初三數學圓
『壹』 初三九年級下數學圓的概念
1.圓是以圓心為對稱中心的中心對稱圖形;圍繞圓心旋轉任意一個角度α,都能夠與原來的重合.
2.頂點在圓心的角叫做圓心角.圓心到弦的距離叫做弦心距.
圓冪定理(相交弦定理、切割線定理及其推論(割線定理)統稱為圓冪定理)
切線長定理
垂徑定理
圓周角定理
弦切角定理
四圓定理
3.在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等.
4.在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那麼它們所對應的其餘各組量都分別相等.
5.把整個圓周等分成360份,每一份弧是1°的弧.圓心角的度數和它所對的弧的度數相等.
6.圓是中心對稱圖形,即圓繞其對稱中心(圓心)旋轉180°後能夠與原來圖形重合,這一性質不難理解.圓和其他中心對稱圖形不同,它還具有旋轉不變性,即圍繞圓心旋轉任意一個角度,都能夠與原來的圖形重合.
7.垂徑定理 垂直於弦的直徑平分這條弦,並且平分弦所對的兩條弧
8.(1)平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
(2)弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
(3)平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
9.圓的兩條平行弦所夾的弧相等
10.(1)一條弧所對的圓周角等於它所對的圓心角的一半.
(2)同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等.
(3)半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑.
(4)如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形.
11.(1)圓是軸對稱圖形,經過圓心的每一條直線都是它的對稱軸.
(2)垂直於弦的直徑平分這條弦,並且平分弦所對的兩條弧.
(3)平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧.
(4)弦的垂直平分線經過圓心,並且平分弦所對的兩條弦.
(5)平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧.
(6)圓的兩條平行弦所夾的弧度數相等.
12.圓是軸對稱圖形,經過圓心的每一條直線都是它的對稱軸.
垂直於弦的直徑平分這條弦,並且平分弦所對的兩條弧.
13.平分弦(不是直徑)的直徑垂直與弦,並且平分弦所對的兩條弧.
14.在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等,所對的弦的弦心距也相等.
15.在同圓或等圓中,相等的弦所對的弧相等,所對的圓心角相等,所對的弦的弦心距也相等.
16.同一個弧有無數個相對的圓周角.
17.弧的比等於弧所對的圓心角的比.
18.圓的內接四邊形的對角互補或相等.
19.不在同一條直線上的三個點能確定一個圓.
20.直徑是圓中最長的弦.
21.一條弦把一個圓分成一個優弧和一個劣弧
『貳』 初三數學關於圓的所有定理
垂徑定理:垂直於弦的直徑平分弦且平分弦所對的弧
推論1:()平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧;
(2)弦的垂直平分線經過圓心,並且平分弦所對的兩條弧;
(3)平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
圓的兩條平行弦所夾的弧相等。
圓心角定理:同圓或等圓中,相等的圓心角所對的弦相等,所對的弧相等,弦心距相等
同一條弧所對的圓周角等於它所對的圓心的角的一半
同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧是等弧
半圓或直徑所對的圓周角是直角;圓周角是直角所對的弧是半圓,所對的弦是直徑
三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
此推論實是初二年級幾何中矩形的推論:在直角三角形中斜邊上的中線等於斜邊的一半的逆定理。
弦切角等於所夾弧所對的圓周角
推論:如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等。
圓的內接四邊形定理:圓的內接四邊形的對角互補,外角等於它的內對角。
切線的性質與判定定理
(1)判定定理:過半徑外端且垂直於半徑的直線是切線
兩個條件:過半徑外端且垂直半徑,二者缺一不可
即:∵MN⊥OA且MN過半徑OA外端
∴MN是⊙O的切線
(2)性質定理:切線垂直於過切點的半徑(如上圖)
推論1:過圓心垂直於切線的直線必過切點
推論2:過切點垂直於切線的直線必過圓心
以上三個定理及推論也稱二推一定理:
即:過圓心
過切點
垂直切線中知道其中兩個條件推出最後一個條件
切線長定理:
從圓外一點引圓的兩條切線,它們的切線長相等,這點和圓心的連線平分兩條切線的夾角。
圓內相交弦定理及其推論:
(1)相交弦定理:圓內兩弦相交,交點分得的兩條線段的乘積相等
即:在⊙O中,∵弦AB、CD相交於點P
∴PA·PB=PC·PA
(2)推論:如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項。
3)切割線定理:從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
(4)割線定理:從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等
圓公共弦定理:連心線垂直平分公共弦
『叄』 數學初三圓的。步驟寫清楚點
一、(1)因為d=4cm r=5cm
d<r
所以此時直線l與圓相交
(2)因為d=5cm r=5cm
d=r
所以此時直線l與圓相切
(3)因為d=6cm r=5cm
d>r
所以此時直線l與圓相離
二、解:因為直線與圓有一個公共點
所以直線與圓相切
則 d=r=10cm
所以圓心到直線的距離為10cm
三、(1)相交 2
(2)相切 1
(3)相離 0
四、解:因為⊙O的直徑為10厘米
所以r=5cm
又因為圓心O到直線AB的距離為10厘米
所以d=10cm
d>r
則⊙O與次直線相離
完了完了。。。哦 第三題和第一題步驟一樣 因為你出的是填空 我就沒有寫過程
你看我寫了這么多,,,
『肆』 數學初三中關於圓的公式
1.圓的周長C=2πr=πd
2.圓的面積S=πr²
3.扇形弧長l=nπr/180
4.扇形面積S=nπr²/360=rl/2
5.圓錐側面積S=πrl
〖圓的定義〗
幾何說:平面上到定點的距離等於定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。
軌跡說:平面上一動點以一定點為中心,一定長為距離運動一周的軌跡稱為圓周,簡稱圓。
集合說:到定點的距離等於定長的點的集合叫做圓。
〖圓的相關量〗
圓周率:圓周長度與圓的直徑長度的比叫做圓周率,
值是3....,
通常用π表示,計算中常取3.14為它的近似值(但奧數常取3或3.1416)。
圓弧和弦:圓上任意兩點間的部分叫做圓弧,簡稱弧。大於半圓的弧稱為優弧,小於半圓的弧稱為劣弧。連接圓上任意兩點的線段叫做弦。經過圓心的弦叫做直徑。
圓心角和圓周角:頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。
內心和外心:過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個三角形的內切圓,其圓心稱為內心。
扇形:在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形。圓錐側面展開圖是一個扇形。這個扇形的半徑成為圓錐的母線。
〖圓和圓的相關量字母表示方法〗
圓—⊙ 半徑—r 弧—⌒ 直徑—d 扇形弧長/圓錐母線—l 周長—C 面積—S
〖圓和其他圖形的位置關系〗
圓和點的位置關系:以點P與圓O的為例(設P是一點,則PO是點到圓心的距離),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內,PO<r。
直線與圓有3種位置關系:
無公共點為相離;
有兩個公共點為相交;
圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。
以直線AB與圓O為例(設OP⊥AB於P,則PO是AB到圓心的距離):
AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO<r。
兩圓之間有5種位置關系:無公共點的,一圓在另一圓之外叫外離,在之內叫內含;有唯一公共點的,一圓在另一圓之外叫外切,在之內叫內切;有兩個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。
兩圓的半徑分別為R和r,且R≥r,圓心距為P:外離P>R+r;外切P=R+r;相交R-r<P<R+r;內切P=R-r;內含P<R-r。
【圓的平面幾何性質和定理】
[編輯本段]一有關圓的基本性質與定理
⑴圓的確定:不在同一直線上的三個點確定一個圓。 圓的對稱性質:圓是軸對稱圖形,其對稱軸是任意一條過圓心的直線。圓也是中心對稱圖形,其對稱中心是圓心。
垂徑定理:垂直於弦的直徑平分這條弦,並且平分弦所對的2條弧。
逆定理:平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的2條弧。
⑵有關圓周角和圓心角的性質和定理 在同圓或等圓中,如果兩個圓心角,兩個圓周角,兩組弧,兩條弦,兩條弦心距中有一組量相等,那麼他們所對應的其餘各組量都分別相等。 一條弧所對的圓周角等於它所對的圓心角的一半。 直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。
⑶有關外接圓和內切圓的性質和定理
①一個三角形有唯一確定的外接圓和內切圓。外接圓圓心是三角形各邊垂直平分線的交點,到三角形三個頂點距離相等;
②內切圓的圓心是三角形各內角平分線的交點,到三角形三邊距離相等。
③S三角=1/2*△三角形周長*內切圓半徑
④兩相切圓的連心線過切點(連心線:兩個圓心相連的線段)
〖有關切線的性質和定理〗
圓的切線垂直於過切點的半徑;經過半徑的一端,並且垂直於這條半徑的直線,是這個圓的切線。
切線判定定理:經過半徑外端並且垂直於這條半徑的直線是圓的切線。
切線的性質:
(1)經過切點垂直於這條半徑的直線是圓的切線。
(2)經過切點垂直於切線的直線必經過圓心。
(3)圓的切線垂直於經過切點的半徑。
切線長定理:從圓外一點到圓的兩條切線的長相等,那點與圓心的連線平分切線的夾角。
〖有關圓的計算公式〗
1.圓的周長C=2πr=πd
2.圓的面積S=πr^2;
3.扇形弧長l=nπr/180
4.扇形面積S=nπr^2;/360=rl/2
5.圓錐側面積S=πrl
【圓的解析幾何性質和定理】
[編輯本段]〖圓的解析幾何方程〗
圓的標准方程:在平面直角坐標系中,以點O(a,b)為圓心,以r為半徑的圓的標准方程是(x-a)^2+(y-b)^2=r^2。
圓的一般方程:把圓的標准方程展開,移項,合並同類項後,可得圓的一般方程是x^2+y^2+Dx+Ey+F=0。和標准方程對比,其實D=-2a,E=-2b,F=a^2+b^2。
圓的離心率e=0,在圓上任意一點的曲率半徑都是r。
〖圓與直線的位置關系判斷〗
平面內,直線Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關系判斷一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等於0),代入x^2+y^2+Dx+Ey+F=0,即成為一個關於x的一元二次方程f(x)=0。
利用判別式b^2-4ac的符號可確定圓與直線的位置關系如下:如果b^2-4ac>0,則圓與直線有2交點,即圓與直線相交。如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切。如果b^2-4ac<0,則圓與直線有0交點,即圓與直線相離。
2.如果B=0即直線為Ax+C=0,即x=-C/A,它平行於y軸(或垂直於x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時的兩個x值x1、x2,並且規定x1<x2,那麼:當x=-C/A<x1或x=-C/A>x2時,直線與圓相離;當x1<x=-C/A<x2時,直線與圓相交;
半徑r,直徑d在直角坐標系中,圓的解析式為:(x-a)^2+(y-b)^2=r^2x^2+y^2+Dx+Ey+F=0 => (x+D/2)^2+(y+E/2)^2=D^2/4+E^2/4-F => 圓心坐標為(-D/2,-E/2) 其實不用這樣算 太麻煩了 只要保證X方Y方前系數都是1 就可以直接判斷出圓心坐標為(-D/2,-E/2) 這可以作為
『伍』 初三數學關於圓的
1.垂徑定理---垂直於弦的直徑平分這條弦,並且平分這條弦所對的兩條弧
2.圓心角度數等於該角所對的弧,等於所對圓周角度數的兩倍
3.在同圓或等圓中,同弧或等弧所對的圓心角相等。
4.圓的切線垂直於過切點的半徑;經過半徑的一端,並且垂直於這條半徑的直線,是這個圓的切線。
切線判定定理:經過半徑外端並且垂直於這條半徑的直線是圓的切線。
切線的性質:(1)經過切點垂直於這條半徑的直線是圓的切線。(2)經過切點垂直於切線的直線必經過圓心。(3)圓的切線垂直於經過切點的半徑。
切線長定理:從圓外一點到圓的兩條切線的長相等,那點與圓心的連線平分切線的夾角。
5.切線的性質定理:圓的切線垂直於經過切點的半徑.
推論1:經過圓心且垂直於切線的直線必經過切點.
推論2:經過切點且垂直於切線的直線必經過圓心.
切線的性質主要有五個:
(1)切線和圓只有一個公共點;
(2)切線和圓心的距離等於圓的半徑;
(3)切線垂直於經過切點的半徑;
(4)經過圓心垂直於切線的直線必過切點;
(5)經過切點垂直於切線的直線必過圓心.
(6)從圓外一點引圓的切線和割線,切線長是這點到割線與圓焦點的兩條線段長的比例中項
其中(1)是由切線的定義得到的,(2)是由直線和圓的位置關系定理得到的,(6)是由相似三角形推得的,也就是切割線定理
『陸』 初三數學圓知識點
1、 圓的有關概念:(1)、確定一個圓的要素是圓心和半徑。(2)連結圓上任意兩點的線段叫做弦。經過圓心的弦叫做直徑。圓上任意兩點間的部分叫做圓弧,簡稱弧。小於半圓周的圓弧叫做劣弧。大於半圓周的圓弧叫做優弧。在同圓或等圓中,能夠互相重合的弧叫做等弧。頂點在圓上,並且兩邊和圓相交的角叫圓周角。經過三角形三個頂點可以畫一個圓,並且只能畫一個,經過三角形三個頂點的圓叫做三角形的外接圓,三角形外接圓的圓心叫做這個三角形的外心,這個三角形叫做這個圓的內接三角形,外心是三角形各邊中垂線的交點;直角三角形外接圓半徑等於斜邊的一半。與三角形各邊都相切的圓叫做三角形的內切圓,三角形的內切圓的圓心叫做三角形的內心,這個三角形叫做圓外切三角形,三角形的內心就是三角形三條內角平分線的交點。直角三角形內切圓半徑 滿足: 。
2、 圓的有關性質(1)定理在同圓或等圓中,如果圓心角相等,那麼它所對的弧相等,所對的弦相等,所對的弦的弦心距相等。推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那麼它們所對的其餘各組量都分別相等。(2)垂徑定理:垂直於弦的直徑平分這條弦,並且平分弦所對的兩條弧。推論1(ⅰ)平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧。(ⅱ)弦的垂直平分線經過圓心,並且平分弦所對的兩條弧。(ⅲ)平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧。推論2圓的兩條平行弦所夾的弧相等。(3)圓周角定理:一條弧所對的圓周角等於該弧所對的圓心角的一半。推論1在同圓或等圓中,同弧或等弧所對的圓周角相等,相等的圓周角所對的弧也相等。推論2半圓或直徑所對的圓周角都相等,都等於90 。90 的圓周角所對的弦是圓的直徑。推論3如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形。(4)切線的判定與性質:判定定理:經過半徑的外端且垂直與這條半徑的直線是圓的切線。性質定理:圓的切線垂直於經過切點的半徑;經過圓心且垂直於切線的直線必經過切點;經過切點切垂直於切線的直線必經過圓心。(5)定理:不在同一條直線上的三個點確定一個圓。(6)圓的切線上某一點與切點之間的線段的長叫做這點到圓的切線長;切線長定理:從圓外一點可以引圓的兩條切線,它們的切線長相等,這一點和圓心的連線平分這兩條切線的夾角。(7)圓內接四邊形對角互補,一個外角等於內對角;圓外切四邊形對邊和相等;(8)弦切角定理:弦切角等於它所它所夾弧對的圓周角。(9)和圓有關的比例線段:相交弦定理:圓內的兩條相交弦,被交點分成的兩條線段長的積相等。如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項。切割線定理:從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項。從圓外一點引圓的兩條割線,這一點到每條割線與圓交點的兩條線段長的積相等。(10)兩圓相切,連心線過切點;兩圓相交,連心線垂直平分公共弦。
『柒』 初中數學圓有什麼定義
初中數學圓有2個定義。
定義1:到定點的距離等於定長的點的集合叫做圓(circle).這個定點叫做圓的圓心。
定義2:到定點的距離等於定長的點都在圖形上,在圖形上的點到定點的距離都等於定長。
在一個平面內,一動點以一定點為中心,以一定長度為距離旋轉一周所形成的封閉曲線叫做圓。圓有無數個對稱軸。
在同一平面內,到定點的距離等於定長的點的集合叫做圓。圓可以表示為集合{M||MO|=r},圓的標准方程是(x - a) ² + (y - b) ² = r ²。其中,o是圓心,r 是半徑。
(7)初三數學圓擴展閱讀:
圓的歷史
圓形,是一個看來簡單,實際上是十分奇妙的形狀。古代人最早是從太陽、陰歷十五的月亮得到圓的概念的。在一萬八千年前的山頂洞人曾經在獸牙、礫石和石珠上鑽孔,那些孔有的就很像圓。到了陶器時代,許多陶器都是圓的。圓的陶器是將泥土放在一個轉盤上製成的。
當人們開始紡線,又制出了圓形的石紡錘或陶紡錘。古代人還發現搬運圓的木頭時滾著走比較省勁。後來他們在搬運重物的時候,就把幾段圓木墊在大樹、大石頭下面滾著走,這樣當然比扛著走省勁得多。
約在6000年前,美索不達米亞人,做出了世界上第一個輪子——圓型的木盤。大約在4000多年前,人們將圓的木盤固定在木架下,這就成了最初的車子。
『捌』 初三數學,關於圓
幫你搜了個答案
答:可以切割出66個小正方形.(1分)
方法一:
(1)我們把10個小正方形排成一排,看成一個長條形的矩形,這個矩形剛好能放入直徑為10.05cm的圓內,如圖中矩形ABCD.
∵AB=10BC=10.
∴對角線AC平方=100+1=101<10.05平方.(3分)
(2)我們在矩形ABCD的上方和下方可以分別放入9個小正方形.
∵新加入的兩排小正方形連同ABCD的一部分可看成矩形EFGH,矩形EFGH的長為9,高為3,對角線EG^2=9^2+3^2=81+9=90<10.05^2.但是新加入的這兩排小正方形不能是每排10個,因為:
10^22+3^2=100+9=109>10.052.(6分)
(3)同理:8^2+5^2=64+25=89<10.05^2,
9^2+5^2=81+25=106>10.05^2,
∴可以在矩形EFGH的上面和下面分別再排下8個小正方形,那麼現在小正方形已有了5層.(8分)
(4)再在原來的基礎上,上下再加一層,共7層,新矩形的高可以看成是7,那麼新加入的這兩排,每排都可以是7個但不能是8個.
∵7^2+7^2=49+49=98<10.05^2,
8^2+7^2=64+49=113>10.05^2.(9分)
(5)在7層的基礎上,上下再加入一層,新矩形的高可以看成是9,這兩層,每排可以是4個但不能是5個.
∵4^2+9^2=16+81=97<10.05^2,
5^2+9^2=25+81=106>10.05^2,
現在總共排了9層,高度達到了9,上下各剩下約0.5cm的空間,因為矩形ABCD的位置不能調整,
故再也放不下一個小正方形了.
∴10+2×9+2×8+2×7+2×4=66(個).(10分)
方法二:
學生也可能按下面的方法排列,只要說理清楚,評分標准參考方法一.
可以按9個正方形排成一排,疊4層,先放入圓內,
然後:(1)上下再加一層,每層8個,現在共有6層;
(2)在前面的基礎上,上下各加6個,現在共有8層;
(3)最後上下還可加一層,但每層只能是一個,共10層.
這樣共有:4×9+2×8+2×6+2×1=66(個).
『玖』 初三數學所有圓的定律
圓的直徑連接兩頭(一端在圓上,一端在直徑上)
這個角是直角
這叫垂徑定理
圓周角定理 是
多少
——乘圓面積或周長=這個扇行的面積或那條弧
360
別的我就不知道了
.圓是以圓心為對稱中心的中心對稱圖形;圍繞圓心旋轉任意一個角度α,都能夠與原來的重合.
2.頂點在圓心的角叫做圓心角.圓心到弦的距離叫做弦心距.
圓冪定理(相交弦定理、切割線定理及其推論(割線定理)統稱為圓冪定理)
切線長定理
垂徑定理
圓周角定理
弦切角定理
四圓定理
3.在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等.
4.在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那麼它們所對應的其餘各組量都分別相等.
5.把整個圓周等分成360份,每一份弧是1°的弧.圓心角的度數和它所對的弧的度數相等.
6.圓是中心對稱圖形,即圓繞其對稱中心(圓心)旋轉180°後能夠與原來圖形重合,這一性質不難理解.圓和其他中心對稱圖形不同,它還具有旋轉不變性,即圍繞圓心旋轉任意一個角度,都能夠與原來的圖形重合.
7.垂徑定理 垂直於弦的直徑平分這條弦,並且平分弦所對的兩條弧
8.(1)平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
(2)弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
(3)平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
9.圓的兩條平行弦所夾的弧相等
10.(1)一條弧所對的圓周角等於它所對的圓心角的一半.
(2)同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等.
(3)半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑.
(4)如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形.
11.(1)圓是軸對稱圖形,經過圓心的每一條直線都是它的對稱軸.
(2)垂直於弦的直徑平分這條弦,並且平分弦所對的兩條弧.
(3)平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧.
(4)弦的垂直平分線經過圓心,並且平分弦所對的兩條弦.
(5)平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧.
(6)圓的兩條平行弦所夾的弧度數相等.
12.圓是軸對稱圖形,經過圓心的每一條直線都是它的對稱軸.
垂直於弦的直徑平分這條弦,並且平分弦所對的兩條弧.
13.平分弦(不是直徑)的直徑垂直與弦,並且平分弦所對的兩條弧.
14.在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等,所對的弦的弦心距也相等.
15.在同圓或等圓中,相等的弦所對的弧相等,所對的圓心角相等,所對的弦的弦心距也相等.
16.同一個弧有無數個相對的圓周角.
17.弧的比等於弧所對的圓心角的比.
18.圓的內接四邊形的對角互補或相等.
19.不在同一條直線上的三個點能確定一個圓.
20.直徑是圓中最長的弦.
21.一條弦把一個圓分成一個優弧和一個劣弧.
補充:九點共圓定理
三角形三邊的中點,三條高的垂足,垂心與各頂點連線的中點這9點共圓.
九點圓是幾何學史上的一個著名問題,最早提出九點圓的是英國的培亞敏.俾幾〔Benjamin Beven〕,問題發表在1804年的一本英國雜志上.第一個完全證明此定理的是法國數學家彭賽列〔1788-1867〕.也有說是1820-1821年間由法國數學家熱而工〔1771-1859〕與彭賽列首先發表的.一位高中教師費爾巴哈〔1800-1834〕也曾研究了九點圓,他的證明發表在1822年的《直邊三角形的一些特殊點的性質》一文里,文中費爾巴哈還獲得了九點圓的一些重要性質〔如下列的性質3〕,故有人稱九點圓為費爾巴哈圓.
九點圓具有許多有趣的性質,例如:
1.三角形的九點圓的半徑是三角形的外接圓半徑之半;
2.九點圓的圓心在歐拉線上,且恰為垂心與外心連線的中點;
3.三角形的九點圓與三角形的內切圓,三個旁切圓均相切〔費爾巴哈定理〕.
4.九點圓是一個垂心組共有的九點圓,所以九點圓共與四個內切圓,十二個旁切圓相切.
5.九點圓心(V),重心(G),垂心(H),外心(O)四點共線且OG=2VG VO=2HO
九點圓圓心的重心坐標的計算跟垂心、外心一樣麻煩。
事先定義的變數與垂心、外心一樣:
d1,d2,d3分別是三角形三個頂點連向另外兩個頂點向量的點乘(句子很長^_^)。
c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。
重心坐標:( (2c1+c2+c3)/4c,(2c2+c1+c3)/4c,(2c3+c1+c2)/4c )。
『拾』 初三數學有關圓的所有公式。
1.
圓的面積公式
S=πr²
圓的周長公式C=2π
r
3短半徑3.84,
長半徑12.5怎麼做
橢圓周長公式:L=2πb+4(a-b)
橢圓周長定理:橢圓的周長等於該橢圓短半軸長為半徑的圓周長(2πb)加上四倍的該橢圓長半軸長(a)與短半求教:三角形、長方形、正方形、梯形、圓等的周長計算公式和面積計算公式?
1、三角形(一般三角形,海倫公式)
周長L
=
a
+
b
+
c(a,b,c為三角形的三個邊的長,下同)
面積S
=
√[p(p
-
a)(p
-
b)(p
-
c)],p
=
(1/2)(a
+
b
+
c)
2、長方形
周長L
=
2(a
+
b)(a,b為長方形相鄰邊的長,下同)
面積S
=
ab
3、正方形
周長L
=
4a
面積S
=
a^2
4、梯形
周長L
=
a
+
b
+
c
+
d(a:上底,b:下底,c,d兩個腰的長,下同)
面積S
=
(1/2)(a
+
b)h(h:梯形的高)
5、圓
周長L
=
2πr(π:圓周率,r:圓的半徑,下同)
面積S
=
πr^2
4
逐步行島
[新手]
平面圖形
周長C和面積S
正方形
a—邊長
C=4a
S=a2
長方形
a和b-邊長
C=2(a+b)
S=ab
三角形
a,b,c-三邊長
h-a邊上的高
s-周長的一半
A,B,C-內角
其中s=(a+b+c)/2
S=ah/2
=ab/2·sinC
=[s(s-a)(s-b)(s-c)]1/2
=a2sinBsinC/(2sinA)
四邊形
d,D-對角線長
α-對角線夾角
S=dD/2·sinα
平行四邊形
a,b-邊長
h-a邊的高
α-兩邊夾角
S=ah
=absinα
菱形
a-邊長
α-夾角
D-長對角線長
d-短對角線長
S=Dd/2
=a2sinα
梯形
a和b-上、下底長
h-高
m-中位線長
S=(a+b)h/2
=mh
圓
r-半徑
d-直徑
C=πd=2πr
S=πr2
=πd2/4
扇形
r—扇形半徑
a—圓心角度數
C=2r+2πr×(a/360)
S=πr2×(a/360)
弓形
l-弧長
b-弦長
h-矢高
r-半徑
α-圓心角的度數
S=r2/2·(πα/180-sinα)
=r2arccos[(r-h)/r]
-
(r-h)(2rh-h2)1/2
=παr2/360
-
b/2·[r2-(b/2)2]1/2
=r(l-b)/2
+
bh/2
≈2bh/3
圓環
R-外圓半徑
r-內圓半徑
D-外圓直徑
d-內圓直徑
S=π(R2-r2)
=π(D2-d2)/4
橢圓
D-長軸
d-短軸
S=πDd/4