高一數學必修1函數
① 高一數學必修1函數的學習方法(最簡單)
要學數學簡單的方法幾乎沒有,給我感覺學數學的方法基本一個樣【擦汗
你要是初中基礎沒打好就趕緊回頭看,至少基本函數概念要了解。
課前預習,老師講的超快,自己先預習一遍,像自學一樣,照例子理解概念,把例題答案蓋住,自己先思考。
上課一定認真聽,按老師說的做,做題什麼的一定認真。不然你死都不知道是怎麼死的【嘆氣 回頭再補都來不及了。
我死了都不相信不做題就能學好,很多題是運用的關鍵。自己買本冊子,要有重點題型點播的例題,然後後面跟著有訓練的。不用都做,看一遍覺得運用靈活的做一下,提高思維能力什麼的
建議每周日總整一下,自認為有用。
函數不難,你認真跟著老師思路走就行了,其實用不著什麼學習方法,以上不過是能讓你比較熟練的理解而已,高中主要培養自主學習能力,到高三你就知道這么做的好處了,養成習慣啊!
② 高一數學必修1函數及其表示
二、函數的有關概念
1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對於集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那麼就稱f:A→B為從集合A到集合B的一個函數.記作: y=f(x),x∈A.其中,x叫做自變數,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)| x∈A }叫做函數的值域.
注意:○2如果只給出解析式y=f(x),而沒有指明它的定義域,則函數的定義域即是指能使這個式子有意義的實數的集合;○3 函數的定義域、值域要寫成集合或區間的形式.
定義域補充
能使函數式有意義的實數x的集合稱為函數的定義域,求函數的定義域時列不等式組的主要依據是:(1)分式的分母不等於零; (2)偶次方根的被開方數不小於零; (3)對數式的真數必須大於零;(4)指數、對數式的底必須大於零且不等於1. (5)如果函數是由一些基本函數通過四則運算結合而成的.那麼,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數為零底不可以等於零 (6)實際問題中的函數的定義域還要保證實際問題有意義.
(又注意:求出不等式組的解集即為函數的定義域。)
2. 構成函數的三要素:定義域、對應關系和值域
再注意:(1)構成函數三個要素是定義域、對應關系和值域.由於值域是由定義域和對應關系決定的,所以,如果兩個函數的定義域和對應關系完全一致,即稱這兩個函數相等(或為同一函數)(2)兩個函數相等當且僅當它們的定義域和對應關系完全一致,而與表示自變數和函數值的字母無關。相同函數的判斷方法:①表達式相同;②定義域一致 (兩點必須同時具備)
(見課本21頁相關例2)
值域補充
(1)、函數的值域取決於定義域和對應法則,不論採取什麼方法求函數的值域都應先考慮其定義域. (2).應熟悉掌握一次函數、二次函數、指數、對數函數及各三角函數的值域,它是求解復雜函數值域的基礎。
3. 函數圖象知識歸納
(1)定義:在平面直角坐標系中,以函數 y=f(x) , (x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數 y=f(x),(x ∈A)的圖象.
C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上 . 即記為C={ P(x,y) | y= f(x) , x∈A }
圖象C一般的是一條光滑的連續曲線(或直線),也可能是由與任意平行與Y軸的直線最多隻有一個交點的若干條曲線或離散點組成。
(2) 畫法
A、描點法:根據函數解析式和定義域,求出x,y的一些對應值並列表,以(x,y)為坐標在坐標系內描出相應的點P(x, y),最後用平滑的曲線將這些點連接起來.
B、圖象變換法(請參考必修4三角函數)
常用變換方法有三種,即平移變換、伸縮變換和對稱變換
(3)作用:
1、直觀的看出函數的性質;2、利用數形結合的方法分析解題的思路。提高解題的速度。
發現解題中的錯誤。
4.快去了解區間的概念
(1)區間的分類:開區間、閉區間、半開半閉區間;(2)無窮區間;(3)區間的數軸表示.
5.什麼叫做映射
一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對於集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那麼就稱對應f:A B為從集合A到集合B的一個映射。記作「f:A B」
給定一個集合A到B的映射,如果a∈A,b∈B.且元素a和元素b對應,那麼,我們把元素b叫做元素a的象,元素a叫做元素b的原象
說明:函數是一種特殊的映射,映射是一種特殊的對應,①集合A、B及對應法則f是確定的;②對應法則有「方向性」,即強調從集合A到集合B的對應,它與從B到A的對應關系一般是不同的;③對於映射f:A→B來說,則應滿足:(Ⅰ)集合A中的每一個元素,在集合B中都有象,並且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中對應的象可以是同一個;(Ⅲ)不要求集合B中的每一個元素在集合A中都有原象。
6. 常用的函數表示法及各自的優點:
○1 函數圖象既可以是連續的曲線,也可以是直線、折線、離散的點等等,注意判斷一個圖形是否是函數圖象的依據;○2 解析法:必須註明函數的定義域;○3 圖象法:描點法作圖要注意:確定函數的定義域;化簡函數的解析式;觀察函數的特徵;○4 列表法:選取的自變數要有代表性,應能反映定義域的特徵.
注意啊:解析法:便於算出函數值。列表法:便於查出函數值。圖象法:便於量出函數值
補充一:分段函數 (參見課本P24-25)
在定義域的不同部分上有不同的解析表達式的函數。在不同的范圍里求函數值時必須把自變數代入相應的表達式。分段函數的解析式不能寫成幾個不同的方程,而就寫函數值幾種不同的表達式並用一個左大括弧括起來,並分別註明各部分的自變數的取值情況.(1)分段函數是一個函數,不要把它誤認為是幾個函數;(2)分段函數的定義域是各段定義域的並集,值域是各段值域的並集.
補充二:復合函數
如果y=f(u),(u∈M),u=g(x),(x∈A),則 y=f[g(x)]=F(x),(x∈A) 稱為f、g的復合函數。
例如: y=2sinX y=2cos(X2+1)
7.函數單調性
(1).增函數
設函數y=f(x)的定義域為I,如果對於定義域I內的某個區間D內的任意兩個自變數x1,x2,當x1<x2時,都有f(x1)<f(x2),那麼就說f(x)在區間D上是增函數。區間D稱為y=f(x)的單調增區間 (睇清楚課本單調區間的概念)
如果對於區間D上的任意兩個自變數的值x1,x2,當x1<x2 時,都有f(x1)>f(x2),那麼就說f(x)在這個區間上是減函數.區間D稱為y=f(x)的單調減區間.
注意:○1 函數的單調性是在定義域內的某個區間上的性質,是函數的局部性質;
○2 必須是對於區間D內的任意兩個自變數x1,x2;當x1<x2時,總有f(x1)<f(x2) 。
(2) 圖象的特點
如果函數y=f(x)在某個區間是增函數或減函數,那麼說函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.
(3).函數單調區間與單調性的判定方法
(A) 定義法:
○1 任取x1,x2∈D,且x1<x2;○2 作差f(x1)-f(x2);○3 變形(通常是因式分解和配方);○4 定號(即判斷差f(x1)-f(x2)的正負);○5 下結論(指出函數f(x)在給定的區間D上的單調性).
(B)圖象法(從圖象上看升降)_
(C)復合函數的單調性
復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律如下:
函數 單調性
u=g(x) 增 增 減 減
y=f(u) 增 減 增 減
y=f[g(x)] 增 減 減 增
注意:1、函數的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫成其並集. 2、還記得我們在選修里學習簡單易行的導數法判定單調性嗎?
8.函數的奇偶性
(1)偶函數
一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那麼f(x)就叫做偶函數.
(2).奇函數
一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那麼f(x)就叫做奇函數.
注意:○1 函數是奇函數或是偶函數稱為函數的奇偶性,函數的奇偶性是函數的整體性質;函數可能沒有奇偶性,也可能既是奇函數又是偶函數。
○2 由函數的奇偶性定義可知,函數具有奇偶性的一個必要條件是,對於定義域內的任意一個x,則-x也一定是定義域內的一個自變數(即定義域關於原點對稱).
(3)具有奇偶性的函數的圖象的特徵
偶函數的圖象關於y軸對稱;奇函數的圖象關於原點對稱.
總結:利用定義判斷函數奇偶性的格式步驟:○1 首先確定函數的定義域,並判斷其定義域是否關於原點對稱;○2 確定f(-x)與f(x)的關系;○3 作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數.
注意啊:函數定義域關於原點對稱是函數具有奇偶性的必要條件.首先看函數的定義域是否關於原點對稱,若不對稱則函數是非奇非偶函數.若對稱,(1)再根據定義判定; (2)有時判定f(-x)=±f(x)比較困難,可考慮根據是否有f(-x)±f(x)=0或f(x)/f(-x)=±1來判定; (3)利用定理,或藉助函數的圖象判定 .
9、函數的解析表達式
(1).函數的解析式是函數的一種表示方法,要求兩個變數之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域.
(2).求函數的解析式的主要方法有:待定系數法、換元法、消參法等,如果已知函數解析式的構造時,可用待定系數法;已知復合函數f[g(x)]的表達式時,可用換元法,這時要注意元的取值范圍;當已知表達式較簡單時,也可用湊配法;若已知抽象函數表達式,則常用解方程組消參的方法求出f(x)
10.函數最大(小)值(定義見課本p36頁)
○1 利用二次函數的性質(配方法)求函數的最大(小)值○2 利用圖象求函數的最大(小)值○3 利用函數單調性的判斷函數的最大(小)值:如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);
第二章 基本初等函數
一、指數函數
(一)指數與指數冪的運算
1.根式的概念:一般地,如果 ,那麼 叫做 的 次方根(n th root),其中 >1,且 ∈ *.
當 是奇數時,正數的 次方根是一個正數,負數的 次方根是一個負數.此時, 的 次方根用符號 表示.式子 叫做根式(radical),這里 叫做根指數(radical exponent), 叫做被開方數(radicand).
當 是偶數時,正數的 次方根有兩個,這兩個數互為相反數.此時,正數 的正的 次方根用符號 表示,負的 次方根用符號- 表示.正的 次方根與負的 次方根可以合並成± ( >0).由此可得:負數沒有偶次方根;0的任何次方根都是0,記作 。
注意:當 是奇數時, ,當 是偶數時,
2.分數指數冪
正數的分數指數冪的意義,規定:
,
0的正分數指數冪等於0,0的負分數指數冪沒有意義
指出:規定了分數指數冪的意義後,指數的概念就從整數指數推廣到了有理數指數,那麼整數指數冪的運算性質也同樣可以推廣到有理數指數冪.
3.實數指數冪的運算性質
(1) ? ;
(2) ;
(3) .
(二)指數函數及其性質
1、指數函數的概念:一般地,函數 叫做指數函數(exponential function),其中x是自變數,函數的定義域為R.
注意:指數函數的底數的取值范圍,底數不能是負數、零和1.
2、指數函數的圖象和性質
a>1 0<a<1
圖象特徵 函數性質
向x、y軸正負方向無限延伸 函數的定義域為R
圖象關於原點和y軸不對稱 非奇非偶函數
函數圖象都在x軸上方 函數的值域為R+
函數圖象都過定點(0,1)
自左向右看,
圖象逐漸上升 自左向右看,
圖象逐漸下降 增函數 減函數
在第一象限內的圖象縱坐標都大於1 在第一象限內的圖象縱坐標都小於1
在第二象限內的圖象縱坐標都小於1 在第二象限內的圖象縱坐標都大於1
圖象上升趨勢是越來越陡 圖象上升趨勢是越來越緩 函數值開始增長較慢,到了某一值後增長速度極快; 函數值開始減小極快,到了某一值後減小速度較慢;
注意:利用函數的單調性,結合圖象還可以看出:
(1)在[a,b]上, 值域是 或 ;
(2)若 ,則 ; 取遍所有正數當且僅當 ;
(3)對於指數函數 ,總有 ;
(4)當 時,若 ,則 ;
二、對數函數
(一)對數
1.對數的概念:一般地,如果 ,那麼數 叫做以 為底 的對數,記作: ( — 底數, — 真數, — 對數式)
說明:○1 注意底數的限制 ,且 ;
○2 ;
○3 注意對數的書寫格式.
兩個重要對數:
○1 常用對數:以10為底的對數 ;
○2 自然對數:以無理數 為底的對數的對數 .
2、 對數式與指數式的互化
對數式 指數式
對數底數 ← → 冪底數
對數 ← → 指數
真數 ← → 冪
(二)對數的運算性質
如果 ,且 , , ,那麼:
○1 ? + ;
○2 - ;
○3 .
注意:換底公式
( ,且 ; ,且 ; ).
利用換底公式推導下面的結論(1) ;(2) .
(二)對數函數
1、對數函數的概念:函數 ,且 叫做對數函數,其中 是自變數,函數的定義域是(0,+∞).
注意:○1 對數函數的定義與指數函數類似,都是形式定義,注意辨別。
如: , 都不是對數函數,而只能稱其為對數型函數.
○2 對數函數對底數的限制: ,且 .
2、對數函數的性質:
a>1 0<a<1
圖象特徵 函數性質
函數圖象都在y軸右側 函數的定義域為(0,+∞)
圖象關於原點和y軸不對稱 非奇非偶函數
向y軸正負方向無限延伸 函數的值域為R
函數圖象都過定點(1,0)
自左向右看,
圖象逐漸上升 自左向右看,
圖象逐漸下降 增函數 減函數
第一象限的圖象縱坐標都大於0 第一象限的圖象縱坐標都大於0
第二象限的圖象縱坐標都小於0 第二象限的圖象縱坐標都小於0
(三)冪函數
1、冪函數定義:一般地,形如 的函數稱為冪函數,其中 為常數.
2、冪函數性質歸納.
(1)所有的冪函數在(0,+∞)都有定義,並且圖象都過點(1,1);
(2) 時,冪函數的圖象通過原點,並且在區間 上是增函數.特別地,當 時,冪函數的圖象下凸;當 時,冪函數的圖象上凸;
(3) 時,冪函數的圖象在區間 上是減函數.在第一象限內,當 從右邊趨向原點時,圖象在 軸右方無限地逼近 軸正半軸,當 趨於 時,圖象在 軸上方無限地逼近 軸正半軸.
第三章 函數的應用
一、方程的根與函數的零點
1、函數零點的概念:對於函數 ,把使 成立的實數 叫做函數 的零點。
2、函數零點的意義:函數 的零點就是方程 實數根,亦即函數 的圖象與 軸交點的橫坐標。即:
方程 有實數根 函數 的圖象與 軸有交點 函數 有零點.
3、函數零點的求法:
求函數 的零點:
○1 (代數法)求方程 的實數根;
○2 (幾何法)對於不能用求根公式的方程,可以將它與函數 的圖象聯系起來,並利用函數的性質找出零點.
4、二次函數的零點:
二次函數 .
1)△>0,方程 有兩不等實根,二次函數的圖象與 軸有兩個交點,二次函數有兩個零點.
2)△=0,方程 有兩相等實根(二重根),二次函數的圖象與 軸有一個交點,二次函數有一個二重零點或二階零點.
3)△<0,方程 無實根,二次函數的圖象與 軸無交點,二次函數無零點.
我數學很好 有不會問我 O
③ 高中數學必修一基本初等函數公式
基本初等函數
一、指數函數
(一)指數與指數冪的運算
1.根式的概念:一般地,如果 ,那麼 叫做 的 次方根(n th root),其中 >1,且 ∈ *.
當 是奇數時,正數的 次方根是一個正數,負數的 次方根是一個負數.此時, 的 次方根用符號 表示.式子 叫做根式(radical),這里 叫做根指數(radical exponent), 叫做被開方數(radicand).
當 是偶數時,正數的 次方根有兩個,這兩個數互為相反數.此時,正數 的正的 次方根用符號 表示,負的 次方根用符號- 表示.正的 次方根與負的 次方根可以合並成± ( >0).由此可得:負數沒有偶次方根;0的任何次方根都是0,記作 。
注意:當 是奇數時, ,當 是偶數時,
2.分數指數冪
正數的分數指數冪的意義,規定:
1、0的正分數指數冪等於0,
2、0的負分數指數冪沒有意義
指出:規定了分數指數冪的意義後,指數的概念就從整數指數推廣到了有理數指數,那麼整數指數冪的運算性質也同樣可以推廣到有理數指數冪.
3.實數指數冪的運算性質
(二)指數函數及其性質
1、指數函數的概念:一般地,函數 叫做指數函數(exponential ),其中x是自變數,函數的定義域為R.
注意:指數函數的底數的取值范圍,底數不能是負數、零和1.
2、指數函數的圖象和性質
1、a>1
2、0
3、向x、y軸正負方向無限延伸
4、函數的定義域為R
5、圖象關於原點和y軸不對稱
6、非奇非偶函數
7、函數圖象都在x軸上方
8、函數的值域為R+
9、函數圖象都過定點(0,1)
自左向右看,圖象逐漸上升;
自左向右看,圖象逐漸下降。
增函數;減函數
在第一象限內的圖象縱坐標都大於1
在第一象限內的圖象縱坐標都小於1
在第二象限內的圖象縱坐標都小於1
在第二象限內的圖象縱坐標都大於1
圖象上升趨勢是越來越陡;圖象上升趨勢是越來越緩
函數值開始增長較慢,到了某一值後增長速度極快;
函數值開始減小極快,到了某一值後減小速度較慢;
注意:利用函數的單調性,結合圖象還可以看出:
二、對數函數
(一)對數
1.對數的概念:一般地,如果 ,那麼數 叫做以 為底 的對數,記作: ( — 底數, — 真數, — 對數式)
說明:
1 )注意底數的限制 ,且 ;
2 )注意對數的書寫格式.
2、兩個重要對數:
1 常用對數:以10為底的對數 ;
2 自然對數:以無理數 為底的對數的對數 .
對數式與指數式的互化
對數式 指數式
對數底數 ← → 冪底數
對數 ← → 指數
真數 ← → 冪
(二)對數的運算性質
注意:換底公式
利用換底公式推導下面的結論(1) ;(2) .
(二)對數函數
1、對數函數的概念:函數 ,且 叫做對數函數,其中 是自變數,函數的定義域是(0,+∞).
注意:
1) 對數函數的定義與指數函數類似,都是形式定義,注意辨別。
如: , 都不是對數函數,而只能稱其為對數型函數.
2) 對數函數對底數的限制: ,且 .
2、對數函數的性質:
a>1
0
函數性質
1函數圖象都在y軸右側
2函數的定義域為(0,+∞)
3圖象關於原點和y軸不對稱
4非奇非偶函數
5向y軸正負方向無限延伸
6函數的值域為R
7函數圖象都過定點(1,0)
自左向右看,圖象逐漸上升
自左向右看,圖象逐漸下降
增函數
減函數
第一象限的圖象縱坐標都大於0
第一象限的圖象縱坐標都大於0
第二象限的圖象縱坐標都小於0
第二象限的圖象縱坐標都小於0
(三)冪函數
1、冪函數定義:一般地,形如 的函數稱為冪函數,其中 為常數.
2、冪函數性質歸納.
(1)所有的冪函數在(0,+∞)都有定義,並且圖象都過點(1,1);
(2) 時,冪函數的圖象通過原點,並且在區間 上是增函數.特別地,當 時,冪函數的圖象下凸;當 時,冪函數的圖象上凸;
(3) 時,冪函數的圖象在區間 上是減函數.在第一象限內,當 從右邊趨向原點時,圖象在 軸右方無限地逼近 軸正半軸,當 趨於 時,圖象在 軸上方無限地逼近 軸正半軸.
第三章 函數的應用
一、方程的根與函數的零點
1、函數零點的概念:對於函數 ,把使 成立的實數 叫做函數 的零點。
2、函數零點的意義:函數 的零點就是方程 實數根,亦即函數 的圖象與 軸交點的橫坐標。即:
方程 有實數根 函數 的圖象與 軸有交點 函數 有零點.
3、函數零點的求法:
求函數 的零點:
1 (代數法)求方程 的實數根;
2 (幾何法)對於不能用求根公式的方程,可以將它與函數 的圖象聯系起來,並利用函數的性質找出零點.
4、二次函數的零點:
二次函數 .
1)△>0,方程 有兩不等實根,二次函數的圖象與 軸有兩個交點,二次函數有兩個零點.
2)△=0,方程 有兩相等實根(二重根),二次函數的圖象與 軸有一個交點,二次函數有一個二重零點或二階零點.
3)△<0,方程 無實根,二次函數的圖象與 軸無交點,二次函數無零點.
三角函數和反三角函數
這是起源於幾何學的最簡單的超越函數。高等分析學中計量角度的方法是所謂弧度法,即以單位圓周上的弧段量度相應的圓心角。三角函數是sinx、cosx以及由它們導出的 和它們的定義如圖1所示。sinx和cosx在 x=0處的泰勒展式為(2)(3)它們的收斂半徑為。sinx、cosx、tanx、cotx 、secx 、cosecx的反函數分別為 arcsinx、 arccosx、 arctanx、arccotx、arcsecx、arccosecx(或記為sin-1x、 cos-1x、tan-1x、cot-1x、sec-1x、cosec-1x),
初等函數圖形
並稱為反三角函數。 指數函數和對數函數 設α為一正數,則y=αz表示以α為底的指數函數(圖2)。其反函數y=logαx稱為以α為底的對數函數(圖3)。特別當α=e時稱y=ez(或expx)和y=logαx=lnx(或logx)為指數函數和對數函數。logx能由下面的積分式定義它表示由雙曲線 、下由t軸、左右分別由t=1和t=x兩直線所圍的面積。由此可知當x在正實軸上變化時,y=logx取值在實軸上,且log1=0。它是x的增函數,導數。此外logx滿足加法定理,即log(x1·x2)=logx1+logx2。
對數函數的反函數指數函數
ex是定義在實軸上取值於正實數的增函數,且 e0=1。 ex的導數與它本身相同。此外ex滿足乘法定理,即 。ex在x=0處的泰勒展式為。
雙曲函數和反雙曲函數
由指數函數經有理運算可導出雙曲函
初等函數
數。其性質與三角函數很相似,並以 sinhx、coshx、tanhx、cothx、sechx、cosechx表示之,其定義如下:分別稱為雙曲正弦(圖4)和雙曲餘弦(圖5)。像三角函數一樣,由它們導出的雙曲正切(圖6)tanhx=sinhx/coshx,雙曲餘切(圖7)cothx=coshx/sinhx等都稱為雙曲函數。它們有如下的幾何解釋,即雙曲線x2-y2=1(x>0)上取一點M,又令O為原點,N=(1,0),將ON,OM和雙曲線上的弧所圍面積記為θ/2,點M的坐標視為θ的函數,並記為coshθ和sinhθ,即有表示式(5)。初等函數 初等函數 初等函數 初等函數復變數初等函數 定義域為復數域的初等函數。
有理函數、冪函數和根式函數
兩個復系數的多項式之比為有理函數,它實現擴充的復平面到自身的解析映射。分式線性函數 是一個特殊的有理函數,它在復分析中有重要的意義。另一個特殊情形是冪函數w=zn,n 是自然數,
初等函數
它在全平面是解析的,且。因此當n≥2時,它在全平面除z=0以外到處實現共形映射(保角映射)。它將圓周丨z丨= r變為圓周|w|=rn,將射線argz=θ變為射線argw=nθ。任何一個區域,只要該區域中任兩點的輻角差小於2π/n,它就是w=zn的單葉性區域。冪函數 w=zn的反函數為根式函數,它有n 個值,(k=0,1,…,n-1),稱為它的分支。它們在任何區域θ1z <θ1+2π 中都單值解析而且將這個區域變為區域。它們的導數為。
指數函數和對數函數
在指數函數式(4)中將x換為復變數z,便得到復變數的指數函數w=ez,並且,顯然有 (k為整數)。復指數函數有類似於實指數函數的性質:ez是一整函數且對任何復數z,ez≠0;它滿足乘法定理:;ez以2kπi為周期,即;並且它的導數與本身相同,即 。函數w=ez在全平面實現共形映射。任何一個區域,只要對區域內任兩點,其虛部之差小於2π,它就是ez的單葉性區域。例如,指數函數把直線x=x0變為圓周,把直線y=y0變為射線argw=y0,因而把區域Sk變為區域 0w <2π,把寬度為β的帶形區域α0< α0+β(β≤2π)變為開度為β的角形域α0w<α0+β。對數函數w=Lnz是指數函數ez的反函數,它有無窮多個值2kπ)(k 為整數),稱為它的分支。每一個分支在區域θ0z<θ0+ 2π 中是解析的,且有。對數函數把這個區域單葉地變為帶形區域θ0w <θ0+2π,也把開度為β的角形域θ0z<θ0+β(β≤2π)變為寬度為β的帶形區域θ0w <θ0+β。 特別(Lnz)0=Lnz是實對數函數 lnz在復數域上的推廣。象實對數函數一樣,它滿足加法定理,即對任兩個不為零的復數z1和z2。
④ 高一數學必修一函數
事先說明: !!!~得採納我的哦~!!! 要全部?
Ⅰ指數函數的一般形式為y=a^x(a>0且≠1) (x∈R),從上面我們對於冪函數的討論就可以知道,要想使得x能夠取整個實數集合為定義域,則只有使得
如圖所示為a的不同大小影響函數圖形的情況。
(1) 指數函數的定義域為所有實數的集合,這里的前提是a大於0且不等於1,對於a不大於0的情況,則必然使得函數的定義域不存在連續的區間,因此我們不予考慮,
同時a等於0函數無意義一般也不考慮。
(2) 指數函數的值域為大於0的實數集合。
(3) 函數圖形都是下凹的。
(4) a大於1,則指數函數單調遞增;a小於1大於0,則為單調遞減的。
(5) 可以看到一個顯然的規律,就是當a從0趨向於無窮大的過程中(當然不能等於0),函數的曲線從分別接近於Y軸與X軸的正半軸的單調遞減函數的位置,趨向分別接近於Y軸的正半軸與X軸的負半軸的單調遞增函數的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。
(6) 函數總是在某一個方向上無限趨向於X軸,永不相交。
(7) 函數總是通過(0,1)這點,(若y=a^x+b,則函數定過點(0,1+b)
(8) 顯然指數函數無界。
(9) 指數函數既不是奇函數也不是偶函數。
(10)當兩個指數函數中的a互為倒數時,兩個函數關於y軸對稱,但這兩個函數都不具有奇偶性。
底數的平移:
對於任何一個有意義的指數函數:
在指數上加上一個數,圖像會向左平移;減去一個數,圖像會向右平移。
在f(X)後加上一個數,圖像會向上平移;減去一個數,圖像會向下平移。
即「上加下減,左加右減」
底數與指數函數圖像:
(1)由指數函數y=a^x與直線x=1相交於點(1,a)可知:在y軸右側,圖像從下到上相應的底數由小變大。
(2)由指數函數y=a^x與直線x=-1相交於點(-1,1/a)可知:在y軸左側,圖像從下到上相應的底數由大變小。
(3)指數函數的底數與圖像間的關系可概括的記憶為:在y軸右邊「底大圖高」;在y軸左邊「底大圖低」。(如右圖)
冪的大小比較:
比較大小常用方法:(1)比差(商)法:(2)函數單調性法;(3)中間值法:要比較A與B的大小,先找一個中間值C,再比較A與C、B與C的大小,由不等式的傳遞性得到A與B之間的大小。
比較兩個冪的大小時,除了上述一般方法之外,還應注意:
(1)對於底數相同,指數不同的兩個冪的大小比較,可以利用指數函數的單調性來判斷。
例如:y1=3^4,y2=3^5,因為3大於1所以函數單調遞增(即x的值越大,對應的y值越大),因為5大於4,所以y2大於y1.
(2)對於底數不同,指數相同的兩個冪的大小比較,可以利用指數函數圖像的變化規律來判斷。
例如:y1=1/2^4,y2=3^4,因為1/2小於1所以函數圖像在定義域上單調遞減;3大於1,所以函數圖像在定義域上單調遞增,在x=0是兩個函數圖像都過(0,1)然後隨著x的增大,y1圖像下降,而y2上升,在x等於4時,y2大於y1.
(3)對於底數不同,且指數也不同的冪的大小比較,則可以利用中間值來比較。如:
<1> 對於三個(或三個以上)的數的大小比較,則應該先根據值的大小(特別是與0、1的大小)進行分組,再比較各組數的大小即可。
<2> 在比較兩個冪的大小時,如果能充分利用「1」來搭「橋」(即比較它們與「1」的大小),就可以快速的得到答案。哪么如何判斷一個冪與「1」大小呢?由指數函數的圖像和性質可知「同大異小」。即當底數a和1與指數x與0之間的不等號同向(例如: a 〉1且x 〉0,或0〈 a〈 1且 x〈 0)時,a^x大於1,異向時a^x小於1.
〈3〉例:下列函數在R上是增函數還是減函數?說明理由.
⑴y=4^x
因為4>1,所以y=4^x在R上是增函數;
⑵y=(1/4)^x
因為0<1/4<1,所以y=(1/4)^x在R上是減函數
Ⅱ (見:函數圖形曲線)
在平面直角坐標系xOy中,從點O引出一條射線OP,設旋轉角為θ,設OP=r,P點的坐標為(x,y)有
正弦函數 sinθ=y/r
餘弦函數 cosθ=x/r
正切函數 tanθ=y/x
餘切函數 cotθ=x/y
正割函數 secθ=r/x
餘割函數 cscθ=r/y
(斜邊為r,對邊為y,鄰邊為x。)
以及兩個不常用,已趨於被淘汰的函數:
正矢函數 versinθ =1-cosθ
余矢函數 coversθ =1-sinθ
正弦(sin):角α的對邊比上斜邊
餘弦(cos):角α的鄰邊比上斜邊
正切(tan):角α的對邊比上鄰邊
餘切(cot):角α的鄰邊比上對邊
正割(sec):角α的斜邊比上鄰邊
餘割(csc):角α的斜邊比上對邊
·平方關系:
sin²α+cos²α=1
1+tan²α=sec²α
1+cot²α=csc²α
·積的關系:
sinα=tanα×cosα
cosα=cotα×sinα
tanα=sinα×secα
cotα=cosα×cscα
secα=tanα×cscα
cscα=secα×cotα
·倒數關系:
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商的關系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
直角三角形ABC中,
角A的正弦值就等於角A的對邊比斜邊,
餘弦等於角A的鄰邊比斜邊
正切等於對邊比鄰邊,
三角函數恆等變形公式
·兩角和與差的三角函數:
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
·三角和的三角函數:
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
·輔助角公式:
Asinα+Bcosα=√(A²+B²)sin(α+arctan(B/A)),其中
sint=B/√(A²+B²)
cost=A/√(A²+B²)
tant=B/A
Asinα-Bcosα=√(A²+B²)cos(α-t),tant=A/B
·倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos²α-sin²α=2cos²α-1=1-2sin²α
tan(2α)=2tanα/(1-tan²α)
·三倍角公式:
sin(3α) = 3sinα-4sin³α = 4sinα·sin(60°+α)sin(60°-α)
cos(3α) = 4cos³α-3cosα = 4cosα·cos(60°+α)cos(60°-α)
tan(3α) = (3tanα-tan³α)/(1-3tan³α) = tanαtan(π/3+α)tan(π/3-α)
·半形公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
·降冪公式
sin²α=(1-cos(2α))/2=versin(2α)/2
cos²α=(1+cos(2α))/2=covers(2α)/2
tan²α=(1-cos(2α))/(1+cos(2α))
·萬能公式:
sinα=2tan(α/2)/[1+tan²(α/2)]
cosα=[1-tan²(α/2)]/[1+tan²(α/2)]
tanα=2tan(α/2)/[1-tan²(α/2)]
·積化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
·和差化積公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
·推導公式
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos²α
1-cos2α=2sin²α
1+sinα=[sin(α/2)+cos(α/2)]²
Ⅲ對數函數
一般地,如果a(a大於0,且a不等於1)的b次冪等於N,那麼數b叫做以a為底N的對數,記作log aN=b,其中a叫做對數的底數,N叫做真數。
對數函數的公理化定義
真數式子沒根號那就只要求真數式大於零,如果有根號,要求真數大於零還要保證根號里的式子大於零,
底數則要大於0且不為1
對數函數的底數為什麼要大於0且不為1
在一個普通對數式里 a<0,或=1 的時候是會有相應b的值的。但是,根據對數定義: logaa=1;如果a=1或=0那麼logaa就可以等於一切實數(比如log1 1也可以等於2,3,4,5,等等)第二,根據定義運算公式:loga M^n = nloga M 如果a<0,那麼這個等式兩邊就不會成立 (比如,log(-2) 4^(-2) 就不等於(-2)*log(-2) 4;一個等於4,另一個等於-4)
對數函數的一般形式為 y=log(a)x,它實際上就是指數函數的反函數,可表示為x=a^y。因此指數函數里對於a的規定,同樣適用於對數函數。
右圖給出對於不同大小a所表示的函數圖形:
可以看到對數函數的圖形只不過的指數函數的圖形的關於直線y=x的對稱圖形,因為它們互為反函數。
(1) 對數函數的定義域為大於0的實數集合。
(2) 對數函數的值域為全部實數集合。
(3) 函數圖像總是通過(1,0)點。
(4) a大於1時,為單調增函數,並且上凸;a小於1大於0時,函數為單調減函數,並且下凹。
(5) 顯然對數函數無界。
對數函數的常用簡略表達方式:
(1)log(a)(b)=log(a)(b)
(2)lg(b)=log(10)(b)
(3)ln(b)=log(e)(b)
對數函數的運算性質:
如果a〉0,且a不等於1,M>0,N>0,那麼:
(1)log(a)(MN)=log(a)(M)+log(a)(N);
(2)log(a)(M/N)=log(a)(M)-log(a)(N);
(3)log(a)(M^n)=nlog(a)(M) (n屬於R)
(4)log(a^k)(M^n)=(n/k)log(a)(M) (n屬於R)
對數與指數之間的關系
當a大於0,a不等於1時,a的X次方=N等價於log(a)N
log(a^k)(M^n)=(n/k)log(a)(M) (n屬於R)
換底公式 (很重要)
log(a)(N)=log(b)(N)/log(b)(a)= lnN/lna=lgN/lga
ln 自然對數 以e為底
lg 常用對數 以10為底
一般地,如果a(a大於0,且a不等於1)的b次冪等於N,那麼數b叫做以a為底N的對數,記作log(a)(N)=b,其中a叫做對數的底數,N叫做真數。
底數則要大於0且不為1
對數的運算性質:
當a>0且a≠1時,M>0,N>0,那麼:
(1)log(a)(MN)=log(a)(M)+log(a)(N);
(2)log(a)(M/N)=log(a)(M)-log(a)(N);
(3)log(a)(M^n)=nlog(a)(M) (n∈R)
(4)換底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1)
對數與指數之間的關系
當a>0且a≠1時,a^x=N x=㏒(a)N (對數恆等式)
對數函數的常用簡略表達方式:
(1)log(a)(b)=log(a)(b)
(2)常用對數:lg(b)=log(10)(b)
(3)自然對數:ln(b)=log(e)(b)
e=2.718281828... 通常情況下只取e=2.71828 對數函數的定義
對數函數的一般形式為 y=㏒(a)x,它實際上就是指數函數的反函數(圖象關於直線y=x對稱的兩函數互為反函數),可表示為x=a^y。因此指數函數里對於a的規定(a>0且a≠1),同樣適用於對數函數。
右圖給出對於不同大小a所表示的函數圖形:
可以看到對數函數的圖形只不過的指數函數的圖形的關於直線y=x的對稱圖形,因為它們互為反函數。
[編輯本段]性質
定義域:(0,+∞)值域:實數集R
定點:函數圖像恆過定點(1,0)。
單調性:a>1時,在定義域上為單調增函數,並且上凸;
0<a<1時,在定義域上為單調減函數,並且下凹。
奇偶性:非奇非偶函數,或者稱沒有奇偶性。
周期性:不是周期函數
零點:x=1
注意:負數和0沒有對數。
兩句經典話:底真同對數正
底真異對數負
累! 採納我呀 不好意思 不會搞圖片
⑤ 高中數學必修一函數的應用
^解:log (x-ak)=log (x^2-a^2)
x-ak>=0,x^2-a^2>=0
x>=ak,x>=a或x<=-a,後面對K的值進行討論,分界點有-1,0,1
這樣可以直接得出 x-ak=x^2-a^2
整理可以得出 x^2-x-a^2+ak=0有解的話就有△>=0
1-4(-a^2+ak)>=0,
即:4a^2-4ak+1>=0
下面就針對關於a的二次函數還解答,所以關於4a^2-4ak+1>=0酒必須使關於a的二次函數的△<=0
所以得出 16k^2-16<=0,可以得出-1=<k>=1
⑥ 高中數學必修一的函數怎麼才能掌握
數學的學習是循序漸進的,關鍵是數學思想的培養(這一點從小學就開始了)。如果學了概念做基礎題無問題,你的數學基礎還是可以的;如果學了概念遇到題目無法下手,你基本上毫無數學基礎,就不是從高一學起這么簡單了。你能認識到並想到回頭補原先應該掌握而卻欠缺的知識,這一點非常值得贊賞,這個路子無疑是正確的。至於要從哪裡開始補,要看你實際的情況。我的建議是:哪裡欠缺從哪裡補。例如函數,從初一其實就接觸了函數初步,只不過當時可能你沒有認真學。其實也很簡單,遇到問題反查原先學過的知識,這樣可以做到有的放矢。
⑦ 高中數學必修一函數
在數學中,一個函數是描述每個輸入值對應唯一輸出值的這種對應關系,符號為 。讀作f of x。其中x為自變數,為因變數(或稱應變數)。包含某個函數所有的輸入值的集合被稱作這個函數的定義域,包含所有的輸出值的集合被稱作值域。簡而言之,函數是將唯一的輸出值賦予每一輸入的「法則」以及該輸出值與對應輸入值的集合。這一「法則」可以用函數表達式、數學關系,或者一個將輸入值與輸出值對應列出的簡單表格來表示。函數最重要的性質是其決定性,即同一輸入總是對應同一輸出(注意,反之未必成立)。從這種視角,可以將函數看作「機器」或者「黑箱」,它將有效的輸入值變換為唯一的輸出值。通常將輸入值稱作函數的參數,將輸出值稱作函數的值。
參考:http://zh.wikipedia.org/wiki/%E5%87%BD%E6%95%B0
學函數一定要牢牢把握概念,好好理解函數,你所謂的聽懂卻不會做題,一是沒完全聽懂,似懂非懂;二是做題做少了。不用擔心,只要好好聽講,多做題多思考,沒問題的。如果有問題可追問,希望能幫到你。
⑧ 高中數學 必修一 函數定義
雙曲線?一三象限,二四象限不也是一一對應嗎?怎麼會有你說的情況?你給我舉個例子
⑨ 高一數學必修1函數概念知識總結
1、指數函數 ( 且 ),其中 是自變數, 叫做底數,定義域是R
2、若 ,則 叫做以 為底 的對數。記作: ( , )
其中, 叫做對數的底數, 叫做對數的真數。
註:指數式與對數式的互化公式:
3、對數的性質
(1)零和負數沒有對數,即 中 ;
(2)1的對數等於0,即 ;底數的對數等於1,即
4、常用對數 :以10為底的對數叫做常用對數,記為:
自然對數 :以e(e=2.71828…)為底的對數叫做自然對數,記為:
5、對數恆等式:
6、對數的運算性質(a>0,a≠1,M>0,N>0)
(1) ; (2) ;
(3) (注意公式的逆用)
7、對數的換底公式 ( ,且 , ,且 , ).
推論① 或 ; ② .
8、對數函數 ( ,且 ):其中, 是自變數, 叫做底數,定義域是
圖像
性質 定義域:(0, ∞)
值域:R
過定點(1,0)
增函數 減函數
取值范圍 0<x<1時,y<0
x>1時,y>0 0<x<1時,y>0
x>1時,y<0
9、指數函數 與對數函數 互為反函數;它們圖象關於直線 對稱.
10、冪函數 ( ),其中 是自變數。要求掌握 這五種情況(如下圖)
11、冪函數 的性質及圖象變化規律:
(Ⅰ)所有冪函數在(0,+∞)都有定義,並且圖象都過點(1,1);
(Ⅱ)當 時,冪函數的圖象都通過原點,並且在區間 上是增函數.
(Ⅲ)當 時,冪函數的圖象在區間 上是減函數.
⑩ 高一數學必修一函數的單調性
1.
設f(x)=ax^
bx
c,a≠0
f(0)=c=0
c=0
f(x
1)-f(x)=a(x
1)^2
b(x
1)-(ax^2
bx)
=a(2x
1)
b
=2ax
(a
b)
=2x
a=1
b=-1
f(x)=x^2-x;
2.
f(x)=x^2-x的圖像是頂點為(1/2,-1/4),開口向上的拋物線,
所以只要y=2x
m在(1/2,-1/4)下方即可,
2(1/2)
m<-1/4
m<-5/4
f(0)=c=1
f(x)=x^2-x
1
2.
頂點為(1/2,3/4),
只要y=2x
m在(1/2,3/4)下方即可,
2(1/2)
m<3/4
m<-1/4
設f(x)=x
√1
2x,x∈[-1/2,
∞)
取x1<x2,且x1、x2∈[-1/2,
∞),則x1-x2<0,√1
2x1-√1
2x2<0
∴f(x1)-f(x2)=(x1-x2)
(√1
2x1-√1
2x2)<0,即f(x1)<f(x2)
∴函數f(x)在[-1/2,
∞)是增函數。
∴最小值為-1/2
值域為[-1/2,
∞)
定義域:
明確幾種特殊函數的定義域如帶根的(大於等於零),未知數在分母的(不等於零),對數(大於零)等。值域:(1)配方法:適用於二次函數型(2)分離常數法:分子分母都有未知數例:y=(2x
1)/(x-3)
=[2(x-3)
7]/(x-3)
=2
7/(x-3)因為7/(x-3)不等於0所以y不等於2(3)反解法:例:y=(2x
1)/(x-3)
(y-2)x-3y-1=0所以x=(3y
1)/(y-2)所以y不等於2
f(x)=(ax
b)/(cx
d)f(x)不等於a/c
(4)判別式法:反解之後用判別式(5)換元法(6)圖像法
F(x)=(2x
4-5)/(x
2)=2-5/(x
2)x屬於[-5,-3]x
2必小於零則1/(x
2)在[-5,-3]上單調遞減則-5/(x
2)在[-5,-3]上單調遞增則2-5/(x
2)在[-5,-3]上單調遞增所以yMAX=F(-3)=7yMIN=F(-5)=11/3
【分析】判斷一個函數的奇偶性,首先判斷函數的定義域是否關於原點對稱,若不對稱,則非奇非偶;若對稱,則再判斷f(-x)與f(x)的關系,f(-x)=f(x)為偶,f(-x)=-f(x)為奇,否則為非奇非偶。
A.解:易知f(x)=sinx2定義域關於原點對稱,
又f(-x)=sin(-x)2=sinx2=f(x),所以f(x)為偶函數。B.解:易知f(x)=tanx
tanx/2定義域為x不=π/2
kπ,關於原點不對稱,
所以f(x)為非奇非偶函數。C.解:f(x)=sinx
cosx定義域關於原點對稱,
又f(-x)=sin(-x)
cos(-x)=cosx-sinx,既不=f(x),又不=-f(x)
所以f(x)為非奇非偶函數。D.解:易知f(x)=1/3cosx/2定義域關於原點對稱,
又f(-x)=1/3cos(-x)/2=1/3cosx/2=f(x),所以f(x)為偶函數。