當前位置:首頁 » 語數英語 » 高三數學題

高三數學題

發布時間: 2020-11-19 12:19:29

A. 一到高三數學

函數f(x)=根號下ax平方+bx+c的圖像關於任意直線L對稱後的圖像依然為某函數圖象,則實數a,b,c應滿足的充要條件為___a<0且b^2-4ac=0_______?
要使一函數關於任意直線l對稱後的圖像依然為某函數圖像
那麼這個函數只能是一個點
f(x)=根號ax^2+bx+c的圖像是一個點
所以ax^2+bx+c是完全平方數且a<0
所以a<0且b^2-4ac=0

B. 高三數學題 有解析

LZ您好
根據題意
APQ共線
向量AP●向量AQ=lAPl●lAQl*cos0=1
(1,t)●(x,y)=1
x+yt=1

C. 高三的數學題。

巧了我做過,給解答:

9-12:C?BD 10題看f(1)等於什麼

9 可以試著向量法,約定向上向右向前三個正方向,然後專寫出異面直線向屬量,由點乘定義解

D. 高三數學題目

E. 高三數學題

數列b的關系式看不出來。

F. 一到高三數學題 解題不能超過高三知識

(1) f(x)=a(sinx-xcosx)-1/2 x
g(x)=f'(x)=a[cosx-(cosx-xsinx)]-1/2
=axsinx-1/2
g'(x)=a(sinx+源xcosx)
①a=0不符合題意故捨去
②當a>0時,令g'(x)=0,解得x=0
當x>0時,g'(x)>0,g(x)在(0,+∞)單調遞增
當x<0時,g'(x)<0,g(x)在(-∞,0)單調遞減
所以g(x)在[0,π/2]單調遞增
當x=π/2時,g(x)有最大值(π-1)/2
g(π/2)=aπ/2×sinπ/2-1/2=(π-1)/2解得a=1
③當a<0時,令g'(x)=0,解得x=0
當x>0時,g'(x)<0,g(x)在(0,+∞)單調遞減
當x<0時,g'(x)>0,g(x)在(-∞,0)單調遞增
所以g(x)在[0,π/2]單調遞減
當x=0時,g(x)有最大值(π-1)/2
g(0)=-1/2 不符合題意
因此a=1
(2) 由(1)知a=1所以f(x)=sinx-xcosx-1/2 xf'(x)=xsinx-1/2

G. 高三數學題

1),
∵x²+2y²-4x-8y+1=0
∴(x²-4x+4)+2(y²-4y+4)=11
∴(x-2)²+2(y-2)²=11
∴(x-2)²/11+(y-2)²/(11/2)=1
∴將上面是以點(2,2)為中心的橢圓,平移為中心(0,0)時可以回化簡為:
故:x²/11+y²/(11/2)=1。
2),設答L:y-1=k(x-1),交點A(X1,Y1),B(X2,Y2)
聯立C,L得方程組,消去y整理得:

H. 高三數學題

    從已知條件算出來兩個向量的數量積為3即AC.BC=3

    AC^2-BC^2=4

    而(AB)^2=(AC-BC)^2=4

    得出

    AC=√7,BC=√3

    後面的就不知道怎麼算了

    I. 數學題目高三

    這種題目直接代入一個常數就完事了。首先排除A(函數不可能關於x軸對稱)

    當x=1時

    y=lg[4/(2-1) -1]=lg3

    當y=1時

    4/(2-x) -1=10

    2-x=4/11,得x=18/11≠lg3

    顯然f(x)並不關於y=x對稱

    當x=-1時

    y=lg[4/(2+1)-1]=lg(1/3)=-lg3

    (1,lg3)與(-1,-lg3)顯然關於原點對稱,並不關於y軸對稱

    所以可見f(x)有且只可能關於原點對稱,所以C正確。

    至於要正經證明奇函數嘛……

    f(x)=lg[4/(2-x) -1]

    =lg[4/(2-x) -(2-x)/(2-x)]

    =lg[(2+x)/(2-x)]

    f(-x)=lg[(2-x)/(2+x)]

    =-lg[(2+x)/(2-x)]=-f(x)

    故f(x)為奇函數。

    【但正經寫法證明奇函數後,依舊不能排除關於y=x對稱,所以依舊要代入x=1,證明它不關於y=x對稱。】

    熱點內容
    高一歷史期末試題 發布:2025-05-22 23:46:40 瀏覽:782
    學美術賺錢 發布:2025-05-22 22:37:49 瀏覽:740
    n97多少錢 發布:2025-05-22 20:56:55 瀏覽:451
    大學數學的題 發布:2025-05-22 20:37:43 瀏覽:333
    金聰老師 發布:2025-05-22 19:44:09 瀏覽:902
    曹冰老師 發布:2025-05-22 19:03:11 瀏覽:143
    上海五年級數學試卷 發布:2025-05-22 18:44:58 瀏覽:493
    生物質鍋爐廠 發布:2025-05-22 15:57:39 瀏覽:807
    楊氏太極拳老六路教學 發布:2025-05-22 15:03:32 瀏覽:933
    佐川美術館 發布:2025-05-22 13:59:32 瀏覽:891