育起调节控制作用;酚类衍生物木质素,从进化的观点看,缺乏它植物就不可能由水生到陆生;挥发油(属类萜或酚类)及其他可以吸引昆虫传粉。但也有很多次生物质如橡胶、松香、单宁以及多种生物碱的生理功能仍不了解。
『伍』 次生物质在植物的化学防御中的作用和意义
害诱导的植物挥发性次生物质及其
在植物防御中的作用*
张 瑛 严福顺**
(中国科学院动物研究所 北京 100080)
早在19世纪初,Kirby和Spence就提出:几乎没有一种植物能够避免昆虫的取食为害,同时也没有一种植物能被所有植食性昆虫取食为害。后一种情况反应了任何植物对于昆虫的侵害总有某种防御机制使某些昆虫无法突破。在植物对昆虫的防御机制中最重要的是化学因素,其次是形态结构〔1~2〕。
植物对昆虫化学防御的类型主要有:(1)产生能引起昆虫忌避或抑制昆虫取食的物质,使觅食昆虫避开、离去或者阻碍正在取食中的昆虫继续取食;(2)产生阻碍昆虫对食物进行消化和利用的化学物质;(3)产生某些物质使昆虫中毒死亡,或延迟其生长发育,降低繁殖率,从而使植物本身免于蒙受更大的损害〔2〕。(4)产生某些挥发性物质引诱致害昆虫的天敌,以避免继续受到损害,这种方式又被称作间接防御〔3~4〕。
长期以来,对植物防御机制的研究局限于“植物—植食性昆虫”的两级营养关系中。近十年来,这方面的研究已扩展到“植物—植食性昆虫—植食性昆虫的天敌”三级营养关系中。
植食性昆虫的天敌搜寻猎物时,主要依靠带有相关信息的信息素(infochemicals)。对植食性昆虫的天敌有引诱作用的信息素可能来自于植食性昆虫、寄主植物、或两者相互作用的结果〔5~6〕。昆虫行为实验表明,微红绒茧蜂Cotesia rubecula对分别从寄主昆虫菜粉蝶Pieris rapae的粪便、口腔液、以及受菜粉蝶侵害的植株提取的挥发性物质均表现正趋性〔7〕。昆虫对信息素的利用取决于两个因素:信息素的可检测性(detectability)与可信性(reliability)〔8〕。显然,直接来自食植昆虫的信息素是暗示食植昆虫存在的最可靠的信号。雌性成虫释放的性信息素引诱雄虫前来交配,其天敌就能利用这种高特异性的信息找到目标。昆虫性信息素也能被卵寄生的天敌利用,因为雌虫完成交配后,常在附近产卵。对于以昆虫幼虫为寄主或食物的天敌昆虫来说,植物受害所产生的挥发性物质对它们的引诱作用,远远超过食植昆虫本身或其遗留的粪便〔9〕。因为昆虫自身发出的气味物质量少,在远距离范围内不易被检测到〔8,10〕。与此相比,寄主植物产生的挥发性物质在远距离范围内就比较容易被检测到,不足之处是不如前者可靠。因此,天敌昆虫在搜寻猎物时面临着“可信性—可检测性”问题〔8,11〕。植食性昆虫诱导被害植物产生的挥发性次生物质(herbivore-inced volatiles,以下简称HIV)释放量大,而且与致害昆虫有直接关系,提供的信息明显突出于环境中其它信息,从而将可信性与可检测性这两个方面较好地结合起来。
Dicke及其同事首先发现,被害植物能积极主动地引诱致害昆虫的天敌,即受虫害诱导而改变其挥发性次生物质的组成相,为天敌提供可靠的信息。他们发现当棉红蜘蛛Teranychus urticae在金甲豆的叶片上取食时,植株释放出一组HIV,能引诱捕食性的智利小植绥螨Phytoseiulus persimilis。他们还发现HIV的组成成分依植物种类、红蜘蛛种类的不同而不同,甚至受同一种红蜘蛛为害的植株也因其栽培品系的不同而产生不同的HIV,捕食螨类则能辩别这些差异,被吸引到相关红蜘蛛存在的植株上〔9,12〕。
单纯的物理损伤能使植物释放出大量的挥发性次生物质,其主要成分为己醛、己醇之类的脂肪酸衍生物,能引诱食植昆虫的天敌,但是这种引诱作用在损伤形成后很快就消退了〔10〕。而植食性昆虫的取食活动对植物造成的损伤,不仅能诱导植物改变其挥发性次生物质的组成相,增强对天敌昆虫的引诱作用,而且这种诱导出来的新的组成相能在损伤后持续相当长的时间,其诱导产物则以萜类、吲哚等为常见〔8,3〕。
关于HIV的诱导机制、化学组成、及其在植物防御中的作用等问题的深入研究,将有助于新的害虫防治对策的提出,为我国乃至全球农业的可持续发展作出贡献。
1 虫害诱导的植物挥发性次生物质(HIV)的特点
1.1 植食性昆虫的为害是HIV产生的必要条件
植食性昆虫的天敌能够区分受害植株与未受害植株的气味,体现这种差异的挥发性物质可能来自被侵害的植株,而不是致害昆虫本身〔14〕。在一个由金甲豆、棉红蜘蛛和智利小植绥螨组成的三级营养系统中,棉红蜘蛛的为害使金甲豆植株产生能引诱小植绥螨的HIV。证据有:(1)雌性小植绥螨能区别带有棉红蜘蛛和不带有棉红蜘蛛的植株〔15〕;(2)去掉棉红蜘蛛及其可见的遗留物后,受害植株仍然能引诱小植绥螨,而且持续至少几个小时,但是棉红蜘蛛自己却不能引诱小植绥螨;虽然棉红蜘蛛的粪便对小植绥螨有一点引诱作用,但这并不能解释受害叶片对小植绥螨强大的引诱作用〔16〕;(3)对来自于受棉红蜘蛛侵害的植株、物理损伤的植株、以及未受虫害的植株的挥发性物质分别进行化学分析,发现它们都含有典型的植物化学物质,如脂肪酸衍生物、萜类和苯甲基水扬酸酯等,其中萜类和酚类只在被棉红蜘蛛侵害的植株上空发现或含量更高,(E)-β-罗勒烯、4,8-二甲基-1,3(E),7-壬三烯和里那醇和甲基水扬酸酯都能引诱智利小植绥螨〔4,17〕。此外,对其它三级营养关系的研究也得到类似的结果,比如:(1)金甲豆-棉红蜘蛛或苹果红蜘蛛Panonychus ulmi-智利小植绥螨〔4,18,19〕;(2)玉米Zea mays-甜菜夜蛾Spodoptera exigua-缘腹绒茧蜂Cotesia marginiventris〔20,21〕;(3)卷心菜Brassia oleracea capitata-大菜粉蝶Pieris brassicae或菜粉蝶的幼虫-菜粉蝶绒茧蜂C.glomerata或微红绒茧蜂〔7,22~25〕;(4)芽甘蓝Brassia oleracae L. via. gemmifera-大菜粉蝶的幼虫-菜粉蝶绒茧蜂〔26〕等。
1.2 萜烯类是HIV的主要成分
在许多研究过的三级营养体系中,萜烯类是常见于报道的HIV的主要成分,人为的物理损伤或没有被害虫侵害的植株一般不产生或只产生少量的萜类物质〔17,19,27〕。在其它的一些三级体系中,未受害的植株上空也发现了萜类物质,但其含量明显少于被侵害的植株〔26,28〕。值得注意的是,有两种单萜(E)-4,8-二甲基-1,3,7-壬三烯和4,8,12-三甲基-1,3(E),7(E),11-十三烯在许多昆虫-植物互作关系中,被认为是植食性昆虫诱导的植物挥发性物质,例如被害虫取食侵害后的金甲豆、黄瓜、苹果、玉米、豇豆、棉花等都释放出这两种萜烯类物质〔13〕。它们的存在是否就暗示着食植昆虫的存在,至今尚无定论。虽然一些单子叶植物和双子叶植物含有能催化前体物橙花叔醇和
『陆』 生物质和再生资源的利用前景如何
不容盲目乐观!传统能源在今后仍是绝对主流 !
『柒』 次生物质的功能和生态学意义
赤潮是由于人类活动造成的环境污染引起的,主要是城市排放的大量工业和生活污水污染海域引版起的.因为在权生活污水中含有大量的有机物,被排入海洋中后,被逐渐降解而释放出有机物中的N和P,导致一些有毒藻类大量繁殖造成,使某些海域出现富营养化.藻类过多繁殖会消耗水体中的大量氧气,致使这些海域的海水中缺氧;排放的有毒物质会导致鱼类中毒,对渔业生产危害很大.
故选:B.
『捌』 什么是生物质
生物质是植物通过光合作用生成的有机物,它包括植物、动物及其排泄物、垃圾及有机废水等几大类。生物质的能源来源于太阳,所以生物质能是太阳能的一种。生物质是太阳能最主要的吸收器和储存器,生物质通过光合作用能够把太阳能富集起来,储存于有机物中,这些能量是人类发展所需能源的源泉和基础。生物质是地球上最广泛存在的物质,它包括所有动物、植物和微生物以及由这些有生命物质派生、排泄和代谢的许多有机质。各种生物质都具有一定能量。以生物质为载体,由生物质产生的能量便是生物质能。生物质能是太阳能以化学能形式贮存在生物中的一种能量形式,直接或间接来源于植物的光合作用。地球上的植物进行光合作用所消费的能量,占太阳照射到地球总辐射量的0.2%,这个比例虽不大,但绝对值很惊人:光合作用消费的能量是目前人类能源消费总量的40倍。可见,生物质能是一个巨大的能源。生物质能的主要来源有薪柴、牲畜粪便、制糖作物、城市垃圾和污水、水生植物等。
『玖』 生物质包括哪些
生物质包括植物通过光合作用生成的有机物(如植物、动物及其排泄物)、垃圾及有机废水等几大类。生物质的能源来源于太阳,所以生物质能是太阳能的一种。生物质是是太阳能最主要的吸收器和储存器,生物质通过光合作用能够把太阳能积聚起来,储存于有机物中,这些能量是人类发展所需能源的源泉和基础。
生物质是地球上最广泛存在的物质,它包括所有动物、植物和微生物以及由这些有生命物质派生、排泄和代谢的许多有机质。各种生物质都具有一定能量。以生物质为载体、由生物质产生的能量便是生物质能。生物质能是太阳能以化学能形式贮存在生物中的一种能量形式,直接或间接来源于植物的光合作用。
地球上的植物进行光合作用所消费的能量,占太阳照射到地球总辐射量的0.2%。这个比例虽不大,但绝对值很惊人:经由光合作用转化的太阳能是目前人类能源消费总量的40倍。可见,生物质能是一个巨大的能源。生物质能的主要来源有薪柴、木质废弃物、农业秸秆、牲畜粪便、制糖作物废渣、城市垃圾和污水、水生植物等。
利用现状
中国对生物质能源利用极为重视,己连续在四个国家五年计划将生物质能利用技术的研究与应用列为重点科技攻关项目,开展了生物质能利用技术的研究与开发,如户用沼气池、节柴炕灶、薪炭林、大中型沼气工程、生物质压块成型、气化与气化发电、生物质液体燃料等,取得了多项优秀成果。
政策方面,2005年2月28日,第十届全国人民代表大会常务委员会第十四次会议通过了《可再生能源法》,2006年1月1日起已经正式实施,并于2006年陆续出台了相应的配套措施。这表明中国政府已在法律上明确了可再生能源包括生物质能在现代能源中的地位,并在政策上给予了巨大优惠支持。
2007年,国家发展与改革委员会制订的《中国对应气候变化国家方案》确认,2010年后每年将通过发展生物质能源减少温室气体排放0.3亿吨CO2当量。因此,中国生物质能发展前景和投资前景极为广阔。
中国已经开发出多种固态填充床和流化床气化炉,以秸秆、木屑、稻壳、树枝为原料生产燃气。2006年用于木材和农副产品烘干的有800多台,村镇级秸秆气化集中供气系统近600处,年生产生物质燃气2,000万立方米。
近年来,中国生物油技术的开发取得较大进展。2013年4月24日,中国成功地进行了首次1号生物航空煤油飞机试飞。 这使中国成为继美国、法国和芬兰之后,第四个拥有这项技术的国家。该技术以生物质或废弃食用油为原料,通过转化和提纯制造航空煤油等高附加值产品。它不仅在技术上可行,也为解决所谓“地沟油”回流餐桌的问题提供了新的技术途径。目前面临的成本问题有望在大规模量产时逐步解决。
总体而言,中国生物质能源技术的发展和市场发育还不够完善,生物质能利用技术的整体技术水平与发达国家还有差距,市场亟需规范。但随着环保立法的加强和技术进步,生物质能源行业将会得到快速发展。
『拾』 生物质的含成分
糖类:
常见的糖类有纤维素、淀粉、麦芽糖和葡萄糖。两个葡萄糖分子之间脱水后,它们的分子就会连到一起,成为淀粉,有利于贮存;更多的葡萄糖分子脱水后聚集起来就形成了一个更大的集团——纤维素,这个物质就相对比较稳定了,自然界中只有某些细菌类(如沼气菌)能把它分解成为淀粉或葡萄糖。有的葡萄糖则被细胞转化为其他物质,参与各种生命活动,在不同的条件下与不同的物质组成为不同的碳框架物质。
纤维素是分子量最大的糖类,人的消化系统不能将它分解,所以它不能为人体提供能量,但是现代人们研究发现,它有利于肠内有益细菌的生存,能促进肠胃的蠕动,对人体健康有利。自然界中有的细菌能够将它分解成为简单的葡萄糖。
淀粉是比纤维素简单的糖类,是人类重要的食物和原材料,它在人的口腔里在唾液淀粉酶的作用下,被分解为麦芽糖,所以人在多次咀嚼米粉时,感觉有点甜。它可分解为简单的葡萄糖供人体吸收利用。
麦芽糖在我们常见的啤酒中含有,它是淀粉分解后的比葡萄糖复杂一些的糖类。
葡萄糖是最简单的糖类,能够直接为人体细胞所用,在生物体内,和氧反应生成二氧化碳和水,同时释放出能量,为生命活动提供能量。同时,也参与构成细胞,如核糖。
醛类
一个羰基(C=O)基团和一个氢基(-H)基团,可以组合成为一个新的基团,叫醛基(CHO)基团,有这个基团的物质叫醛,我们相当熟悉的甲醛,碳框架中只有一个碳的醛类,甲醛的重要特点就是它能使蛋白质稳定,具有防腐作用。又是一种重要的化工原料,广泛应用于工业和化妆品行业,同时,过量的非天然甲醛可以致癌。自然界中的甲醛对人体是有益的,如西红柿是很好的抗衰老食品,它里面就含有微量甲醛,这个含量就决定了它清除自由基的特性。植物燃烧不充分时发出的烟中也有甲醛,所以用烟熏过的肉,能够长久保存。在人工心脏瓣膜移植手术中,把牛的心脏瓣膜经过一种醛(叫戊二醛)的处理后,再移植到人的心脏中,可以使人获得健康。甲醛给人类带来的伤害也不少。据美国有关部门统计,全世界每年生产了五十亿磅甲醛。装修材料中超标,化妆品中超标,非法用于食品防腐等事件也常有报导。
酸:
一个羰基(C=O)基团和一个羟基(-OH)基团,可以组合成为羧基(COOH)基团,有这个基团的物质叫酸,甲酸、乙酸、丙酸、脂肪酸、氨基酸都是与我们的生活有密切关系的“酸”。甲酸又称蚁酸,蜜蜂蜇人时,会向人体注入了一点蚁酸,会引起局部皮肤红肿和疼痛。乙酸就是醋酸,用粮食做的,因为粮食中的淀粉可分解成为葡萄糖,再在一定的条件下转化成食醋。它连在一起的碳框架碳的个数是两个,所以食醋学名叫乙酸;如果连在一起的碳框架碳的个数为三个,叫丙酸,人们熟悉的乳酸就是一种丙酸,葡萄糖在一定条件下还可转化为乳酸,如人体运动时,由于供氧不足,葡萄糖分解不完全,肌肉处会产生大量乳酸,使肌肉感到酸痛;人体对酸都是比较敏感的,会产生不舒服的反映。只有胃中有盐酸,保持强酸性。如果碳框架中的碳的个数是多个,并且是首尾相接的排成一列的,就统称为脂肪酸;如果再结合一个氨基,就成为大家熟悉的氨基酸。这些酸是人体不可缺少的营养物质。从人体对酸的反应可以知道,现代人们通过高脂肪高蛋白食物,人体摄入了大量的脂肪酸和氨基酸,就形成了酸性体质。
醇
葡萄糖在一定的条件下还可以变成醇,醇是碳框架中含有羟基(-OH)的物质,如乙醇,就是酒精,在自然界中,熟透的水果可能有酒精的味道,就是葡萄糖变成了乙醇的原因,酿酒就是利用了这一变化。自然界中很多醇都有特殊的香味,现在人们常说的植物精油,有些就是醇。
陆地上的动植物都要保持水分,保持水分离不开一种物质,叫“甘油”,它与酒精乙醇是同一个家族的,叫丙三醇,都有(OH)集团,只是甘油碳框架的每个碳原子上都有(OH)基团,所以才叫“丙三醇”。甘油是食品加工业中通常使用的甜味剂和保湿剂,大多出现在运动食品和代乳品中。由于甘油可以增加人体组织中的水分含量,所以可以增加高热环境下人体的运动能力。也是一种重要的化工原料,它和硝酸可以变成“硝酸甘油”,是一种烈性能炸药,同时,也是一种良药,硝酸甘油还常用作强心剂和抗心绞痛药。
曾经报导的齐二药事件中,就涉及了一种醇,叫二甘醇,它与丙三醇(甘油)一样能保持水份,曾在牙膏和化妆品和工业中广泛代替甘油使用,齐二药事件后,说明这两种醇在人体内的代谢结果是完全不同的,国家也禁止了在牙膏中用“二甘醇”代替“丙三醇”。那些肾衰竭而去世的受害者,是他们的牺牲,让更多的人们免受了“二甘醇”的危害。
酯:
生物体内的酸和醇会生成酯,广泛存在于自然界,例如乙酸和乙醇可以生成乙酸乙酯,在酒、食醋和某些水果中就有这种特殊的香味的物质,所以陈年的老酒和老醋都十分香;乙酸异戊酯存在于香蕉、梨等水果中;苯甲酸甲酯存在于丁香油中;水杨酸甲酯存在于冬青油中。脂肪酸的甘油酯是动植物油脂的主要成分;酯是蜡的主要成分。
三条脂肪酸链与甘油组合,形成甘油三酸脂,就是一种脂肪类物质,我们平时食用的油,它们的成份都是甘油三酸脂,它们经人体消化后,被分解成为甘油和脂肪酸,被人体吸收。胆固醇、维生素D和生物体内的很多激素如性激素都是脂肪类物质。
人体的皮肤分泌的皮脂,也是一种酯,它能保护和滋润我们的皮肤,并具有一种独特的体香味;有些动物能分泌特殊的酯类,如麝能分泌的麝香。天然的酯类大多对人体有益,并具有特殊的香味,人们从中提取出的植物精油和香精,大多都是酯。
构成酯的脂肪酸链越长,这种酯就不再是液体油了,而成了固体蜡;脂肪链越长,分子量越大,就成了树脂,如松香、桐油和天然橡胶等,这些都是天然树脂。人类根据这个自然规律,做出了各种各样的人工树脂和高分子材料,如人们熟悉的聚氨脂树脂和丙烯酸树脂,做成了各种塑料制品。它们都无法或很难被大自然中的生物所分解,给生态环境造成了巨大的影响,如二恶英,白色污染。
苯
还有一种叫“苯”的物质也广泛存在于生物体内,它的碳框架结构为六个碳围成一个环,叫“苯环”,含有这种“苯环”的物质,大多有特殊的香味,被称为“芳香族”物质,在脂肪酸一类物质中,碳没有形成环状,被称为“脂肪族”物质。大多数围成了环的碳框架物质对人体都是有害的,它能使蛋白质沉淀变性,如甲苯,三聚氢胺这些都是有“环”的物质,会对人体造成伤害。
我们已经知道有些酯也有香味,有些醇也有香味,有香味的酯和醇一般对人体是有益的。所有芳香族物质,虽然也有香味,可由于“苯环”的存在,一般对人体都是有害的。这两类不同的香味物质,价格和作用都相差很大,在市场经济的今天,肯定有人用便宜的有害的芳香族人工香料混到昂贵的有害的天然香料中,这提醒人们在消费时注意。
酚:
植物体内的“苯环”如果和一个羟基(-OH)集团组合起来,那就不是醇,而是“酚”了,在自然界中广泛存在于植物的树皮和果实,是单宁的主要组分,它能使植物的花和果实显示各种不同的颜色,也是许多染料的主要组成成份。酚类物质能和氨基结合,使蛋白质稳定,适量的酚类物质对人体有利。如现代人们常提到的“茶多酚”“花青素”等有抗氧化作用能清除“自由基”的物质,就是这类物质。自然界中存在的天然的酚,对人体是有益的。
通过化学方法从石油中提炼的苯类酚类等物质,多半能使人致病,如绝大多数染料中有这个苯环,前几年欧美提出某些染料可以致癌,列出一些禁用的染料,他们的人不能用这些致癌物质。所以有些专家提出不染色的内衣对健康有利,各种彩棉制品也开始流行,反映出人们对环保和健康的重视。
胺:
胺在自然界中分布很广,其中大多数是由氨基酸脱羧生成的。工业制备胺类的方法多是由氨与醇或卤代烷反应制得,产物为各级胺的混合物,分馏后得到纯品。由醛、酮在氨存在下催化还原也可得到相应的胺。工业上也常由硝基化合物、腈、酰胺或含氮杂环化合物催化还原制取胺类化合物。
胺的用途很广。最早发展起来的染料工业就是以苯胺为基础的。有些胺是维持生命活动所必需的,但也有些对生命十分有害,不少胺类化合物有致癌作用,尤其是芳香胺,如萘胺、联苯胺等。
胺中氮原子的结构,很像氨分子中的氮原子,是以三个sp杂化轨道与氢或烃基相连接,组成一个棱锥体,留下一个sp3杂化轨道由孤电子对占据。