數學難題
難題」之一:P(多項式演算法)問題對NP(非多項式演算法)問題
難題」之回二:答 霍奇(Hodge)猜想
難題」之三: 龐加萊(Poincare)猜想
難題」之四: 黎曼(Riemann)假設
難題」之五: 楊-米爾斯(Yang-Mills)存在性和質量缺口
難題」之六: 納維葉-斯托克斯(Navier-Stokes)方程的存在性與光滑性
難題」之七: 貝赫(Birch)和斯維訥通-戴爾(Swinnerton-Dyer)猜想
難題」之八:幾何尺規作圖問題
難題」之九:哥德巴赫猜想
難題」之十:四色猜想
『貳』 數學界的七大難題是什麼
21世紀數學七大難題
最近美國麻州的克雷(Clay)數學研究所於2000年5月24日在巴黎法蘭西學院宣
布了一件被媒體炒得火熱的大事:對七個「千僖年數學難題」的每一個懸賞一百萬美元。以
下是這七個難題的簡單介紹。
「千僖難題」之一:P(多項式演算法)問題對NP(非多項式演算法)問題
在一個周六的晚上,你參加了一個盛大的晚會。由於感到局促不安,你想知道這一大廳
中是否有你已經認識的人。你的主人向你提議說,你一定認識那位正在甜點盤附近角落的女
士羅絲。不費一秒鍾,你就能向那裡掃視,並且發現你的主人是正確的。然而,如果沒有這
樣的暗示,你就必須環顧整個大廳,一個個地審視每一個人,看是否有你認識的人。生成問
題的一個解通常比驗證一個給定的解時間花費要多得多。這是這種一般現象的一個例子。與
此類似的是,如果某人告訴你,數13,717,421可以寫成兩個較小的數的乘積,你
可能不知道是否應該相信他,但是如果他告訴你它可以因子分解為3607乘上3803,
那麼你就可以用一個袖珍計算器容易驗證這是對的。不管我們編寫程序是否靈巧,判定一個
答案是可以很快利用內部知識來驗證,還是沒有這樣的提示而需要花費大量時間來求解,被
看作邏輯和計算機科學中最突出的問題之一。它是斯蒂文·考克(StephenCook
)於1971年陳述的。
「千僖難題」之二: 霍奇(Hodge)猜想
二十世紀的數學家們發現了研究復雜對象的形狀的強有力的辦法。基本想法是問在怎樣
的程度上,我們可以把給定對象的形狀通過把維數不斷增加的簡單幾何營造塊粘合在一起來
形成。這種技巧是變得如此有用,使得它可以用許多不同的方式來推廣;最終導至一些強有
力的工具,使數學家在對他們研究中所遇到的形形色色的對象進行分類時取得巨大的進展。
不幸的是,在這一推廣中,程序的幾何出發點變得模糊起來。在某種意義下,必須加上某些
沒有任何幾何解釋的部件。霍奇猜想斷言,對於所謂射影代數簇這種特別完美的空間類型來
說,稱作霍奇閉鏈的部件實際上是稱作代數閉鏈的幾何部件的(有理線性)組合。
「千僖難題」之三: 龐加萊(Poincare)猜想
如果我們伸縮圍繞一個蘋果表面的橡皮帶,那麼我們可以既不扯斷它,也不讓它離開表
面,使它慢慢移動收縮為一個點。另一方面,如果我們想像同樣的橡皮帶以適當的方向被伸
縮在一個輪胎面上,那麼不扯斷橡皮帶或者輪胎面,是沒有辦法把它收縮到一點的。我們說
,蘋果表面是「單連通的」,而輪胎面不是。大約在一百年以前,龐加萊已經知道,二維球
面本質上可由單連通性來刻畫,他提出三維球面(四維空間中與原點有單位距離的點的全體
)的對應問題。這個問題立即變得無比困難,從那時起,數學家們就在為此奮斗。
「千僖難題」之四: 黎曼(Riemann)假設
有些數具有不能表示為兩個更小的數的乘積的特殊性質,例如,2,3,5,7,等等。這樣的
數稱為素數;它們在純數學及其應用中都起著重要作用。在所有自然數中,這種素數的分布
並不遵循任何有規則的模式;然而,德國數學家黎曼(1826~1866)觀察到,素數的頻率緊密
相關於一個精心構造的所謂黎曼蔡塔函數z(s$的性態。著名的黎曼假設斷言,方程z(s)=0的
所有有意義的解都在一條直線上。這點已經對於開始的1,500,000,000個解驗證過。證明它
對於每一個有意義的解都成立將為圍繞素數分布的許多奧秘帶來光明。
「千僖難題」之五: 楊-米爾斯(Yang-Mills)存在性和質量缺口
量子物理的定律是以經典力學的牛頓定律對宏觀世界的方式對基本粒子世界成立的。大
約半個世紀以前,楊振寧和米爾斯發現,量子物理揭示了在基本粒子物理與幾何對象的數學
之間的令人注目的關系。基於楊-米爾斯方程的預言已經在如下的全世界范圍內的實驗室中
所履行的高能實驗中得到證實:布羅克哈文、斯坦福、歐洲粒子物理研究所和築波。盡管如
此,他們的既描述重粒子、又在數學上嚴格的方程沒有已知的解。特別是,被大多數物理學
家所確認、並且在他們的對於「誇克」的不可見性的解釋中應用的「質量缺口」假設,從來
沒有得到一個數學上令人滿意的證實。在這一問題上的進展需要在物理上和數學上兩方面引
進根本上的新觀念。
「千僖難題」之六: 納維葉-斯托克斯(Navier-Stokes)方程的存在性與光滑性
起伏的波浪跟隨著我們的正在湖中蜿蜒穿梭的小船,湍急的氣流跟隨著我們的現代噴氣
式飛機的飛行。數學家和物理學家深信,無論是微風還是湍流,都可以通過理解納維葉-斯
托克斯方程的解,來對它們進行解釋和預言。雖然這些方程是19世紀寫下的,我們對它們的
理解仍然極少。挑戰在於對數學理論作出實質性的進展,使我們能解開隱藏在納維葉-斯托
克斯方程中的奧秘。
「千僖難題」之七:貝赫(Birch)和斯維訥通-戴爾(Swinnerton-Dyer)猜想
數學家總是被諸如x^2+y^2=z^2那樣的代數方程的所有整數解的刻畫問題著迷。歐幾里德曾
經對這一方程給出完全的解答,但是對於更為復雜的方程,這就變得極為困難。事實上,正
如馬蒂雅謝維奇(Yu.V.Matiyasevich)指出,希爾伯特第十問題是不可解的,即,不存在一
般的方法來確定這樣的方法是否有一個整數解。當解是一個阿貝爾簇的點時,貝赫和斯維訥
通-戴爾猜想認為,有理點的群的大小與一個有關的蔡塔函數z(s)在點s=1附近的性態。特
別是,這個有趣的猜想認為,如果z(1)等於0,那麼存在無限多個有理點(解),相反,如果z(
1)不等於0,那麼只存在有限多個這樣的點。
『叄』 世界七大數學難題是什麼具體內容是什麼
四、「哥德巴赫猜想」的證明。我發現了一條「偶數、素數相互關系定理」,證明了這條定理,就可以證明「哥德巴赫猜想」。
『肆』 數學10大難題是什麼
哥德巴赫猜想
難題」之一:P(多項式演算法)問題對NP(非多項式演算法)問題
難題」之二: 霍奇(Hodge)猜想
難題」之三: 龐加萊(Poincare)猜想
難題」之四: 黎曼(Riemann)假設
難題」之五: 楊-米爾斯(Yang-Mills)存在性和質量缺口
難題」之六: 納維葉-斯托克斯(Navier-Stokes)方程的存在性與光滑性
難題」之七: 貝赫(Birch)和斯維訥通-戴爾(Swinnerton-Dyer)猜想
難題」之八:幾何尺規作圖問題
難題」之九:哥德巴赫猜想
難題」之十:四色猜想
美國麻州的克雷(Clay)數學研究所於2000年5月24日在巴黎法蘭西學院宣布了一件被媒體炒得火熱的大事:對七個「千僖年數學難題」的每一個懸賞一百萬美元。以下是這七個難題的簡單介紹。
「千僖難題」之一:P(多項式演算法)問題對NP(非多項式演算法)問題
在一個周六的晚上,你參加了一個盛大的晚會。由於感到局促不安,你想知道這一大廳中是否有你已經認識的人。你的主人向你提議說,你一定認識那位正在甜點盤附近角落的女士羅絲。不費一秒鍾,你就能向那裡掃視,並且發現你的主人是正確的。然而,如果沒有這樣的暗示,你就必須環顧整個大廳,一個個地審視每一個人,看是否有你認識的人。生成問題的一個解通常比驗證一個給定的解時間花費要多得多。這是這種一般現象的一個例子。與此類似的是,如果某人告訴你,數13,717,421可以寫成兩個較小的數的乘積,你可能不知道是否應該相信他,但是如果他告訴你它可以因子分解為3607乘上3803,那麼你就可以用一個袖珍計算器容易驗證這是對的。不管我們編寫程序是否靈巧,判定一個答案是可以很快利用內部知識來驗證,還是沒有這樣的提示而需要花費大量時間來求解,被看作邏輯和計算機科學中最突出的問題之一。它是斯蒂文·考克(StephenCook)於1971年陳述的。
「千僖難題」之二: 霍奇(Hodge)猜想
二十世紀的數學家們發現了研究復雜對象的形狀的強有力的辦法。基本想法是問在怎樣的程度上,我們可以把給定對象的形狀通過把維數不斷增加的簡單幾何營造塊粘合在一起來形成。這種技巧是變得如此有用,使得它可以用許多不同的方式來推廣;最終導至一些強有力的工具,使數學家在對他們研究中所遇到的形形色色的對象進行分類時取得巨大的進展。不幸的是,在這一推廣中,程序的幾何出發點變得模糊起來。在某種意義下,必須加上某些沒有任何幾何解釋的部件。霍奇猜想斷言,對於所謂射影代數簇這種特別完美的空間類型來說,稱作霍奇閉鏈的部件實際上是稱作代數閉鏈的幾何部件的(有理線性)組合。
「千僖難題」之三: 龐加萊(Poincare)猜想
如果我們伸縮圍繞一個蘋果表面的橡皮帶,那麼我們可以既不扯斷它,也不讓它離開表面,使它慢慢移動收縮為一個點。另一方面,如果我們想像同樣的橡皮帶以適當的方向被伸縮在一個輪胎面上,那麼不扯斷橡皮帶或者輪胎面,是沒有辦法把它收縮到一點的。我們說,蘋果表面是「單連通的」,而輪胎面不是。大約在一百年以前,龐加萊已經知道,二維球面本質上可由單連通性來刻畫,他提出三維球面(四維空間中與原點有單位距離的點的全體)的對應問題。這個問題立即變得無比困難,從那時起,數學家們就在為此奮斗。
「千僖難題」之四: 黎曼(Riemann)假設
有些數具有不能表示為兩個更小的數的乘積的特殊性質,例如,2,3,5,7,等等。這樣的數稱為素數;它們在純數學及其應用中都起著重要作用。在所有自然數中,這種素數的分布並不遵循任何有規則的模式;然而,德國數學家黎曼(1826~1866)觀察到,素數的頻率緊密相關於一個精心構造的所謂黎曼蔡塔函數z(s$的性態。著名的黎曼假設斷言,方程z(s)=0的所有有意義的解都在一條直線上。這點已經對於開始的1,500,000,000個解驗證過。證明它對於每一個有意義的解都成立將為圍繞素數分布的許多奧秘帶來光明。
「千僖難題」之五: 楊-米爾斯(Yang-Mills)存在性和質量缺口
量子物理的定律是以經典力學的牛頓定律對宏觀世界的方式對基本粒子世界成立的。大約半個世紀以前,楊振寧和米爾斯發現,量子物理揭示了在基本粒子物理與幾何對象的數學之間的令人注目的關系。基於楊-米爾斯方程的預言已經在如下的全世界范圍內的實驗室中所履行的高能實驗中得到證實:布羅克哈文、斯坦福、歐洲粒子物理研究所和築波。盡管如此,他們的既描述重粒子、又在數學上嚴格的方程沒有已知的解。特別是,被大多數物理學家所確認、並且在他們的對於 「誇克」的不可見性的解釋中應用的「質量缺口」假設,從來沒有得到一個數學上令人滿意的證實。在這一問題上的進展需要在物理上和數學上兩方面引進根本上的新觀念。
「千僖難題」之六: 納維葉-斯托克斯(Navier-Stokes)方程的存在性與光滑性
起伏的波浪跟隨著我們的正在湖中蜿蜒穿梭的小船,湍急的氣流跟隨著我們的現代噴氣式飛機的飛行。數學家和物理學家深信,無論是微風還是湍流,都可以通過理解納維葉-斯托克斯方程的解,來對它們進行解釋和預言。雖然這些方程是19世紀寫下的,我們對它們的理解仍然極少。挑戰在於對數學理論作出實質性的進展,使我們能解開隱藏在納維葉-斯托克斯方程中的奧秘。
「千僖難題」之七: 貝赫(Birch)和斯維訥通-戴爾(Swinnerton-Dyer)猜想
數學家總是被諸如x^2+y^2=z^2那樣的代數方程的所有整數解的刻畫問題著迷。歐幾里德曾經對這一方程給出完全的解答,但是對於更為復雜的方程,這就變得極為困難。事實上,正如馬蒂雅謝維奇(Yu.V.Matiyasevich)指出,希爾伯特第十問題是不可解的,即,不存在一般的方法來確定這樣的方法是否有一個整數解。當解是一個阿貝爾簇的點時,貝赫和斯維訥通-戴爾猜想認為,有理點的群的大小與一個有關的蔡塔函數z(s)在點s=1附近的性態。特別是,這個有趣的猜想認為,如果z(1)等於0,那麼存在無限多個有理點(解),相反,如果z(1)不等於0,那麼只存在有限多個這樣的點。
『伍』 數學難題
f(X)=1/3X3+1/2aX2+X+b,則導數f`(x)=
x²+ax+1,
A在直線y=3x-3上,令y=0,則x=1,
所以點A坐標為(1,0),
f`(1)=2+a=3,所以a=1,
點A在f(x)上,把A(1,0),代入得:
1/3+1/2a+1+b=0,=-4/3-1/2a,又因為回a=1,所以b=-11/6,
所以a+b=1-11/6=-5/6,
希望對你答有所幫助,望採納,謝謝,
『陸』 世界十大數學難題
10、納衛爾-斯托可方程的存在性與光滑性:小船穿梭在波浪起伏的湖中,湍急的氣流跟隨著我們的現代噴氣式飛機的飛行,不管有微風還是湍流都可以通過解納維葉-斯托克斯方程的解來對其進行解釋和語言。
1、NP完全問題:如果一個人跟你說你數13717421可以寫成兩個較小的數的乘積,他告訴你可以分解為3607乘上3803計算機驗證這樣算是對的,人們猜想是不是在多項式時間內,直接算出或是找到正確答案這就是NP=P?的猜想,如果沒有提示是需要花很多時間來解答的。
『柒』 "23個數學難題"都有哪些啊
希爾伯特23個數學問題及其解決情況
(1)康托的連續統基數問題。
1874年,康托猜測在可數集基數和實數集基數之間沒有別的基數,即著名的連續統假設。
1938年,僑居美國的奧地利數理邏輯學家哥德爾證明連續統假設與ZF集合論公理系統的無矛盾性。1963年,美國數學家科思(P.Choen)證明連續統假設與ZF公理彼此獨立。因而,連續統假設不能用ZF公理加以證明。在這個意義下,問題已獲解決。
(2)算術公理系統的無矛盾性。
歐氏幾何的無矛盾性可以歸結為算術公理的無矛盾性。希爾伯特曾提出用形式主義計劃的證明論方法加以證明,哥德爾1931年發表不完備性定理作出否定。根茨(G.Gentaen,1909-1945)1936年使用超限歸納法證明了算術公理系統的無矛盾性。
(3)只根據合同公理證明等底等高的兩個四面體有相等之體積是不可能的。
問題的意思是:存在兩個登高等底的四面體,它們不可能分解為有限個小四面體,使這兩組四面體彼此全等德思(M.Dehn)1900年已解決。
(4)兩點間以直線為距離最短線問題。
此問題提的一般。滿足此性質的幾何很多,因而需要加以某些限制條件。1973年,蘇聯數學家波格列洛夫(Pogleov)宣布,在對稱距離情況下,問題獲解決。
(5)拓撲學成為李群的條件(拓撲群)。
這一個問題簡稱連續群的解析性,即是否每一個局部歐氏群都一定是李群。1952年,由格里森(Gleason)、蒙哥馬利(Montgomery)、齊賓(Zippin)共同解決。1953年,日本的山邁英彥已得到完全肯定的結果。
(6)對數學起重要作用的物理學的公理化。
1933年,蘇聯數學家柯爾莫哥洛夫將概率論公理化。後來,在量子力學、量子場論方面取得成功。但對物理學各個分支能否全盤公理化,很多人有懷疑。
(7)某些數的超越性的證明。
需證:如果α是代數數,β是無理數的代數數,那麼αβ一定是超越數或至少是無理數(例如,2√2和eπ)。蘇聯的蓋爾封特(Gelfond)1929年、德國的施奈德(Schneider)及西格爾(Siegel)1935年分別獨立地證明了其正確性。但超越數理論還遠未完成。目前,確定所給的數是否超越數,尚無統一的方法。
(8)素數分布問題,尤其對黎曼猜想、哥德巴赫猜想和孿生素共問題。
素數是一個很古老的研究領域。希爾伯特在此提到黎曼(Riemann)猜想、哥德巴赫(Goldbach)猜想以及孿生素數問題。黎曼猜想至今未解決。哥德巴赫猜想和孿生素數問題目前也未最終解決,其最佳結果均屬中國數學家陳景潤。
(9)一般互反律在任意數域中的證明。
1921年由日本的高木貞治,1927年由德國的阿廷(E.Artin)各自給以基本解決。而類域理論至今還在發展之中。
(10)能否通過有限步驟來判定不定方程是否存在有理整數解?
求出一個整數系數方程的整數根,稱為丟番圖(約210-290,古希臘數學家)方程可解。1950年前後,美國數學家戴維斯(Davis)、普特南(Putnan)、羅賓遜(Robinson)等取得關鍵性突破。1970年,巴克爾(Baker)、費羅斯(Philos)對含兩個未知數的方程取得肯定結論。1970年。蘇聯數學家馬蒂塞維奇最終證明:在一般情況答案是否定的。盡管得出了否定的結果,卻產生了一系列很有價值的副產品,其中不少和計算機科學有密切聯系。
(11)一般代數數域內的二次型論。
德國數學家哈塞(Hasse)和西格爾(Siegel)在20年代獲重要結果。60年代,法國數學家魏依(A.Weil)取得了新進展。
(12)類域的構成問題。
即將阿貝爾域上的克羅內克定理推廣到任意的代數有理域上去。此問題僅有一些零星結果,離徹底解決還很遠。
(13)一般七次代數方程以二變數連續函數之組合求解的不可能性。
七次方程x^7+ax^3+bx^2+cx+1=0的根依賴於3個參數a、b、c;x=x(a,b,c)。這一函數能否用兩變數函數表示出來?此問題已接近解決。1957年,蘇聯數學家阿諾爾德(Arnold)證明了任一在〔0,1〕上連續的實函數f(x1,x2,x3)可寫成形式∑hi(ξi(x1,x2),x3)(i=1--9),這里hi和ξi為連續實函數。柯爾莫哥洛夫證明f(x1,x2,x3)可寫成形式∑hi(ξi1(x1)+ξi2(x2)+ξi3(x3))(i=1--7)這里hi和ξi為連續實函數,ξij的選取可與f完全無關。1964年,維土斯金(Vituskin)推廣到連續可微情形,對解析函數情形則未解決。
(14)某些完備函數系的有限的證明。
即域K上的以x1,x2,…,xn為自變數的多項式fi(i=1,…,m),R為K〔X1,…,Xm]上的有理函數F(X1,…,Xm)構成的環,並且F(f1,…,fm)∈K[x1,…,xm]試問R是否可由有限個元素F1,…,FN的多項式生成?這個與代數不變數問題有關的問題,日本數學家永田雅宜於1959年用漂亮的反例給出了否定的解決。
(15)建立代數幾何學的基礎。
荷蘭數學家范德瓦爾登1938年至1940年,魏依1950年已解決。
(15)注一舒伯特(Schubert)計數演算的嚴格基礎。
一個典型的問題是:在三維空間中有四條直線,問有幾條直線能和這四條直線都相交?舒伯特給出了一個直觀的解法。希爾伯特要求將問題一般化,並給以嚴格基礎。現在已有了一些可計算的方法,它和代數幾何學有密切的關系。但嚴格的基礎至今仍未建立。
(16)代數曲線和曲面的拓撲研究。
此問題前半部涉及代數曲線含有閉的分枝曲線的最大數目。後半部要求討論備dx/dy=Y/X的極限環的最多個數N(n)和相對位置,其中X、Y是x、y的n次多項式。對n=2(即二次系統)的情況,1934年福羅獻爾得到N(2)≥1;1952年鮑廷得到N(2)≥3;1955年蘇聯的波德洛夫斯基宣布N(2)≤3,這個曾震動一時的結果,由於其中的若干引理被否定而成疑問。關於相對位置,中國數學家董金柱、葉彥謙1957年證明了(E2)不超過兩串。1957年,中國數學家秦元勛和蒲富金具體給出了n=2的方程具有至少3個成串極限環的實例。1978年,中國的史松齡在秦元勛、華羅庚的指導下,與王明淑分別舉出至少有4個極限環的具體例子。1983年,秦元勛進一步證明了二次系統最多有4個極限環,並且是(1,3)結構,從而最終地解決了二次微分方程的解的結構問題,並為研究希爾伯特第(16)問題提供了新的途徑。
(17)半正定形式的平方和表示。
實系數有理函數f(x1,…,xn)對任意數組(x1,…,xn)都恆大於或等於0,確定f是否都能寫成有理函數的平方和?1927年阿廷已肯定地解決。
(18)用全等多面體構造空間。
德國數學家比貝爾巴赫(Bieberbach)1910年,萊因哈特(Reinhart)1928年作出部分解決。
(19)正則變分問題的解是否總是解析函數?
德國數學家伯恩斯坦(Bernrtein,1929)和蘇聯數學家彼德羅夫斯基(1939)已解決。
(20)研究一般邊值問題。
此問題進展迅速,己成為一個很大的數學分支。日前還在繼讀發展。
(21)具有給定奇點和單值群的Fuchs類的線性微分方程解的存在性證明。
此問題屬線性常微分方程的大范圍理論。希爾伯特本人於1905年、勒爾(H.Rohrl)於1957年分別得出重要結果。1970年法國數學家德利涅(Deligne)作出了出色貢獻。
(22)用自守函數將解析函數單值化。
此問題涉及艱深的黎曼曲面理論,1907年克伯(P.Koebe)對一個變數情形已解決而使問題的研究獲重要突破。其它方面尚未解決。
(23)發展變分學方法的研究。
這不是一個明確的數學問題。20世紀變分法有了很大發展。
可見,希爾伯特提出的問題是相當艱深的。正因為艱深,才吸引有志之士去作巨大的努力。
『捌』 23個數學難題有哪些
1)康托的連續統基數問題。
(2)算術公理系統的無矛盾性。
3.只根據合同公理證明等底等高的兩個四面體有相等之體積是不可能的。
(4)兩點間以直線為距離最短線問題。
(5)拓撲學成為李群的條件(拓撲群)。
(6)對數學起重要作用的物理學的公理化。
7)某些數的超越性的證明8)素數分布問題,尤其對黎曼猜想、哥德巴赫猜想和孿生素共問題。
(9)一般互反律在任意數域中的證明。
10)能否通過有限步驟來判定不定方程是否存在有理整數解?
(11)一般代數數域內的二次型論。
(12)類域的構成問題。
13)一般七次代數方程以二變數連續函數之組合求解的不可能性
(14)某些完備函數系的有限的(15)建立代數幾何學的基礎。 (16)代數曲線和曲面的拓撲研究(17)半正定形式的平方和表示18)用全(19)正則變分問題的解是否總是解析函數?
等多面體構造空間。 20)研究一般邊值問題
(21)具有給定奇點和單值群的Fuchs類的線性微分方程解的存在性證明。
(22)用自守函數將解析函數單值化。
(23)發展變分學方法的研究
。
『玖』 十大數學難題
1、幾何尺規作圖問題
這里所說的「幾何尺規作圖問題」是指做圖限制只能用直尺、圓規,而這里的直尺是指沒有刻度只能畫直線的尺。「幾何尺規作圖問題」包括以下四個問題
1.化圓為方-求作一正方形使其面積等於一已知圓;
2.三等分任意角;
3.倍立方-求作一立方體使其體積是一已知立方體的二倍。
4.做正十七邊形。
以上四個問題一直困擾數學家二千多年都不得其解,而實際上這前三大問題都已證明不可能用直尺圓規經有限步驟可解決的。第四個問題是高斯用代數的方法解決的,他也視此為生平得意之作,還交待要把正十七邊形刻在他的墓碑上,但後來他的墓碑上並沒有刻上十七邊形,而是十七角星,因為負責刻碑的雕刻家認為,正十七邊形和圓太像了,大家一定分辨不出來。
2、蜂窩猜想
四世紀古希臘數學家佩波斯提出,蜂窩的優美形狀,是自然界最有效勞動的代表。他猜想,人們所見到的、截面呈六邊形的蜂窩,是蜜蜂採用最少量的蜂蠟建造成的。他的這一猜想稱為蜂窩猜想,但這一猜想一直沒有人能證明。1943年,匈牙利數學家陶斯巧妙地證明,在所有首尾相連的正多邊形中,正多邊形的周長是最小的。1943年,匈牙利數學家陶斯巧妙地證明,在所有首尾相連的正多邊形中,正多邊形的周長是最小的。但如果多邊形的邊是曲線時,會發生什麼情況呢?陶斯認為,正六邊形與其他任何形狀的圖形相比,它的周長最小,但他不能證明這一點。而黑爾在考慮了周邊是曲線時,無論是曲線向外突,還是向內凹,都證明了由許多正六邊形組成的圖形周長最校他已將19頁的證明過程放在網際網路上,許多專家都已看到了這一證明,認為黑爾的證明是正確的。
3、孿生素數猜想
1849年,波林那克提出孿生素生猜想(the conjecture of twin primes),即猜測存在無窮多對孿生素數。孿生素數即相差2的一對素數。例如3和5 ,5和7,11和13,…,10016957和10016959等等都是孿生素數。1966年,中國數學家陳景潤在這方面得到最好的結果:存在無窮多個素數p,使p+2是不超過兩個素數之積。孿生素數猜想至今仍未解決,但一般人都認為是正確的。
4、費馬最後定理
在三百六十多年前的某一天,費馬突然心血來潮在書頁的空白處,寫下一個看起來很簡單的定理這個定理的內容是有關一個方程式 xn +yn = zn
的正整數解的問題,當n=2時就是我們所熟知的畢氏定理(中國古代又稱勾股弦定理)。
費馬聲稱當n>2時,就找不到滿足
xn +yn = zn
的整數解,例如:方程式
x3 +y3 = z3
就無法找到整數解。
始作俑者的費馬也因此留下了千古的難題,三百多年來無數的數學家嘗試要去解決這個難題卻都徒勞無功。這個號稱世紀難題的費馬最後定理也就成了數學界的心頭大患,極欲解之而後快。
不過這個三百多年的數學懸案終於解決了,這個數學難題是由英國的數學家威利斯(Andrew Wiles)所解決。其實威利斯是利用二十世紀過去三十年來抽象數學發展的結果加以證明。
5、四色猜想
1852年,畢業於倫敦大學的弗南西斯.格思里來到一家科研單位搞地圖著色工作時,發現了一種有趣的現象:「看來,每幅地圖都可以用四種顏色著色,使得有共同邊界的國家著上不同的顏色。」
1872年,英國當時最著名的數學家凱利正式向倫敦數學學會提出了這個問題,於是四色猜想成了世界數學界關注的問題。世界上許多一流的數學家都紛紛參加了四色猜想的大會戰。
1976年,美國數學家阿佩爾與哈肯在美國伊利諾斯大學的兩台不同的電子計算機上,用了1200個小時,作了100億判斷,終於完成了四色定理的證明。四色猜想的計算機證明,轟動了世界。
6、哥德巴赫猜想
公元1742年6月7日哥德巴赫(Goldbach)寫信給當時的大數學家歐拉(Euler),提出了以下的猜想:
(a) 任何一個>=6之偶數,都可以表示成兩個奇質數之和。
(b) 任何一個>=9之奇數,都可以表示成三個奇質數之和。
從此,這道著名的數學難題引起了世界上成千上萬數學家的注意。200年過去了,沒有人證明它。哥德巴赫猜想由此成為數學皇冠上一顆可望不可及的「明珠」。
『拾』 世界十大數學難題有哪些
難題」之一:P(多項式演算法)問題對NP(非多項式演算法)問題
難題」之二:版 霍奇(Hodge)猜想
難題」之三:權 龐加萊(Poincare)猜想
難題」之四: 黎曼(Riemann)假設
難題」之五: 楊-米爾斯(Yang-Mills)存在性和質量缺口
難題」之六: 納維葉-斯托克斯(Navier-Stokes)方程的存在性與光滑性
難題」之七: 貝赫(Birch)和斯維訥通-戴爾(Swinnerton-Dyer)猜想
難題」之八:幾何尺規作圖問題
難題」之九:哥德巴赫猜想
難題」之十:四色猜想