當前位置:首頁 » 語數英語 » 數學期望

數學期望

發布時間: 2020-11-19 17:56:06

什麼數學期望如何計算

數學期望是試驗中每次可能結果的概率乘以其結果的總和。

計算公式:內

1、離散型:

離散型隨機變數X的取值容為X1、X2、X3……Xn,p(X1)、p(X2)、p(X3)……p(Xn)、為X對應取值的概率,可理解為數據X1、X2、X3……Xn出現的頻率高f(Xi),則:

Ⅱ 均值和數學期望是什麼怎麼區分

均值和數學期望沒有區別。在概率論以及統計學中,數學期望或均值,亦簡稱期望,是試驗中每次可能結果的概率乘以其結果的總和,是最基本的數學特徵之一,反映了隨機變數平均取值的大小。

需要注意的是,期望值並不一定等同於「期望」—「期望值」也許與每一個結果都不相等。期望值是該變數輸出值的平均數。期望值並不一定包含於變數的輸出值集合里。

大數定律規定,隨著重復次數接近無窮大,數值的算術平均值幾乎肯定地收斂於期望值。

在概率和統計學中,一個隨機變數的期望值(或期待值)是變數的輸出值乘以其機率的總和,換句話說,期望值是該變數輸出值的平均數。期望值並不一定包含於變數的輸出值集合里。

(2)數學期望擴展閱讀

數學期望的應用

(1)經濟決策

假設某一超市出售的某種商品,每周的需求量X在10至30范圍內等可能取值,該商品的進貨量也在10至30范圍內等可能取值(每周只進一次貨)超市每銷售一單位商品可獲利500元。

若供大於求,則削價處理,每處理一單位商品虧損100元;若供不應求,可從其他超市調撥,此時超市商品可獲利300元。試計算進貨量多少時,超市可獲得最佳利潤。並求出最大利潤的期望值。

分析:由於該商品的需求量(銷售量)X是一個隨機變數,它在區間[10,30]上均勻分布,而銷售該商品的利潤值Y也是隨機變數,它是X的函數,稱為隨機變數的函數。題中所涉及的最佳利潤只能是利潤的數學期望(即平均利潤的最大值)。

因此,本問題的解算過程是先確定Y與X的函數關系,再求出Y的期望E(Y)。最後利用極值法求出E(Y)的極大值點及最大值。

(2)體育比賽問題

乒乓球是我們的國球,上世紀兵兵球也為中國帶了一些外交。中國隊在這項運動中具有絕對的優勢。現就乒乓球比賽的安排提出一個問題:假設德國隊(德國隊名將波爾在中國也有很多球迷)和中國隊比賽。

賽制有兩種,一種是雙方各出3人,三場兩勝制, 一種是雙方各出5人,五場三勝制,哪一種賽制對中國隊更有利。

分析:由於中國隊在這項比賽中的優勢,不妨設中國隊中每一位隊員德國隊員的勝率都為60%,接著只需要比較兩個隊對應的數學期望即可。

參考資料來源:網路-數學期望

Ⅲ 數學期望的意義是什麼

數學期望
mathematical expectation
隨機變數最基本的數學特徵之一。它反映隨機變數平均取值的大小。又稱期望或均值。它是簡單算術平均的一種推廣。例如某城市有10萬個家庭,沒有孩子的家庭有1000個,有一個孩子的家庭有9萬個,有兩個孩子的家庭有6000個,有3個孩子的家庭有3000個, 則此城市中任一個家庭中孩子的數目是一個隨機變數,它可取值0,1,2,3,其中取0的概率為0.01,取1的概率為0.9,取2的概率為0.06,取3的概率為0.03,它的數學期望為0×0.01+1×0.9+2×0.06+3×0.03等於1.11,即此城市一個家庭平均有小孩1.11個。
數學期望的定義
定義1:
按照定義,離散隨機變數的一切可能值工與對應的概率P(若二龍)的乘積之和稱為數學期望,記為咐.如果隨機變數只取得有限個值:x,、瓜、兀
源自: 擋土牆優化設計與風險決策研究——兼述黃... 《南水北調與水利科技》 2004年 勞道邦,李榮義
來源文章摘要:擋土牆作為一般土建工程的攔土建築物常用在閘壩翼牆和渡槽、倒虹吸的進出口過渡段,它的優化設計問題常被忽視。實際上各類擋土牆間的技術和經濟效益差別是相當大的。而一些工程的現實條件又使一些常用擋土牆呈現出諸多方面局限性。黃壁庄水庫除險加固工程的混凝土生產系統的擋土牆建設在優化設計方面向前邁進了一步,在技術和經濟效益方面取得明顯效果,其經驗可供同類工程建設參考。
定義2:
1 決定可靠性的因素常規的安全系數是根據經驗而選取的,即取材料的強度極限均值(概率理論中稱為數學期望)與工作應力均值(數學期望)之比

Ⅳ 「數學期望」是什麼意思

離散型隨機變數的數學期望

定義:離散型隨機變數的一切可能的取值xi與對應的概率P(=xi)之積的和稱為的數學期望.(設級數絕對收斂)記作.

其含義實際上是隨機變數的平均取值.

Ⅳ 數學期望的公式是什麼

E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) = X1*f1(X1) + X2*f2(X2) + …… + Xn*fn(Xn)

X ;1,X ;2,X ;3,……,X。

n為這離散型隨機變數,p(X1),p(X2),p(X3),……p(Xn)為這幾個數據的概率函數。在隨機出現的幾個數據中p(X1),p(X2),p(X3),……p(Xn)概率函數就理解為數據X1,X2,X3,……,Xn出現的頻率f(Xn).

(5)數學期望擴展閱讀

在概率論和統計學中,數學期望(mean)(或均值,亦簡稱期望)是試驗中每次可能結果的概率乘以其結果的總和,是最基本的數學特徵之一。它反映隨機變數平均取值的大小。

需要注意的是,期望值並不一定等同於常識中的「期望」——「期望值」也許與每一個結果都不相等。期望值是該變數輸出值的平均數。期望值並不一定包含於變數的輸出值集合里。

大數定律規定,隨著重復次數接近無窮大,數值的算術平均值幾乎肯定地收斂於期望值。

離散型隨機變數與連續型隨機變數都是由隨機變數取值范圍(取值)確定。

Ⅵ 數學期望值是什麼

此抽獎可能發生的結果:
抽到1000球:概率為
c1,1/c4,1=1/4
抽到800球:
概率為
c1,1/c4,1=1/4
抽到600球:概率為
c1,1/c4,1=1/4
抽到0
球:概率為
c1,1/c4,1=1/4
第一次摸到任意球的概率的幾率都一樣
期望值就是概率乘以它的獎金:1000*1/4+800*1/4+600*1/4+0*1/4=600
但是抽到0球還可以再抽一次,可能發生的結果依然是:
抽到1000球:概率為
c1,1/c4,1=1/4
抽到800球:
概率為
c1,1/c4,1=1/4
抽到600球:概率為
c1,1/c4,1=1/4
抽到0
球:概率為
c1,1/c4,1=1/4
所以期望值是:1000*1/4+800*1/4+600*1/4+0*1/4=600
但是能產生第二次抽獎的可能的前提是必須第一次摸到0球,而第一次摸到0球的概率是1/4,所以第二次的摸獎的期望獎金還需要乘以1/4。
所以第二次期望值是
600*1/4=150
如果第二次又摸到0球,題中說不能再摸了,就不討論了。
所以把沒摸到0球的期望值和摸到0球的期望值分開討論後再相加,就是答案了。600+150=750
可得到的獎金期望值是750元
解答完畢~
希望您能看明白~呵呵

Ⅶ 「數學期望」的意義是什麼

數學期望
l
離散型隨機變數的數學期望
定義:離散型隨機變數的一切可能的取值xi與對應的概率p(=xi)之積的和稱為的數學期望.(設級數絕對收斂)記作.
其含義實際上是隨機變數的平均取值.
具體就是你自己對數學的期望是多大?

Ⅷ 「數學期望」是什麼意思

數學期望(mean)是最基本的數學特徵之一,運用於概率論和統計學中,它是每個可能結果的概率乘以其結果的總和。它反映了隨機變數的平均值。

需要注意的是,期望並不一定等同於常識中的「期望」——「期望」未必等於每一個結果。期望值是變數輸出值的平均值。期望不一定包含在變數的輸出值集合中。

大數定律規定,當重復次數接近無窮大時,數值的算術平均值幾乎肯定會收斂到期望值。

(8)數學期望擴展閱讀:

應用:

1、經濟決策

假設超市銷售某一商品,周需求x的取值范圍為10-30,商品的采購量取值范圍為10-30。超市每售出一件商品可獲利500元。如果供過於求,就會降價,每加工一件商品就要虧損10元。0元;如果供過於求,可以從其他超市轉手。此時,超市商品可獲利300元。超市在計算進貨量時,能得到最大的利潤嗎?得到最大利潤的期望值。

分析:由於商品的需求(銷售量)x是一個隨機變數,它在區間[10,30]上均勻分布,而商品的銷售利潤值y也是一個隨機變數。它是x的函數,稱為隨機變數函數。問題涉及的最佳利潤只能是利潤的數學期望(即平均利潤的最大值)。因此,求解該問題的過程是確定y與x之間的函數關系,然後求出y的期望e(y),最後用極值法求出e(y)的最大點和最大值。

2、競爭問題

乒乓球是我們的國球,上個世紀的軍事球也給中國帶來了一些外交。中國在這項運動中具有絕對優勢。本文提出了一個關於乒乓球比賽安排的問題:假設德國(德國選手波爾在中國也有很多球迷)和中國打乒乓球。有兩種競賽制度,一種是每方三名優勝者,另一種是每方五名優勝者,另一種是每方五名優勝者。哪一個對中國隊更有利?

Ⅸ 什麼叫數學期望

數學期望是概率論早期發展中就已產生的一個概念。當時研究的概率問題大多與賭博有關。假如某人在一局賭博中面臨如下的情況:在總共m+n種等可能出現的結果中,有m種結果可贏得α,其餘n種結果可贏得b), 則就是他在該局賭博中所能期望的收入。數學期望的這種初始形式早在1657年即由荷蘭數學家C.惠更斯明確提出。它是簡單算術平均的一種推廣。 設x為離散型隨機變數,它取值x0,x1,…的概率分別為p1,p2,…,則當級數時,定義它的期望為。這里之所以要求級數絕對收斂,是因為作為期望的這種平均,不應當依賴於求和的次序。若x 為連續型隨機變數,其密度函數為p(x),則當積分時,定義它的期望為。在一般場合,設x是概率空間(Ω,F,p)上的隨機變數,其分布函數為F(x),則當時,定義x的期望為 式中是斯蒂爾傑斯積分;或是隨機變數x 在Ω上對概率測度p的積分。然而,並非所有的隨機變數都具有期望。 隨機變數的期望,有下列性質:E(x+Y)=Ex+EY;若把常數α看作隨機變數,則Eα=α;若x≥0,則Ex≥0;若x與Y獨立,則E(XY)=Ex·EY;若隨機變數x1,x2,…,xn有聯合分布函數F(x1,x2,…,xn),則對一類n元函數

熱點內容
物理過程模擬 發布:2025-05-16 19:11:36 瀏覽:878
賞識教育作文 發布:2025-05-16 18:49:59 瀏覽:234
集英語 發布:2025-05-16 17:04:47 瀏覽:492
老師被虐漫畫 發布:2025-05-16 14:44:27 瀏覽:702
生物中規律 發布:2025-05-16 10:58:44 瀏覽:154
班主任種子 發布:2025-05-16 09:59:57 瀏覽:333
財富地理博客 發布:2025-05-16 08:15:18 瀏覽:567
語文練習與測試六年級上冊 發布:2025-05-16 05:07:12 瀏覽:666
英語代詞表格 發布:2025-05-16 04:23:00 瀏覽:442
生物之最 發布:2025-05-16 01:24:17 瀏覽:701