高中數學思想方法
① 高中數學解題思想方法全部內容 答案 高分懸賞
怎樣學好高中數學?首先要摘要答題技巧
現在數學這個科目也是必須學習的內容,但是現在還有很多孩子們都不喜歡這個科目,原因就是因為他們不會做這些題,導致這個科目拉他們的總分,該怎樣學好高中數學?對於數學題,他們都分為哪些類型?
高中數學試卷
怎樣學好高中數學這也是需要我們自己群摸索一些學習的技巧,找到自己適合的方法,這還是很關鍵的.
② 高中數學的四大思想方法
函數與方程思想、數形結合的思想、分類討論與整合的思想、轉化與化歸的思想
③ 高中數學中都有哪些數學思想
高中數學怎麼學?高中數學難學嗎?
數學這個科目,不管是對於文科學生還是對於理科學生.都是比較重要的,因為他是三大主課之一,它占的分值比較大.要是數學學不好,你可能會影響到物理化學的學習,因為那些學科都是要通過計算.然而,這些計算也都是在數學裡面.高中數學怎麼學?有哪些好的方法?
老師讓孩子上黑板做題
數學擔負著培養孩子的運算能力,還有孩子應用知識的能力.高中數學怎樣學?還是要看學生對數學的理解程度.學生要有自己的學習方法,你不光要掌握老師上課的內容,在下課之後還要及時鞏固,加深.
④ 高中的一些解題思想,方法技巧
1.高中數學解題套路和技巧之思路思想提煉法
催生解題靈感。「沒有解題思想,就沒有解題靈感」。但「解題思想」對很多學生來說是既熟悉又陌生的。熟悉是因為教師每天掛在嘴邊,陌生就是說不請它究竟是什麼。建議同學們在老師的指導下,多做典型的數學題目,則可以快速掌握。
2. 高中數學解題套路和技巧之典型題型精熟法
抓准重點考點管理學的「二八法則」說:20%的重要工作產生80%的效果,而80%的瑣碎工作只產生20%的效果。數學學習上也有同樣現象:20%的題目(重點、考點集中的題目)對於考試成績起到了80%的貢獻。因此,提高數學成績,必須優先抓住那20%的題目。針對許多學生「題目解答多,研究得不透」的現象,應當通過科學用腦,達到每個章節的典型題型都胸有成竹時,解題時就會得心應手。
3.高中數學解題套路和技巧之逐步深入糾錯法
鞏固薄弱環節管理學上的「木桶理論」說:一隻水桶盛水多少由最短板決定,而不是由最長板決定。學數學也是這樣,數學考試成績往往會因為某些薄弱環節大受影響。因此,鞏固某個薄弱環節,比做對一百道題更重要。
4、高中數學解題套路和技巧之換元法
「換元」的思想和方法,在數學中有著廣泛的應用,靈活運用換元法解題,有助於數量關系明朗化,變繁為簡,化難為易,給出簡便、巧妙的解答。
在解題過程中,把題中某一式子如f(x),作為新的變數y或者把題中某一變數如x,用新變數t的式子如g(t)替換,即通過令f(x)=y或x=g(t)進行變數代換,得到結構簡單便於求解的新解題方法,通常稱為換元法或變數代換法。
用換元法解題,關鍵在於根據問題的結構特徵,選擇能以簡馭繁,化難為易的代換f(x)=y或x=g(t)。就換元的具體形式而論,是多種多樣的,常用的有有理式代換,根式代換,指數式代換,對數式代換,三角式代換,反三角式代換,復變數代換等,宜在解題實踐中不斷總結經驗,掌握有關的技巧。
例如,用於求解代數問題的三角代換,在具體設計時,宜遵循以下原則:(1)全面考慮三角函數的定義域、值域和有關的公式、性質;(2)力求減少變數的個數,使問題結構簡單化;(3)便於藉助已知三角公式,建立變數間的內在聯系。只有全面考慮以上原則,才能謀取恰當的三角代換。
換元法是一種重要的數學方法,在多項式的因式分解,代數式的化簡計算,恆等式、條件等式或不等式的證明,方程、方程組、不等式、不等式組或混合組的求解,函數表達式、定義域、值域或最值的推求,以及解析幾何中的坐標替換,普通方程與參數方程、極坐標方程的互化等問題中,都有著廣泛的應用。
5、高中數學解題套路和技巧之消元法
對於含有多個變數的問題,有時可以利用題設條件和某些已知恆等式(代數恆等式或三角恆等式),通過適當的變形,消去一部分變數,使問題得以解決,這種解題方法,通常稱為消元法,又稱消去法。
消元法是解方程組的基本方法,在推證條件等式和把參數方程化成普通方程等問題中,也有著重要的應用。
用消元法解題,具有較強的技巧性,常常需要根據題目的特點,靈活選擇合適的消元方法。
解方程組: y-z-x=0
z-x-y= -12
⑤ 高中數學的解題(思想)方法
高中那個數學的解題思想是靠自己做題總結出來的。
我們大家給你說的天花亂墜,你不做題,不實踐也不行~!
我的觀點是,具體問題具體分析。
碰到重要的題拿出來,我們給你解決,順便告訴你解這類題的方法和思路,以後遇到就不會再不會就好了。別一口想吃個胖子哦~!
別著急,慢慢來嘛~!
⑥ 高中數學的四大思想是什麼請給高考例題
數形結合思想 數形結合思想在高考中佔有非常重要的地位,其「數」與「形」結合,相互滲透,把代數式的精確刻劃與幾何圖形的直觀描述相結合,使代數問題、幾何問題相互轉化,使抽象思維和形象思維有機結合. 應用數形結合思想,就是充分考查數學問題的條件和結論之間的內在聯系,既分析其代數意義又揭示其幾何意義,將數量關系和空間形式巧妙結合,來尋找解題思路,使問題得到解決. 運用這一數學思想,要熟練掌握一 些概念和運算的幾何意義及常見曲線的代數特徵. 應用數形結合的思想,應注意以下數與形的轉化:(1)集合的運算及韋恩圖;(2)函數及其圖象;(3)數 列通項及求和公式的函數特徵及函數圖象;(4)方程(多指二元方程)及方程的曲線. 以形助數常用的有:藉助數軸;藉助函數圖象;藉助單位圓;藉助數式的結構特徵;藉助於解析幾何方法. 以數助形常用的有:藉助於幾何軌跡所遵循的數量關系;藉助於運算結果與幾何定理的結合. 分類討論思想 分類討論思想就是根據所研究對象的性質差異,分各種不同的情況予以分析解決. 分類討論題覆蓋知識點較多,利於考查學生的知識面、分類思想和技巧;同時方式多樣,具有較高的邏輯性及很強的綜合性,樹立分類討論思想,應注重理解和掌握分類的原則、方法與技巧、做到「確定對象的全體,明確分類的標准,分層別類不重復、不遺漏的分析討論」. 常見的分類情形有:按數分類;按字母的取值范圍分類;按事件的可能情況分類;按圖形的位置特徵分類 等. 分類討論思想方法可以滲透到高中數學的各個章節,它依據一定的標准,對問題分類、求解,要特別注意 分類必須滿足互斥、無漏、最簡的原則. 函數與方程思想 函數與方程思想是最重要的一種數學思想,高考中所佔比重較大,綜合知識多、題型多、應 用技巧多. 函數思想簡單,即將所研究的問題藉助建立函數關系式亦或構造中間函數,結合初等函數的圖象與性質,加以分析、轉化、解決有關求值、解(證)不等式、解方程以及討論參數的取值范圍等問題;方程思想即將問題中的數量關系運用數學語言轉化為方程模型加以解決. 運用函數與方程的思想時,要注意函數,方程與不等式之間的相互聯系和轉化,應做到: (1)深刻理解函數 f(x)的性質(單調性、奇偶性、周期性、最值和圖象變換),熟練掌握基本初等函數的性質,這是應用函數思想解題的基礎. (2)密切注意三個「二次」的相關問題,三個「二次」即一元二次函數、一元二次方程、一元二次不等 式是中學數學的重要內容,具有豐富的內涵和密切的聯系. 掌握二次函數基本性質,二次方程實根分布條件,二次不等式的轉化策略. 轉化與化歸思想 化歸與轉化的思想,就是在研究和解決數學問題時採用某種方式,藉助某種函數性質、圖象、公式或已知條件將,問題通過變換加以轉化,進而達到解決問題的思想. 轉化是將數學命題由一種形式向另一種形式的變換過程,化歸是把待解決的問題通過某種轉化過程歸結為一類已經解決或比較容易解決的問題. 轉 化與化歸思想是中學數學最基本的思想方法,堪稱數學思想的精髓,它滲透到了數學教學內容的各個領域和解 題過程的各個環節中. 轉化有等價轉化與不等價轉化. 等價轉化後的新問題與原問題實質是一樣的. 不等價轉 化則部分地改變了原對象的實質,需對所得結論進行必要的修正.
⑦ 高中數學的基本思想方法有哪些
1、函數方程思想
函數思想,是指用函數的概念和性質去分析問題、轉化問題和解決問題。方程思想,是從問題的數量關系入手,運用數學語言將問題中的條件轉化為數學模型(方程、不等式、或方程與不等式的混合組)。
然後通過解方程(組)或不等式(組)來使問題獲解。有時,還需要函數與方程的互相轉化、接軌,達到解決問題的目的。
笛卡爾的方程思想是:實際問題→數學問題→代數問題→方程問題。宇宙世界,充斥著等式和不等式。我們知道,哪裡有等式,哪裡就有方程;哪裡有公式,哪裡就有方程。
求值問題是通過解方程來實現的……等等;不等式問題也與方程是近親,密切相關。列方程、解方程和研究方程的特性,都是應用方程思想時需要重點考慮的。
函數描述了自然界中數量之間的關系,函數思想通過提出問題的數學特徵,建立函數關系型的數學模型,從而進行研究。它體現了「聯系和變化」的辯證唯物主義觀點。一般地,函數思想是構造函數從而利用函數的性質解題。
經常利用的性質是:f(x)、f (x)的單調性、奇偶性、周期性、最大值和最小值、圖像變換等,要求我們熟練掌握的是一次函數、二次函數、冪函數、指數函數、對數函數、三角函數的具體特性。在解決問題中。
善於挖掘題目中的隱含條件,構造出函數解析式和妙用函數的性質,是應用函數思想的關鍵。對所給的問題觀察、分析、判斷比較深入、充分、全面時,才能產生由此及彼的聯系。
構造出函數原型。另外,方程問題、不等式問題、集合問題、數列問題和某些代數問題也可以轉化為與其相關的函數問題,即用函數思想解答非函數問題。
2、數形結合思想
「數無形,少直觀,形無數,難入微」,利用「數形結合」可使所要研究的問題化難為易,化繁為簡。把代數和幾何相結合,例如對幾何問題用代數方法解答,對代數問題用幾何方法解答,這種方法在解析幾何里最常用。
例如求根號((a-1)^2+(b-1)^2)+根號(a^2+(b-1)^2)+根號((a-1)^2+b^2)+根號(a^2+b^2)的最小值,就可以把它放在坐標系中,把它轉化成一個點到(0,1)、(1,0)、(0,0)、(1,1)四點的距離,就可以求出它的最小值。
3、分類討論思想
當一個問題因為某種量或圖形的情況不同而有可能引起問題的結果不同時,需要對這個量或圖形的各種情況進行分類討論。比如解不等式|a-1|>4的時候,就要分類討論a的取值情況。
4、方程思想
當一個問題可能與某個方程建立關聯時,可以構造方程並對方程的性質進行研究以解決這個問題。例如證明柯西不等式的時候,就可以把柯西不等式轉化成一個二次方程的判別式。
5、整體思想
從問題的整體性質出發,突出對問題的整體結構的分析和改造,發現問題的整體結構特徵,善於用「集成」的眼光,把某些式子或圖形看成一個整體,把握它們之間的關聯,進行有目的的、有意識的整體處理。
整體思想方法在代數式的化簡與求值、解方程(組)、幾何解證等方面都有廣泛的應用,整體代入、疊加疊乘處理、整體運算、整體設元、整體處理、幾何中的補形等都是整體思想方法在解數學問題中的具體運用。
6、化歸思想
在於將未知的,陌生的,復雜的問題通過演繹歸納轉化為已知的,熟悉的,簡單的問題。三角函數,幾何變換,因式分解,解析幾何,微積分,乃至古代數學的尺規作圖等數學理論無不滲透著轉化的思想。
常見的轉化方式有:一般 特殊轉化,等價轉化,復雜 簡單轉化,數形轉化,構造轉化,聯想轉化,類比轉化等。
轉化思想亦可在狹義上稱為化歸思想。化歸思想就是將待解決的或者難以解決的問題A經過某種轉化手段,轉化為有固定解決模式的或者容易解決的問題B,通過解決問題B來解決問題A的方法。
7、隱含條件思想
沒有明文表述出來,但是根據已有的明文表述可以推斷出來的條件,或者是沒有明文表述,但是該條件是一個常規或者真理。例如一個等腰三角形,一條線段垂直於底邊,那麼這條線段所在的直線也平分底邊和頂角。
8、類比思想
把兩個(或兩類)不同的數學對象進行比較,如果發現它們在某些方面有相同或類似之處,那麼就推斷它們在其他方面也可能有相同或類似之處。
9、建模思想
為了更具科學性,邏輯性,客觀性和可重復性地描述一個實際現象,人們採用一種普遍認為比較嚴格的語言來描述各種現象,這種語言就是數學。
使用數學語言描述的事物就稱為數學模型。有時候我們需要做一些實驗,但這些實驗往往用抽象出來了的數學模型作為實際物體的代替而進行相應的實驗,實驗本身也是實際操作的一種理論替代。
10、歸納推理思想
由某類事物的部分對象具有某些特徵,推出該類事物的全部對象都具有這些特徵的推理,或者由個別事實概括出一般結論的推理稱為歸納推理(簡稱歸納),簡言之,歸納推理是由部分到整體,由個別到一般的推理。
另外,還有概率統計思想等數學思想,例如概率統計思想是指通過概率統計解決一些實際問題,如摸獎的中獎率、某次考試的綜合分析等等。另外,還可以用概率方法解決一些面積問題。
⑧ 求更高更妙的高中數學思想方法pdf
網路文庫中有。
更高更妙的高中數學思想和方法 第六版
⑨ 高中數學解題的思想方法有哪些
一 線:函數一條主線(貫穿教材始終)
二 珠:代數、幾何珠聯璧合(注重知識交匯)
三 基:方法(熟) 知識(牢) 技能(巧)
四能力:概念運算(准確)、邏輯推理(嚴謹)、
空間想像(豐富)、分解問題(靈活)
五 法:換元法、配方法、待定系數法、分析法、歸納法。
六策略:以簡馭繁,正難則反,以退為進,化異為同,移花接木,以靜思動。
七思想:函數方程最重要,分類整合常用到。