當前位置:首頁 » 語數英語 » 高一數學必修3

高一數學必修3

發布時間: 2020-11-19 12:54:11

A. 高中數學必修3 人教版公式

||公式分類 公式表達式
乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根與系數的關系 X1+X2=-b/a X1*X2=c/a 註:韋達定理
判別式
b2-4ac=0 註:方程有兩個相等的實根
b2-4ac>0 註:方程有兩個不等的實根
b2-4ac<0 註:方程沒有實根,有共軛復數根
三角函數公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半形公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑
餘弦定理 b2=a2+c2-2accosB 註:角B是邊a和邊c的夾角
圓的標准方程 (x-a)2+(y-b)2=r2 註:(a,b)是圓心坐標
圓的一般方程 x2+y2+Dx+Ey+F=0 註:D2+E2-4F>0
拋物線標准方程 y2=2px y2=-2px x2=2py x2=-2py
直稜柱側面積 S=c*h 斜稜柱側面積 S=c'*h
正棱錐側面積 S=1/2c*h' 正稜台側面積 S=1/2(c+c')h'
圓台側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2
圓柱側面積 S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l
弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r
錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h
斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長
柱體體積公式 V=s*h 圓柱體 V=pi*r2h

B. 高中數學必修三的目錄

第一章抄空間幾何體
1.1
空間幾何體的結構
1.2空間幾何體的三視圖和直觀圖
閱讀與思考畫法幾何與蒙日
1.3空間幾何體的表面積與體積
探究與發現祖暅原理與柱體、椎體、球體的體積
實習作業
小結
復習參考題
第二章點、直線、平面之間的位置關系
2.1空間點、直線、平面之間的位置關系
2.2直線、平面平行的判定及其性質
2.3直線、平面垂直的判定及其性質
閱讀與思考歐幾里得《原本》與公理化方法
小結
復習參考題
第三章直線與方程
3.1直線的傾斜角與斜率
探究與發現魔術師的地毯
3.2直線的方程
3.3直線的交點坐標與距離公式
閱讀與思考笛卡兒與解析幾何
小結
復習參考題
第四章圓與方程
4.1圓的方程
閱讀與思考坐標法與機器證明
4.2直線、圓的位置關系
4.3空間直角坐標系
信息技術應用用《幾何畫板》探究點的軌跡:圓
小結
復習參考題

C. 高一數學必修三的主要內容

主要講的是 1 演算法 類似於電腦里的編程
2 統計
3 概率
沒啥難的 就是演算法有點點難 高考里這冊書考得很少 只要買本必修三的書 看看 預習預習下 重點看下演算法 其他的就沒什麼

D. 高中數學必修三

高中數學必修(3)中的各種演算法程序,要在計算機上運行該程序,除Visal Basic 外, 還可用哪幾種語言來實現呢?

我們知道,到目前為止,已經有近百種高級語言用於計算機軟體開發,但各種語言的用途是不同的。比如

1、C(含C++,VC等)是計算機操作系統開發和用於資料庫操作的語言,對存儲器的操作是其最大的特點之一;

2、FORTRAN是專門用於數學處理的語言,在數組處理、輸出格式、數學模型建立等方面可見其特有的與眾不同;

3、BASIC(含QBASIC,VB等)是簡單易學的高級語言,這是初學者首先要學會的。一般情況下,可以應付簡單的數學計算等方面的工作,對於學生來說,掌握該種語言就可以了。

E. 高一數學必修三知識點

第一章 演算法初步

1.1.1 演算法的概念
1、演算法概念:
在數學上,現代意義上的「演算法」通常是指可以用計算機來解決的某一類問題是程序或步驟,這些程序或步驟必須是明確和有效的,而且能夠在有限步之內完成.
2. 演算法的特點:
(1)有限性:一個演算法的步驟序列是有限的,必須在有限操作之後停止,不能是無限的.
(2)確定性:演算法中的每一步應該是確定的並且能有效地執行且得到確定的結果,而不應當是模稜兩可.
(3)順序性與正確性:演算法從初始步驟開始,分為若干明確的步驟,每一個步驟只能有一個確定的後繼步驟,前一步是後一步的前提,只有執行完前一步才能進行下一步,並且每一步都准確無誤,才能完成問題.
(4)不唯一性:求解某一個問題的解法不一定是唯一的,對於一個問題可以有不同的演算法.
(5)普遍性:很多具體的問題,都可以設計合理的演算法去解決,如心算、計算器計算都要經過有限、事先設計好的步驟加以解決.
1.1.2 程序框圖
1、程序框圖基本概念:
(一)程序構圖的概念:程序框圖又稱流程圖,是一種用規定的圖形、指向線及文字說明來准確、直觀地表示演算法的圖形。
一個程序框圖包括以下幾部分:表示相應操作的程序框;帶箭頭的流程線;程序框外必要文字說明。

(二)構成程序框的圖形符號及其作用
程序框 名稱 功能

起止框 表示一個演算法的起始和結束,是任何流程圖不可少的。

輸入、輸出框 表示一個演算法輸入和輸出的信息,可用在演算法中任何需要輸入、輸出的位置。

處理框 賦值、計算,演算法中處理數據需要的算式、公式等分別寫在不同的用以處理數據的處理框內。

判斷框 判斷某一條件是否成立,成立時在出口處標明「是」或「Y」;不成立時標明「否」或「N」。
學習這部分知識的時候,要掌握各個圖形的形狀、作用及使用規則,畫程序框圖的規則如下:
1、使用標準的圖形符號。2、框圖一般按從上到下、從左到右的方向畫。3、除判斷框外,大多數流程圖符號只有一個進入點和一個退出點。判斷框具有超過一個退出點的唯一符號。4、判斷框分兩大類,一類判斷框「是」與「否」兩分支的判斷,而且有且僅有兩個結果;另一類是多分支判斷,有幾種不同的結果。5、在圖形符號內描述的語言要非常簡練清楚。
(三)、演算法的三種基本邏輯結構:順序結構、條件結構、循環結構。
1、順序結構:順序結構是最簡單的演算法結構,語句與語句之間,框與框之間是按從上到下的順序進行的,它是由若干個依次執行的處理步驟組成的,它是任何一個演算法都離不開的一種基本演算法結構。
順序結構在程序框圖中的體現就是用流程線將程序框自上而
下地連接起來,按順序執行演算法步驟。如在示意圖中,A框和B
框是依次執行的,只有在執行完A框指定的操作後,才能接著執
行B框所指定的操作。
2、條件結構:
條件結構是指在演算法中通過對條件的判斷
根據條件是否成立而選擇不同流向的演算法結構。
條件P是否成立而選擇執行A框或B框。無論P條件是否成立,只能執行A框或B框之一,不可能同時執行A框和B框,也不可能A框、B框都不執行。一個判斷結構可以有多個判斷框。
3、循環結構:在一些演算法中,經常會出現從某處開始,按照一定條件,反復執行某一處理步驟的情況,這就是循環結構,反復執行的處理步驟為循環體,顯然,循環結構中一定包含條件結構。循環結構又稱重復結構,循環結構可細分為兩類:
(1)、一類是當型循環結構,如下左圖所示,它的功能是當給定的條件P成立時,執行A框,A框執行完畢後,再判斷條件P是否成立,如果仍然成立,再執行A框,如此反復執行A框,直到某一次條件P不成立為止,此時不再執行A框,離開循環結構。
(2)、另一類是直到型循環結構,如下右圖所示,它的功能是先執行,然後判斷給定的條件P是否成立,如果P仍然不成立,則繼續執行A框,直到某一次給定的條件P成立為止,此時不再執行A框,離開循環結構。

當型循環結構 直到型循環結構
注意:1循環結構要在某個條件下終止循環,這就需要條件結構來判斷。因此,循環結構中一定包含條件結構,但不允許「死循環」。2在循環結構中都有一個計數變數和累加變數。計數變數用於記錄循環次數,累加變數用於輸出結果。計數變數和累加變數一般是同步執行的,累加一次,計數一次。
1.2.1 輸入、輸出語句和賦值語句
1、輸入語句
(1)輸入語句的一般格式
(2)輸入語句的作用是實現演算法的輸入信息功能;(3)「提示內容」提示用戶輸入什麼樣的信息,變數是指程序在運行時其值是可以變化的量;(4)輸入語句要求輸入的值只能是具體的常數,不能是函數、變數或表達式;(5)提示內容與變數之間用分號「;」隔開,若輸入多個變數,變數與變數之間用逗號「,」隔開。
2、輸出語句
(1)輸出語句的一般格式
(2)輸出語句的作用是實現演算法的輸出結果功能;(3)「提示內容」提示用戶輸入什麼樣的信息,表達式是指程序要輸出的數據;(4)輸出語句可以輸出常量、變數或表達式的值以及字元。
3、賦值語句
(1)賦值語句的一般格式

(2)賦值語句的作用是將表達式所代表的值賦給變數;(3)賦值語句中的「=」稱作賦值號,與數學中的等號的意義是不同的。賦值號的左右兩邊不能對換,它將賦值號右邊的表達式的值賦給賦值號左邊的變數;(4)賦值語句左邊只能是變數名字,而不是表達式,右邊表達式可以是一個數據、常量或算式;(5)對於一個變數可以多次賦值。
注意:①賦值號左邊只能是變數名字,而不能是表達式。如:2=X是錯誤的。②賦值號左右不能對換。如「A=B」「B=A」的含義運行結果是不同的。③不能利用賦值語句進行代數式的演算。(如化簡、因式分解、解方程等)④賦值號「=」與數學中的等號意義不同。

1.2.2條件語句
1、條件語句的一般格式有兩種:(1)IF—THEN—ELSE語句;(2)IF—THEN語句。2、IF—THEN—ELSE語句
IF—THEN—ELSE語句的一般格式為圖1,對應的程序框圖為圖2。

圖1 圖2
分析:在IF—THEN—ELSE語句中,「條件」表示判斷的條件,「語句1」表示滿足條件時執行的操作內容;「語句2」表示不滿足條件時執行的操作內容;END IF表示條件語句的結束。計算機在執行時,首先對IF後的條件進行判斷,如果條件符合,則執行THEN後面的語句1;若條件不符合,則執行ELSE後面的語句2。
3、IF—THEN語句
IF—THEN語句的一般格式為圖3,對應的程序框圖為圖4。

注意:「條件」表示判斷的條件;「語句」表示滿足條件時執行的操作內容,條件不滿足時,結束程序;END IF表示條件語句的結束。計算機在執行時首先對IF後的條件進行判斷,如果條件符合就執行THEN後邊的語句,若條件不符合則直接結束該條件語句,轉而執行其它語句。

1.2.3循環語句

循環結構是由循環語句來實現的。對應於程序框圖中的兩種循環結構,一般程序設計語言中也有當型(WHILE型)和直到型(UNTIL型)兩種語句結構。即WHILE語句和UNTIL語句。
1、WHILE語句
(1)WHILE語句的一般格式是 對應的程序框圖是

(2)當計算機遇到WHILE語句時,先判斷條件的真假,如果條件符合,就執行WHILE與WEND之間的循環體;然後再檢查上述條件,如果條件仍符合,再次執行循環體,這個過程反復進行,直到某一次條件不符合為止。這時,計算機將不執行循環體,直接跳到WEND語句後,接著執行WEND之後的語句。因此,當型循環有時也稱為「前測試型」循環。
2、UNTIL語句
(1)UNTIL語句的一般格式是 對應的程序框圖是

(2)直到型循環又稱為「後測試型」循環,從UNTIL型循環結構分析,計算機執行該語句時,先執行一次循環體,然後進行條件的判斷,如果條件不滿足,繼續返回執行循環體,然後再進行條件的判斷,這個過程反復進行,直到某一次條件滿足時,不再執行循環體,跳到LOOP UNTIL語句後執行其他語句,是先執行循環體後進行條件判斷的循環語句。
分析:當型循環與直到型循環的區別:(先由學生討論再歸納)
(1) 當型循環先判斷後執行,直到型循環先執行後判斷;
在WHILE語句中,是當條件滿足時執行循環體,在UNTIL語句中,是當條件不滿足時執行循環

1.3.1輾轉相除法與更相減損術

1、輾轉相除法。也叫歐幾里德演算法,用輾轉相除法求最大公約數的步驟如下:
(1):用較大的數m除以較小的數n得到一個商 和一個余數 ;(2):若 =0,則n為m,n的最大公約數;若 ≠0,則用除數n除以余數 得到一個商 和一個余數 ;(3):若 =0,則 為m,n的最大公約數;若 ≠0,則用除數 除以余數 得到一個商 和一個余數 ;…… 依次計算直至 =0,此時所得到的 即為所求的最大公約數。
2、更相減損術
我國早期也有求最大公約數問題的演算法,就是更相減損術。在《九章算術》中有更相減損術求最大公約數的步驟:可半者半之,不可半者,副置分母

F. 高中數學必修三重要嗎

就高中數學而言,三角函數肯定是比什麼演算法、概率之類的要重要百倍.因此你必修四一定要好好學!當年我們學高中數學是先學必修一然後是必修四,最後才是必修二、三.高中數學最重要的莫過於函數,函數的思想貫穿於高中數學的始終,尤其是必修一的初等函數和必修四的三角函數,特別重要!還有,你後面的選修會學到圓錐曲線、微積分、不等式選將等,在解題方面都不同程度地與函數有著聯系.同時當你學到後面時,你會發現三角函數的廣泛應用,會發現三角函數工具在解題方面的強大功能!總之,好好學習吧!

G. 高中數學必修3有哪些公式

高中數學必修三有統計,演算法初步,概率共三章。大部分為文字識記內容,公式較少。
1.統計
① 概率=樣本容量÷總體容量
② 分層抽樣抽取數量=第i層個數÷總樣本數×樣本容量
③抽樣距=總體數量÷抽取樣本數量
④平均數x=(x1+x2+x3+......+xn)/n
⑤方差s^2=[(x1-x)^2 +(x2-x)^2+……+(xn-x)^2]/n
⑥標准差=根號(S^2)
⑦線性回歸方程 y=bx+a
2.演算法初步
此部分公式主要有演算法框圖和演算法語句(分為順序結構,選擇結構和循環結構)
3.概率
古典概型的概率計算公式:P(A)=A包含的基本事件數÷總基本事件數
幾何概型的概率公式:P(A)=構成A事件的區域長度(面積,體積)÷構成總事件的區域長度(面積,體積)
互斥事件 P(A1+A2)= P(A1)+ P(A2)
對立事件P(A)=1-P(A拔)

H. 數學高一必修3學什麼

1.
演算法
類似於電腦里的編程
2.統計
3.概率
不過老師應該不會重點去必修三
,而是帶過。
因為在選修里,有這些內容。
老師會先學選修,來講這些內容的~~
你也不用太擔心啦,不難的~~~O(∩_∩)O~

I. 高中數學必修3的知識點總結

第十二部分 統計與統計案例
1.抽樣方法
⑴簡單隨機抽樣:一般地,設一個總體的個數為N,通過逐個不放回的方法從中抽取一個容量為n的樣本,且每個個體被抽到的機會相等,就稱這種抽樣為簡單隨機抽樣。
註:①每個個體被抽到的概率為 ;
②常用的簡單隨機抽樣方法有:抽簽法;隨機數法。
⑵系統抽樣:當總體個數較多時,可將總體均衡的分成幾個部分,然後按照預先制定的
規則,從每一個部分抽取一個個體,得到所需樣本,這種抽樣方法叫系統抽樣。
註:步驟:①編號;②分段;③在第一段採用簡單隨機抽樣方法確定其時個體編號 ;
④按預先制定的規則抽取樣本。
⑶分層抽樣:當已知總體有差異比較明顯的幾部分組成時,為使樣本更充分的反映總體的情況,將總體分成幾部分,然後按照各部分佔總體的比例進行抽樣,這種抽樣叫分層抽樣。
註:每個部分所抽取的樣本個體數=該部分個體數
2.總體特徵數的估計:
⑴樣本平均數 ;
⑵樣本方差 ;
⑶樣本標准差 = ;
3.相關系數(判定兩個變數線性相關性):
註:⑴ >0時,變數 正相關; <0時,變數 負相關;
⑵① 越接近於1,兩個變數的線性相關性越強;② 接近於0時,兩個變數之間幾乎不存在線性相關關系。
4.回歸分析中回歸效果的判定:
⑴總偏差平方和: ⑵殘差: ;⑶殘差平方和: ;⑷回歸平方和: - ;⑸相關指數 。
註:① 得知越大,說明殘差平方和越小,則模型擬合效果越好;
② 越接近於1,,則回歸效果越好。
5.獨立性檢驗(分類變數關系):
隨機變數 越大,說明兩個分類變數,關系越強,反之,越弱。
十、導 數1.導數的意義:曲線在該點處的切線的斜率(幾何意義)、瞬時速度、邊際成本(成本為因變數、產量為自變數的函數的導數). , (C為常數), , .2.多項式函數的導數與函數的單調性:在一個區間上 (個別點取等號) 在此區間上為增函數.在一個區間上 (個別點取等號) 在此區間上為減函數.3.導數與極值、導數與最值:(1)函數 在 處有 且「左正右負」 在 處取極大值;函數 在 處有 且「左負右正」 在 處取極小值.注意:①在 處有 是函數 在 處取極值的必要非充分條件.②求函數極值的方法:先找定義域,再求導,找出定義域的分界點,列表求出極值.特別是給出函數極大(小)值的條件,一定要既考慮 ,又要考慮驗「左正右負」(「左負右正」)的轉化,否則條件沒有用完,這一點一定要切記.③單調性與最值(極值)的研究要注意列表!(2)函數 在一閉區間上的最大值是此函數在此區間上的極大值與其端點值中的「最大值」;函數 在一閉區間上的最小值是此函數在此區間上的極小值與其端點值中的「最小值」;注意:利用導數求最值的步驟:先找定義域 再求出導數為0及導數不存在的的點,然後比較定義域的端點值和導數為0的點對應函數值的大小,其中最大的就是最大值,最小就為最小值.4.應用導數求曲線的切線方程,要以「切點坐標」為橋梁,注意題目中是「處L」還是「過L」,對「二次拋物線」過拋物線上一點的切線 拋物線上該點處的切線,但對「三次曲線」過其上一點的切線包含兩條,其中一條是該點處的切線,另一條是與曲線相交於該點.5.注意應用函數的導數,考察函數單調性、最值(極值),研究函數的性態,數形結合解決方程不等式等相關問題.十一、概率、統計、演算法第十六部分 理科選修部分
1. 排列、組合和二項式定理
⑴排列數公式: =n(n-1)(n-2)…(n-m+1)= (m≤n,m、n∈N*),當m=n時為全排列 =n(n-1)(n-2)…3.2.1=n!;
⑵組合數公式: (m≤n), ;
⑶組合數性質: ;
⑷二項式定理:
①通項: ②注意二項式系數與系數的區別;
⑸二項式系數的性質:
①與首末兩端等距離的二項式系數相等;②若n為偶數,中間一項(第 +1項)二項式系數最大;若n為奇數,中間兩項(第 和 +1項)二項式系數最大;

(6)求二項展開式各項系數和或奇(偶)數項系數和時,注意運用賦值法。
2. 概率與統計
⑴隨機變數的分布列:
①隨機變數分布列的性質:pi≥0,i=1,2,…; p1+p2+…=1;
②離散型隨機變數:
X x1 X2 … xn …
P P1 P2 … Pn …
期望:EX= x1p1 + x2p2 + … + xnpn + … ;
方差:DX= ;
註: ;
③兩點分布:
X 0 1 期望:EX=p;方差:DX=p(1-p).
P 1-p p

4 超幾何分布:
一般地,在含有M件次品的N件產品中,任取n件,其中恰有X件次品,則 其中, 。
稱分布列

X 0 1 … m
P …
為超幾何分布列, 稱X服從超幾何分布。
⑤二項分布(獨立重復試驗):
若X~B(n,p),則EX=np, DX=np(1- p);註: 。
⑵條件概率:稱 為在事件A發生的條件下,事件B發生的概率。
註:①0 P(B|A) 1;②P(B∪C|A)=P(B|A)+P(C|A)。
⑶獨立事件同時發生的概率:P(AB)=P(A)P(B)。
⑷正態總體的概率密度函數: 式中 是參數,分別表示總體的平均數(期望值)與標准差;
(6)正態曲線的性質:
①曲線位於x軸上方,與x軸不相交;②曲線是單峰的,關於直線x= 對稱;
③曲線在x= 處達到峰值 ;④曲線與x軸之間的面積為1;
5 當 一定時,6 曲線隨 質的變化沿x軸平移;
7 當 一定時,8 曲線形狀由 確定: 越大,9 曲線越「矮胖」,10 表示總體分布越集中;
越小,曲線越「高瘦」,表示總體分布越分散。
註:P =0.6826;P =0.9544
P =0.9974第十部分 復數
1.概念:
⑴z=a+bi∈R b=0 (a,b∈R) z= z2≥0;
⑵z=a+bi是虛數 b≠0(a,b∈R);
⑶z=a+bi是純虛數 a=0且b≠0(a,b∈R) z+ =0(z≠0) z2<0;
⑷a+bi=c+di a=c且c=d(a,b,c,d∈R);
2.復數的代數形式及其運算:設z1= a + bi , z2 = c + di (a,b,c,d∈R),則:
(1) z 1± z2 = (a + b) ± (c + d)i;⑵ z1.z2 = (a+bi)

J. 高中數學分別要學必修共多少如何設置的 比如高一,二,三分別上的必修幾

不同學校不一樣。

高一數學必修有5本,必修1到必修5。高一上必修1、必修2、必修4、必修5。高二上必修3和選修。必修1主要是集合與函數;必修2主要是空間幾何體,點與直線平面的關系,直線與方程,圓與方程;必修4主要是三角函數和平面向量;必修5主要是解三角形,數列和不等式。

高中數學內容包括《集合與函數》《三角函數》《不等式》《數列》《復數》《排列、組合、二項式定理》《立體幾何》《平面解析幾何》等部分。

(10)高一數學必修3擴展閱讀

必修1知識點:

1、集合(約4課時)

1)集合的含義與表示

2)集合間的基本關系

3)集合的基本運算

2、函數概念與基本初等函數(約32課時)

1)函數

①了解構成函數的要素,會求一些簡單函數的定義域和值域;了解映射的概念。

②在實際情境中,會根據不同的需要選擇恰當的方法(如圖象法、列表法、解析法)表示函數。

③了解簡單的分段函數,並能簡單應用。

④通過已學過的函數特別是二次函數,理解函數的單調性、最大(小)值及其幾何意義;結合具體函數,了解奇偶性的含義。

⑤學會運用函數圖象理解和研究函數的性質。

2)指數函數

①(細胞的分裂,考古中所用的C的衰減,葯物在人體內殘留量的變化等),了解指數函數模型的實際背景。

②理解有理指數冪的含義,通過具體實例了解實數指數冪的意義,掌握冪的運算。

③理解指數函數的概念和意義,能藉助計算器或計算機畫出具體指數函數的圖象,探索並理解指數函數的單調性與特殊點。

④在解決簡單實際問題的過程中,體會指數函數是一類重要的函數模型。

3)對數函數

①理解對數的概念及其運算性質,知道用換底公式能將一般對數轉化成自然對數或常用對數;通過閱讀材料,了解對數的產生歷史以及對簡化運算的作用。

②通過具體實例,直觀了解對數函數模型所刻畫的數量關系,初步理解對數函數的概念,體會對數函數是一類重要的函數模型;能藉助計算器或計算機畫出具體對數函數的圖象,探索並了解對數函數的單調性與特殊點。

③知道指數函數 與對數函數 互為反函數(a>0,a≠1)。

4)冪函數

通過實例,了解冪函數的概念;結合函數 的圖象,了解它們的變化情況。

5)函數與方程

①結合二次函數的圖象,判斷一元二次方程根的存在性及根的個數,從而了解函數的零點與方程根的聯系。

②根據具體函數的圖象,能夠藉助計算器用二分法求相應方程的近似解,了解這種方法是求方程近似解的常用方法。

6)函數模型及其應用

①利用計算工具,比較指數函數、對數函數以及冪函數增長差異;結合實例體會直線上升、指數爆炸、對數增長等不同函數類型增長的含義。

②收集一些社會生活中普遍使用的函數模型(指數函數、對數函數、冪函數、分段函數等)的實例,了解函數模型的廣泛應用。

7)實習作業

熱點內容
擴大英語 發布:2025-05-11 09:48:26 瀏覽:473
在線教育美國 發布:2025-05-11 08:07:13 瀏覽:899
教育培訓廣告設計 發布:2025-05-11 08:07:13 瀏覽:894
小學語文教育教學論文 發布:2025-05-11 06:32:22 瀏覽:221
佔有女老師 發布:2025-05-11 06:11:24 瀏覽:979
小學師德自查材料 發布:2025-05-11 05:04:18 瀏覽:634
教師女僕 發布:2025-05-11 04:24:51 瀏覽:195
教育雲公司 發布:2025-05-11 04:15:38 瀏覽:601
英語基礎1 發布:2025-05-11 01:46:36 瀏覽:45
燕趙教育 發布:2025-05-11 01:34:11 瀏覽:24