當前位置:首頁 » 語數英語 » 數學的頂峰

數學的頂峰

發布時間: 2021-07-22 20:27:44

A. 程偉巔峰數學的神級結論是怎麼總結出來的

將一大類同類型的題型的共同規律與特點找出來,然後提煉成一個通用的標准模板,就形成了一條能輕松處理掉整個此類題型的所謂神級結論,當然了,這個提煉的過程不是一般人能做到的,所以程偉巔峰數學才會這么火。

B. 歷史上最偉大的數學家有哪些 或者 給出top10排名

歐拉、阿基米德、牛頓、高斯等四位被稱為有史以來貢獻最大的四位數學家。歐拉:歐拉是18世紀最優秀的數學家,也是歷史上最偉大的數學家之一。歐拉從小就特別喜歡數學,不滿10歲就開始自學《代數學》。13歲上大學,兩年後獲得巴塞爾大學的學士學位,次年又獲得巴塞爾大學的哲學碩士學位。1725年,歐拉來到彼得堡,開始了他的數學生涯.1733年,年僅26歲的歐拉擔任了彼得堡科學院數學教授.過度的工作使他得了眼病,右眼失明,時年28歲.1741年歐拉到柏林擔任科學院物理數學所所長.1766年,重回彼得堡任職.沒過多久,左眼視力衰退,最後完全失明.不幸的事情接踵而來,1771年一場大火將他的書房和大量研究成果全部化為灰燼。沉重的打擊,仍然沒有使歐拉倒下.他以驚人的毅力,憑著記憶和心算進行研究,直到逝世.在失明後的17年間,他還口述了幾本書和400篇左右的論文.當大火燒掉他幾乎全部的著述之後,歐拉用了一年的時間口述了所有這些論文並作了修訂.歐拉知識淵博,著作豐富,令人驚嘆不已!他從19歲開始發表論文,直到76歲,一生寫下了浩如煙海的書籍和論文.可以說歐拉是科學史上最多產的一位傑出的數學家,據統計他共寫下了886本書籍和論文,彼得堡科學院為了整理他的著作,足足忙碌了四十七年。到今幾乎每一個數學領域都可以看到歐拉的名字,從初等幾何的歐拉線,多面體的歐拉定理,立體解析幾何的歐拉變換公式,四次方程的歐拉解法到數論中的歐拉函數,微分方程的歐拉方程,級數論的歐拉常數,變分學的歐拉方程,復變函數的歐拉公式等等,數也數不清.他對數學分析的貢獻更獨具匠心,《無窮小分析引論》一書便是他劃時代的代表作,當時數學家們稱他為"分析學的化身".19世紀偉大數學家高斯(Gauss,1777-1855年)曾說:"研究歐拉的著作永遠是了解數學的最好方法."著名數學家拉普拉斯(Laplace)曾說過:"讀讀歐拉、讀讀歐拉,它是我們大家的老師!「歐拉的一生,是為數學發展而奮斗的一生,他那傑出的智慧,頑強的毅力,孜孜不倦的奮斗精神和高尚的科學道德,永遠是值得我們學習的.阿基米德:偉大的古希臘哲學家、數學家、物理學家,靜力學和流體靜力學的奠基人。出生於西西里島的敘拉古。從小就善於思考,喜歡辯論。早年游歷過古埃及,曾在亞歷山大城學習。阿基米德的父親是天文學家和數學家,所以他從小受家庭影響,十分喜愛數學。給我一個支點,我可以撬動地球阿基米德的幾何著作是希臘數學的頂峰。他把歐幾里得嚴格的推理方法與柏拉圖先驗的豐富想像和諧地結合在一起,達到了至善至美的境界,從而「使得往後由開普勒、卡瓦列利、費馬、牛頓、萊布尼茨等人繼續培育起來的微積分日趨完美」。阿基米德是數學家與力學家的偉大學者,並且享有「力學之父」的美稱。其原因在於他通過大量實驗發現了杠桿原理,又用幾何演澤方法推出許多杠桿命題,給出嚴格的證明。其中就有著名的"阿基米德原理",他在數學上也有著極為光輝燦爛的成就,特別是在幾何學方面.他的數學思想中蘊涵著微積分的思想,他所缺的是沒有極限概念,但其思想實質卻伸展到17世紀趨於成熟的無窮小分析領域里去,預告了微積分的誕生。據說羅馬兵入城時,統帥馬塞拉斯出於敬佩阿基米德的才能,曾下令不準傷害這位賢能。而阿基米德似乎並不知道城池已破,又重新沉迷於數學的深思之中。一個羅馬士兵突然出現在他面前,命令他到馬塞拉斯那裡去,遭到阿基米德的嚴詞拒絕,於是阿基米德不幸死在了這個士兵的刀劍之下。另一種說法是:羅馬士兵闖入阿基米德的住宅,看見一位老人在地上埋頭作幾何圖形(還有一種說法他在沙灘上畫圖),士兵將圖踩壞,阿基米德怒斥士兵:"不要弄壞我的圓!"士兵拔出短劍,這位曠世絕倫的大科學家,竟如此地在愚昧無知的羅馬士兵手下喪生了。馬塞拉斯對於阿基米德的死深感悲痛。他將殺死阿基米德的士兵當作殺人犯予以處決,並為阿基米德修了一座陵墓,在墓碑上根據阿基米德生前的遺願,刻上了"圓柱容球"這一幾何圖形。牛頓:牛頓(IsaacNewton,1643~1727)偉大的物理學家、天文學家和數學家,經典力學體系的奠基人。牛頓是一個早產兒,出生時只有三磅重,接生婆和他的親人都擔心他能否活下來,牛頓出生前三個月父親便去世了。在他兩歲時,母親改嫁給一個牧師,把牛頓留在外祖母身邊撫養。11歲時,母親的後夫去世,母親帶著和後爸所生的一子二女回到牛頓身邊。牛頓自幼沉默寡言、性格倔強,這種習性可能來自他的家庭處境。大約從五歲開始,牛頓被送到公立學校讀書。少年時的牛頓並不是神童,他資質平常、成績一般,但他喜歡讀書,喜歡看一些介紹各種簡單機械模型製作方法的讀物,並從中受到啟發,自己動手製作些奇奇怪怪的小玩意,如風車、木鍾、折疊式提燈等等。傳說小牛頓把風車的機械原理摸透後,自己製造了一架磨坊的模型,他將老鼠綁在一架有輪子的踏車上,然後在輪子的前面放上一粒玉米,剛好那地方是老鼠可望不可及的位置。老鼠想吃玉米,就不斷的跑動,於是輪子不停的轉動;又一次他放風箏時,在繩子上懸掛著小燈,夜間村人看去驚疑是彗星出現;他還製造了一個小水鍾。每天早晨,小水鍾會自動滴水到他的臉上,催他起床。他還喜歡繪畫、雕刻,尤其喜歡刻日晷,家裡牆角、窗檯上到處安放著他刻畫的日晷,用以驗看日影的移動。牛頓12歲時進了離家不遠的格蘭瑟姆中學。牛頓的母親原希望他成為一個農民,但牛頓本人卻無意於此,而酷愛讀書。隨著年歲的增大,牛頓越發愛好讀書,喜歡沉思,做科學小實驗。他在格蘭瑟姆中學讀書時,曾經寄宿在一位葯劑師家裡,使他受到了化學試驗的熏陶。後來迫於生活,母親讓牛頓停學在家務農,贍養家庭。但牛頓一有機會便埋首書卷,以至經常忘了幹活。每次,母親叫他同傭人一道上市場,熟悉做交易的生意經時,他便懇求傭人一個人上街,自己則躲在樹叢後看書。有一次,牛頓的舅父起了疑心,就跟蹤牛頓上市鎮去,發現他的外甥伸著腿,躺在草地上,正在聚精會神地鑽研一個數學問題。牛頓的好學精神感動了舅父,於是舅父勸服了母親讓牛頓復學,並鼓勵牛頓上大學讀書。牛頓又重新回到了學校,如飢似渴地汲取著書本上的營養。1661年,19歲的牛頓以減費生的身份進入劍橋大學三一學院,靠為學院做雜務的收入支付學費,1664年成為獎學金獲得者,1665年獲學士學位。在1665~1666年,倫敦流行鼠疫的兩年間,牛頓回到家鄉。這兩年牛頓才華橫溢,作出了多項發明。1667年重返劍橋大學,1668年7月獲碩士學位。1669年巴羅推薦26歲的牛頓繼任盧卡斯講座教授,1672年成為皇家學會會員,1703年成為皇家學會終身會長。1699年就任造幣局局長,1701年他辭去劍橋大學工作,因改革幣制有功,1705年被封為爵士。1727年牛頓逝世於肯辛頓,遺體葬於威斯敏斯特教堂。牛頓的偉大成就與他的刻苦和勤奮是分不開的。他的助手H.牛頓說過,「他很少在兩、三點前睡覺,有時一直工作到五、六點。春天和秋天經常五、六個星期住在實驗室,直到完成實驗。」他有一種長期堅持不懈集中精力透徹解決某一問題的習慣。他回答人們關於他洞察事物有何訣竅時說:「不斷地沉思」。這正是他的主要特點。對此有許多故事流傳:他年幼時,曾一面牽牛上山,一面看書,到家後才發覺手裡只有一根繩;看書時定時煮雞蛋結果將表和雞蛋一齊煮在鍋里;有一次,他請朋友到家中吃飯,自己卻在實驗室廢寢忘食地工作,再三催促仍不出來,當朋友把一隻雞吃完,留下一堆骨頭在盤中走了以後,牛頓才想起這事,可他看到盤中的骨頭後又恍然大悟地說:「我還以為沒有吃飯,原來我早已吃過了」。牛頓的成就,恩格斯在《英國狀況十八世紀》中概括得最為完整:「牛頓由於發明了萬有引力定律而創立了科學的天文學,由於進行了光的分解而創立了科學的光學,由於創立了二項式定理和無限理論而創立了科學的數學,由於認識了力的本性而創立了科學的力學」。高斯:德國著名數學家、物理學家、天文學家、大地測量學家。他有數學王子的美譽。高斯是一對普通夫婦的兒子。他的母親是一個貧窮石匠的女兒,雖然十分聰明,但卻沒有接受過教育,近似於文盲。在她成為高斯父親的第二個妻子之前,她從事女傭工作。他的父親曾做過園丁,工頭,商人的助手和一個小保險公司的評估師。當高斯三歲時便能夠糾正他父親的借債賬目的事情,已經成為一個軼事流傳至今。他曾說,他在麥仙翁堆上學會計算。能夠在頭腦中進行復雜的計算,是上帝賜予他一生的天賦。高斯用很短的時間計算出了小學老師布置的任務:對自然數從1到100的求和。他所使用的方法是:對50對構造成和101的數列求和為(1+100,2+99,3+98……),同時得到結果:5050。這一年,高斯9歲。但是據更為精細的數學史書記載,高斯所解的並不止1加到100那麼簡單,而是81297+81495++100899(公差198,項數100)的一個等差數列。當高斯12歲時,已經開始懷疑元素幾何學中的基礎證明。當他16歲時,預測在歐氏幾何之外必然會產生一門完全不同的幾何學。他導出了二項式定理的一般形式,將其成功的運用在無窮級數,並發展了數學分析的理論。高斯的成就遍及數學的各個領域,在數論、非歐幾何、微分幾何、超幾何級數、復變函數論以及橢圓函數論等方面均有開創性貢獻。他十分注重數學的應用,並且在對天文學、大地測量學和磁學的研究中也偏重於用數學方法進行研究。

C. 十大數學家

世界十大數學家是:1.歐幾里得、2.劉微、3.秦九韶、4.笛卡爾、5.費馬、6.萊布尼茨、7.歐拉、8.拉格朗日、9.高斯、10.希爾伯特

1. 歐幾里德(Euclid of Alexandria),希臘數學家。約生於公元前330年,約歿於公元前260年。

歐幾里德是古代希臘最負盛名、最有影響的數學家之一,他是亞歷山大里亞學派的成員。歐幾里德寫過一本書,書名為《幾何原本》(Elements) 共有13卷。這一著作對於幾何學、數學和科學的未來發展,對於西方人的整個思維方法都有很大的影響。《幾何原本》的主要對象是幾何學,但它還處理了數論、無理數理論等其他課題。歐幾里德使用了公理化的方法。公理(axioms)就是確定的、不需證明的基本命題,一切定理都由此演繹而出。在這種演繹推理中,每個證明必須以公理為前提,或者以被證明了的定理為前提。這一方法後來成了建立任何知識體系的典範,在差不多2000年間,被奉為必須遵守的嚴密思維的範例。《幾何原本》是古希臘數學發展的頂峰。

歐幾里得 (活動於約前300-?)

古希臘數學家。以其所著的《幾何原本》(簡稱《原本》)聞名於世。關於他的生平,現在知道的很少。早年大概就學於雅典,深知柏拉圖的學說。公元前300年左右,在托勒密王(公元前364~前283)的邀請下,來到亞歷山大,長期在那裡工作。他是一位溫良敦厚的教育家,對有志數學之士,總是循循善誘。但反對不肯刻苦鑽研、投機取巧的作風,也反對狹隘實用觀點。據普羅克洛斯(約410~485)記載,托勒密王曾經問歐幾里得,除了他的《幾何原本》之外,還有沒有其他學習幾何的捷徑。歐幾里得回答說: 「 在幾何里,沒有專為國王鋪設的大道。 」 這句話後來成為傳誦千古的學習箴言。斯托貝烏斯(約 500)記述了另一則故事,說一個學生才開始學第一個命題,就問歐幾里得學了幾何學之後將得到些什麼。歐幾里得說:給他三個錢幣,因為他想在學習中獲取實利。

歐幾里得將公元前 7世紀以來希臘幾何積累起來的豐富成果整理在嚴密的邏輯系統之中,使幾何學成為一門獨立的、演繹的科學。除了《幾何原本》之外,他還有不少著作,可惜大都失傳。《已知數》是除《原本》之外惟一保存下來的他的希臘文純粹幾何著作,體例和《原本》前6卷相近,包括94個命題,指出若圖形中某些元素已知,則另外一些元素也可以確定。《圖形的分割》現存拉丁文本與阿拉伯文本,論述用直線將已知圖形分為相等的部分或成比例的部分。《光學》是早期幾何光學著作之一,研究透視問題,敘述光的入射角等於反射角,認為視覺是眼睛發出光線到達物體的結果。還有一些著作未能確定是否屬於歐幾里得,而且已經散失。

歐幾里德的《幾何原本》中收錄了23個定義,5個公理,5個公設,並以此推導出48個命題(第一卷)。

2.劉徽 生平

(生於公元250年左右),三國後期魏國人,是中國古代傑出的數學家,也是中國古典數學理論的奠基者之一.其生卒年月、生平事跡,史書上很少記載。據有限史料推測,他是魏晉時代山東臨淄或淄川一帶人。終生未做官。

著作
劉徽的數學著作留傳後世的很少,所留之作均為久經輾轉傳抄。他的主要著作有:

《九章算術注》10卷;
《重差》1卷,至唐代易名為《海島算經》;
《九章重差圖》l卷,可惜後兩種都在宋代失傳。

數學成就

劉徽的數學成就大致為兩方面:

一是清理中國古代數學體系並奠定了它的理論基礎。這方面集中體現在《九章算術注》中。它實已形成為一個比較完整的理論體系:

①在數系理論方面
用數的同類與異類闡述了通分、約分、四則運算,以及繁分數化簡等的運演算法則;在開方術的注釋中,他從開方不盡的意義出發,論述了無理方根的存在,並引進了新數,創造了用十進分數無限逼近無理根的方法。
②在籌式演算理論方面
先給率以比較明確的定義,又以遍乘、通約、齊同等三種基本運算為基礎,建立了數與式運算的統一的理論基礎,他還用「率」來定義中國古代數學中的「方程」,即現代數學中線性方程組的增廣矩陣。
③在勾股理論方面
逐一論證了有關勾股定理與解勾股形的計算原理,建立了相似勾股形理論,發展了勾股測量術,通過對「勾中容橫」與「股中容直」之類的典型圖形的論析,形成了中國特色的相似理論。
④在面積與體積理論方面
用出入相補、以盈補虛的原理及「割圓術」的極限方法提出了劉徽原理,並解決了多種幾何形、幾何體的面積、體積計算問題。這些方面的理論價值至今仍閃爍著余輝。

二是在繼承的基礎上提出了自己的創見。這方面主要體現為以下幾項有代表性的創見:

①割圓術與圓周率
他在《九章算術•圓田術》注中,用割圓術證明了圓面積的精確公式,並給出了計算圓周率的科學方法。他首先從圓內接六邊形開始割圓,每次邊數倍增,算到192邊形的面積,得到π=157/50=3.14,又算到3072邊形的面積,得到π=3927/1250=3.1416,稱為「徽率」。
②劉徽原理
在《九章算術•陽馬術》注中,他在用無限分割的方法解決錐體體積時,提出了關於多面體體積計算的劉徽原理。
③「牟合方蓋」說
在《九章算術•開立圓術》注中,他指出了球體積公式V=9D3/16(D為球直徑)的不精確性,並引入了「牟合方蓋」這一著名的幾何模型。「牟合方蓋」是指正方體的兩個軸互相垂直的內切圓柱體的貫交部分。
④方程新術
在《九章算術•方程術》注中,他提出了解線性方程組的新方法,運用了比率演算法的思想。
⑤重差術
在白撰《海島算經》中,他提出了重差術,採用了重表、連索和累矩等測高測遠方法。他還運用「類推衍化」的方法,使重差術由兩次測望,發展為「三望」、「四望」。而印度在7世紀,歐洲在15~16世紀才開始研究兩次測望的問題。

貢獻和地位

劉徽的工作,不僅對中國古代數學發展產生了深遠影響,而且在世界數學吏上也確立了崇高的歷史地位。鑒於劉徽的巨大貢獻,所以不少書上把他稱作「中國數學史上的牛頓」。

費馬
費馬(1601~1665)

Fermat,Pierre de

費馬是法國數學家,1601年8月17日出生於法國南部圖盧茲附近的博蒙·德·洛馬涅。他的父親多米尼克·費馬在當地開了一家大皮革商店,擁有相當豐厚的產業,使得費馬從小生活在富裕舒適的環境中。

費馬的父親由於富有和經營有道,頗受人們尊敬,並因此獲得了地方事務顧問的頭銜,但費馬小的時候並沒有因為家境的富裕而產生多少優越感。費馬的母親名叫克拉萊·德·羅格,出身穿袍貴族。多米尼克的大富與羅格的大貴族構築了費馬極富貴的身價。

費馬小時候受教於他的叔叔皮埃爾,受到了良好的啟蒙教育,培養了他廣泛的興趣和愛好,對他的性格也產生了重要的影響。直到14歲時,費馬才進入博蒙·德·洛馬涅公學,畢業後先後在奧爾良大學和圖盧茲大學學習法律。

17世紀的法國,男子最講究的職業是當律師,因此,男子學習法律成為時髦,也使人敬羨。有趣的是,法國為那些有產的而缺少資歷的「准律師」盡快成為律師創造了很好的條件。1523年,佛朗期瓦一世組織成立了一個專門鬻賣官爵的機關,公開出售官職。這種官職鬻賣的社會現象一經產生,便應時代的需要而一發不可收拾,且彌留今日。

鬻賣官職,一方面迎合了那些富有者,使其獲得官位從而提高社會地位,另一方面也使政府的財政狀況得以好轉。因此到了17世紀,除宮廷官和軍官以外的任何官職都可以買賣了。直到今日,法院的書記官、公證人、傳達人等職務,仍沒有完全擺脫買賣性質。法國的買官特產,使許多中產階級從中受惠,費馬也不例外。費馬尚沒有大學畢業,便在博蒙·德·洛馬涅買好了「律師」和「參議員」的職位。等到費馬畢業返回家鄉以後,他便很容易地當上了圖盧茲議會的議員,時值 1631年。

盡管費馬從步入社會直到去世都沒有失去官職,而且逐年得到提升,但是據記載,費馬並沒有什麼政績,應付官場的能力也極普通,更談不上什麼領導才能。不過,費馬並未因此而中斷升遷。在費馬任了七年地方議會議員之後,升任了調查參議員,這個官職有權對行政當局進行調查和提出質疑。

1642年,有一位權威人士叫勃里斯亞斯,他是最高法院顧問。勃里斯亞斯推薦費馬進入了最高刑事法庭和法國大理院主要法庭,這使得費馬以後得到了更好的升遷機會。1646年,費馬升任議會首席發言人,以後還當過天主教聯盟的主席等職。費馬的官場生涯沒有什麼突出政績值得稱道,不過費馬從不利用職權向人們勒索、從不受賄、為人敦厚、公開廉明,贏得了人們的信任和稱贊。

費馬的婚姻使費馬躋身於穿袍貴族的行列,費馬娶了他的舅表妹露伊絲·德·羅格。原本就為母親的貴族血統而感驕傲的費馬,如今乾脆在自己的姓名上加上了貴族姓氏的標志「de」。

費馬生有三女二男,除了大女兒克拉萊出嫁之外,四個子女都使費馬感到體面。兩個女兒當上了牧師,次子當上了菲瑪雷斯的副主教。尤其是長子克萊曼特 ·薩摩爾,他不僅繼承了費馬的公職,在1665年當上了律師,而且還整理了費馬的數學論著。如果不是費馬長子積極出版費馬的數學論著,很難說費馬能對數學產生如此重大的影響,因為大部分論文都是在費馬死後,由其長子負責發表的。從這個意義上說,薩摩爾也稱得上是費馬事業上的繼承人。

對費馬來說,真正的事業是學術,尤其是數學。費馬通曉法語、義大利語、西班牙語、拉丁語和希臘語,而且還頗有研究。語言方面的博學給費馬的數學研究提供了語言工具和便利,使他有能力學習和了解阿拉伯和義大利的代數以及古希臘的數學。正是這些,可能為費馬在數學上的造詣莫定了良好基礎。在數學上,費馬不僅可以在數學王國里自由馳騁,而且還可以站在數學天地之外鳥瞰數學。這也不能絕對歸於他的數學天賦,與他的博學多才多少也是有關系的。

費馬生性內向,謙抑好靜,不善推銷自己,不善展示自我。因此他生前極少發表自己的論著,連一部完整的著作也沒有出版。他發表的一些文章,也總是隱姓埋名。《數學論集》還是費馬去世後由其長子將其筆記、批註及書信整理成書而出版的。我們現在早就認識到時間性對於科學的重要,即使在l7世紀,這個問題也是突出的。費馬的數學研究成果不及時發表,得不到傳播和發展,並不完全是個人的名譽損失,而是影響了那個時代數學前進的步伐。

費馬一生身體健康,只是在1652年的瘟疫中險些喪命。1665年元旦一過,費馬開始感到身體有變,因此於1月l0日停職。第三天,費馬去世。費馬被安葬在卡斯特雷斯公墓,後來改葬在圖盧茲的家族墓地中。

費馬一生從未受過專門的數學教育,數學研究也不過是業余之愛好。然而,在17世紀的法國還找不到哪位數學家可以與之匹敵:他是解析幾何的發明者之一;對於微積分誕生的貢獻僅次於牛頓、萊布尼茨,概率論的主要創始人,以及獨承17世紀數論天地的人。此外,費馬對物理學也有重要貢獻。一代數學大才費馬堪稱是17世紀法國最偉大的數學家。

17世紀伊始,就預示了一個頗為壯觀的數學前景。而事實上,這個世紀也正是數學史上一個輝煌的時代。幾何學首先成了這一時代最引入注目的引玉之明珠,由於幾何學的新方法—代數方法在幾何學上的應用,直接導致了解析幾何的誕生;射影幾何作為一種嶄新的方法開辟了新的領域;由古代的求積問題導致的極微分割方法引入幾何學,使幾何學產生了新的研究方向,並最終促進了微積分的發明。幾何學的重新崛起是與一代勤於思考、富於創造的數學家是分不開的,費馬就是其中的一位。

對解析幾何的貢獻

費馬獨立於笛卡兒發現了解析幾何的基本原理。

1629年以前,費馬便著手重寫公元前三世紀古希臘幾何學家阿波羅尼奧斯失傳的《平面軌跡》一書。他用代數方法對阿波羅尼奧斯關於軌跡的一些失傳的證明作了補充,對古希臘幾何學,尤其是阿波羅尼奧斯圓錐曲線論進行了總結和整理,對曲線作了一般研究。並於1630年用拉丁文撰寫了僅有八頁的論文《平面與立體軌跡引論》。

費馬於1636年與當時的大數學家梅森、羅貝瓦爾開始通信,對自己的數學工作略有言及。但是《平面與立體軌跡引論》的出版是在費馬去世14年以後的事,因而1679年以前,很少有人了解到費馬的工作,而現在看來,費馬的工作卻是開創性的。

《平面與立體軌跡引論》》中道出了費馬的發現。他指出:「兩個未知量決定的—個方程式,對應著一條軌跡,可以描繪出一條直線或曲線。」費馬的發現比笛卡爾發現解析幾何的基本原理還早七年。費馬在書中還對一般直線和圓的方程、以及關於雙曲線、橢圓、拋物線進行了討論。

笛卡兒是從一個軌跡來尋找它的方程的,而費馬則是從方程出發來研究軌跡的,這正是解析幾何基本原則的兩個相反的方面。

在1643年的一封信里,費馬也談到了他的解析幾何思想。他談到了柱面、橢圓拋物面、雙葉雙曲面和橢球面,指出:含有三個未知量的方程表示一個曲面,並對此做了進一步地研究。

對微積分的貢獻

16、17世紀,微積分是繼解析幾何之後的最璀璨的明珠。人所共知,牛頓和萊布尼茨是微積分的締造者,並且在其之前,至少有數十位科學家為微積分的發明做了奠基性的工作。但在諸多先驅者當中,費馬仍然值得一提,主要原因是他為微積分概念的引出提供了與現代形式最接近的啟示,以致於在微積分領域,在牛頓和萊布尼茨之後再加上費馬作為創立者,也會得到數學界的認可。

曲線的切線問題和函數的極大、極小值問題是微積分的起源之一。這項工作較為古老,最早可追溯到古希臘時期。阿基米德為求出一條曲線所包任意圖形的面積,曾藉助於窮竭法。由於窮竭法繁瑣笨拙,後來漸漸被人遺忘、直到16世紀才又被重視。由於開普勒在探索行星運動規律時,遇到了如何確定橢圓形面積和橢圓弧長的問題,無窮大和無窮小的概念被引入並代替了繁瑣的窮竭法。盡管這種方法並不完善,但卻為自卡瓦列里到費馬以來的數學家開辟廠一個十分廣闊的思考空間。

費馬建立了求切線、求極大值和極小值以及定積分方法,對微積分做出了重大貢獻。

對概率論的貢獻

早在古希臘時期,偶然性與必然性及其關系問題便引起了眾多哲學家的興趣與爭論,但是對其有數學的描述和處理卻是15世紀以後的事。l6世紀早期,義大利出現了卡爾達諾等數學家研究骰子中的博弈機會,在博弈的點中探求賭金的劃分問題。到了17世紀,法國的帕斯卡和費馬研究了義大利的帕喬里的著作《摘要》,建立了通信聯系,從而建立了概率學的基礎。

費馬考慮到四次賭博可能的結局有2×2×2×2=16種,除了一種結局即四次賭博都讓對手贏以外,其餘情況都是第一個賭徒獲勝。費馬此時還沒有使用概率一詞,但他卻得出了使第一個賭徒贏得概率是15/16,即有利情形數與所有可能情形數的比。這個條件在組合問題中一般均能滿足,例如紙牌游戲,擲銀子和從罐子里模球。其實,這項研究為概率的數學模型一概率空間的抽象奠定了博弈基礎,盡管這種總結是到了1933年才由柯爾莫戈羅夫作出的。

費馬和帕斯卡在相互通信以及著作中建立了概率論的基本原則——數學期望的概念。這是從點的數學問題開始的:在一個被假定有同等技巧的博弈者之間,在一個中斷的博弈中,如何確定賭金的劃分,已知兩個博弈者在中斷時的得分及在博弈中獲勝所需要的分數。費馬這樣做出了討論:一個博弈者A需要4分獲勝,博弈者B需要3分獲勝的情況,這是費馬對此種特殊情況的解。因為顯然最多四次就能決定勝負。

一般概率空間的概念,是人們對於概念的直觀想法的徹底公理化。從純數學觀點看,有限概率空間似乎顯得平淡無奇。但一旦引入了隨機變數和數學期望時,它們就成為神奇的世界了。費馬的貢獻便在於此。

對數論的貢獻

17世紀初,歐洲流傳著公元三世紀古希臘數學家丟番圖所寫的《算術》一書。l621年費馬在巴黎買到此書,他利用業余時間對書中的不定方程進行了深入研究。費馬將不定方程的研究限制在整數范圍內,從而開始了數論這門數學分支。

費馬在數論領域中的成果是巨大的,其中主要有:

(1)全部素數可分為4n+1和4n+3兩種形式。
(2)形如4n+1的素數能夠,而且只能夠以一種方式表為兩個平方數之和。
(3)沒有一個形如4n+3的素數,能表示為兩個平方數之和。
(4)形如4n+1的素數能夠且只能夠作為一個直角邊為整數的直角三角形的斜邊;4n+1的平方是且只能是兩個這種直角三角形的斜邊;類似地,4n+1的m次方是且只能是m個這種直角三角形的斜邊。
(5)邊長為有理數的直角三角形的面積不可能是一個平方數。
(6)4n+1形的素數與它的平方都只能以一種方式表達為兩個平方數之和;它的3次和4次方都只能以兩種表達為兩個平方數之和;5次和6次方都只能以3種方式表達為兩個平方數之和,以此類推,直至無窮。

對光學的貢獻

費馬在光學中突出的貢獻是提出最小作用原理,也叫最短時間作用原理。這個原理的提出源遠流長。早在古希臘時期,歐幾里得就提出了光的直線傳播定律相反射定律。後由海倫揭示了這兩個定律的理論實質——光線取最短路徑。經過若干年後,這個定律逐漸被擴展成自然法則,並進而成為一種哲學觀念。—個更為一般的「大自然以最短捷的可能途徑行動」的結論最終得出來,並影響了費馬。費馬的高明之處則在於變這種的哲學的觀念為科學理論。

費馬同時討論了光在逐點變化的介質中行徑時,其路徑取極小的曲線的情形。並用最小作用原理解釋了一些問題。這給許多數學家以很大的鼓舞。尤其是歐拉,競用變分法技巧把這個原理用於求函數的極值。這直接導致了拉格朗日的成就,給出了最小作用原理的具體形式:對一個質點而言,其質量、速度和兩個固定點之間的距離的乘積之積分是一個極大值和極小值;即對該質點所取的實際路徑來說,必須是極大或極小。

D. 程偉巔峰數學的神級結論的秒殺原理具體是怎麼樣的

通俗點說,就是替用戶省掉在草稿紙上所花費的時間,因為草稿紙上寫得再多回算得再多,也答是不會得分的,閱卷老師也是看不到的。

常規老師是教學生如何通過那些復雜繁瑣的運算過程得出結果,很難掌握,所以很多人數學學不好,也不想學。

程偉巔峰數學則是教學生如何通過極其簡單的方式得出同樣的結果,這種方式其實還是常規方法,只不過在程老師的演繹和總結下就變得非常容易懂,而且應用速度快,就形成了所謂的秒殺,一定程度上做到了告別草稿紙!

(4)數學的頂峰擴展閱讀

課程理念:

PGSA教學法:

1、P---Passion,激情。激情澎湃的教學風格,極大地調動學生的聽課情緒與專注程度。

2、G---Govern,控制。依託強大的個人氣場、壓迫性的教學方式,自始自終將課堂上的一切因素掌控在手。

3、S---Suspense,懸念。課程內容環環相扣,設置懸念-水落石出-設置懸念-水落石出,課程效果引人入勝。

4、A---Afterclass,課後。科學、合理、緊貼課程內容的課後任務布置給學生,完美吸收,事半功倍。

E. 數學界最牛的數學家有哪些

數學史向來有四大天王的之稱,整個數學幾千年的發展,都和他們有關。他們折磨了你的小學、中學還有大學。他們分別是「數學之神」阿基米德,「經典力學之父」牛頓,「數學英雄」歐拉,「數學王子」高斯。

「數學之神」阿基米德

在古希臘時期,數學就已經開始萌芽。誕生了一大批的數學家,在一開始,希臘人把有理數視為連續銜接的那種算術連續統(指連續不斷的數集)的設想,以柏拉圖為代表的數學家試圖構建以數為基礎的數學模型。

F. 數學巔峰

第一題
設一共有X個同學
X+X/2+X/3=70-4
X=36
第三題
設個位為X,則十位為3/4X.
x-2=3/4x
X=8 8*3/4=6
這個兩位數是68

這兩道題我有把握
剩下的。。。。。。我就不敢確定了

G. 現代數學的巔峰是什麼

1+1=2?

H. 中國古代教育經歷了哪四次數學高峰

中國數學發展的高峰
唐朝亡後,五代十國仍是軍閥混戰的繼續,直到北宋王朝統一了中國,農業、手工業、商業迅速繁榮,科學技術突飛猛進.從公元十一世紀到十四世紀﹝宋、元兩代﹞,籌算數學達到極盛,是中國古代數學空前繁榮,碩果累累的全盛時期.這一時期出現了一批著名的數學家和數學著作,列舉如下:賈憲的《黃帝九章演算法細草》﹝11世紀中葉﹞,劉益的《議古根源》﹝12世紀中葉﹞,秦九韶的《數書九章》﹝1247﹞,李冶的《測圓海鏡》﹝1248﹞和《益古演段》﹝1259﹞,楊輝的《詳解九章演算法》﹝1261﹞、《日用演算法》﹝1262﹞和《楊輝演算法》﹝1274-1275﹞,朱世傑的《算學啟蒙》﹝1299﹞和《四元玉鑒》﹝1303﹞等等.宋元數學在很多領域都達到了中國古代數學,也是當時世界數學的巔峰.其中主要的工作有:
公元1050年左右,北宋賈憲(生卒年代不詳)在《黃帝九章演算法細草》中創造了開任意高次冪的「增乘開方法」,公元1819年英國人霍納(william george horner)才得出同樣的方法.賈憲還列出了二項式定理系數表,歐洲到十七世紀才出現類似的「巴斯加三角」.(《黃帝九章演算法細草》已佚)
公元1088—1095年間,北宋沈括從「酒家積罌」數與「層壇」體積等生產實踐問題提出了「隙積術」,開始對高階等差級數的求和進行研究,並創立了正確的求和公式.沈括還提出「會圓術」,得出了我國古代數學史上第一個求弧長的近似公式.他還運用運籌思想分析和研究了後勤供糧與運兵進退的關系等問題.
公元1247年,南宋秦九韶在《數書九章》中推廣了增乘開方法,敘述了高次方程的數值解法,他列舉了二十多個來自實踐的高次方程的解法,最高為十次方程.歐洲到十六世紀義大利人菲爾洛(scipio del ferro)才提出三次方程的解法.秦九韶還系統地研究了一次同餘式理論.
公元1248年,李冶(李治,公元1192一1279年)著的《測圓海鏡》是第一部系統論述「天元術」(一元高次方程)的著作,這在數學史上是一項傑出的成果.在《測圓海鏡?序》中,李冶批判了輕視科學實踐,以數學為「九九賤技」、「玩物喪志」等謬論.
公元1261年,南宋楊輝(生卒年代不詳)在《詳解九章演算法》中用「垛積術」求出幾類高階等差級數之和.公元1274年他在《乘除通變本末》中還敘述了「九歸捷法」,介紹了籌算乘除的各種運演算法.公元1280年,元代王恂、郭守敬等制訂《授時歷》時,列出了三次差的內插公式.郭守敬還運用幾何方法求出相當於現在球面三角的兩個公式.
公元1303年,元代朱世傑(生卒年代不詳)著《四元玉鑒》,他把「天元術」推廣為「四元術」(四元高次聯立方程),並提出消元的解法,歐洲到公元1775年法國人別朱(etienne bezout)才提出同樣的解法.朱世傑還對各有限項級數求和問題進行了研究,在此基礎上得出了高次差的內插公式,歐洲到公元1670年英國人格里高利(james gregory)和公元1676一1678年間牛頓(issac newton)才提出內插法的一般公式.
公元十四世紀我國人民已使用珠算盤.在現代計算機出現之前,珠算盤是世界上簡便而有效的計算工具.
中國數學的特點與局限
(1)以演算法為中心,屬於應用數學.中國數學不脫離社會生活與生產的實際,以解決實際問題為目標,數學研究是圍繞建立演算法與提高計算技術而展開的.
(2)具有較強的社會性.中國傳統數學文化中,數學被儒學家培養人的道德與技能的基本知識---六藝(禮、樂、射、御、書、數)之一,它的作用在於「通神明、順性命,經世務、類萬物」,所以中國傳統數學總是被打上中國哲學與古代學術思想的烙印,往往與術數交織在一起.同時,數學教育與研究往往被封建政府所控制,唐宋時代的數學教育與科舉制度、歷代數學家往往是政府的天文官員,這些事例充分反映了這一性質.
(3)寓理於算,理論高度概括.由於中國傳統數學注重解決實際問題,而且因中國人綜合、歸納思維的決定,所以中國傳統數學不關心數學理論的形式化,但這並不意味中國傳統僅停留在經驗層次而無理論建樹.其實中國數學的演算法中蘊涵著建立這些演算法的理論基礎,中國數學家習慣把數學概念與方法建立在少數幾個不證自明、形象直觀的數學原理之上,如代數中的「率」的理論,平面幾何中的「出入相補」原理,立體幾何中的「陽馬術」、曲面體理論中的「截面原理」(或稱劉祖原理,即卡瓦列利原理)等等.
中國數學對世界的影響
數學活動有兩項基本工作----證明與計算,前者是由於接受了公理化(演繹化)數學文化傳統,後者是由於接受了機械化(演算法化)數學文化傳統.在世界數學文化傳統中,以歐幾里得《幾何原本》為代表的希臘數學,無疑是西方演繹數學傳統的基礎,而以《九章算術》為代表的中國數學無疑是東方演算法化數學傳統的基礎,它們東西輝映,共同促進了世界數學文化的發展.
中國數學通過絲綢之路傳播到印度、阿拉伯地區,後來經阿拉伯人傳入西方.而且在漢字文化圈內,一直影響著日本、朝鮮半島、越南等亞洲國家的數學發展.
魏晉南北朝時期
魏晉時期中國數學在理論上有了較大的發展。其中趙爽(生卒年代不詳)和劉徽(生卒年代不詳)的工作被認為是中國古代數學理論體系的開端。三國吳人趙爽是中國古代對數學定理和公式進行證明的最早的數學家之一,對《周髀算經》做了詳盡的注釋,在《勾股圓方圖注》中用幾何方法嚴格證明了勾股定理,他的方法已體現了割補原理的思想。趙爽還提出了用幾何方法求解二次方程的新方法。263年,三國魏人劉徽注釋《九章算術》,在《九章算術注》中不僅對原書的方法、公式和定理進行一般的解釋和推導,系統地闡述了中國傳統數學的理論體系與數學原理,而且在其論述中多有創造,在卷1《方田》中創立割圓術(即用圓內接正多邊形面積無限逼近圓面積的辦法),為圓周率的研究工作奠定理論基礎和提供了科學的演算法,他運用「割圓術」得出圓周率的近似值為3927/1250(即3.1416);在《商功》章中,為解決球體積公式的問題而構造了「牟合方蓋」的幾何模型,為祖暅獲得正確結果開辟了道路;為建立多面體體積理論,運用極限方法成功地證明了陽馬術;他還撰著《海島算經》,發揚了古代勾股測量術----重差術。
南北朝時期的社會長期處於戰爭和分裂狀態,但數學的發展依然蓬勃。出現了《孫子算經》、《夏侯陽算經》、《張丘建算經》等算學著作。約於公元四-五世紀成書的《孫子算經》給出「物不知數」問題並作了解答,導致求解一次同餘組問題在中國的濫暢;《張丘建算經》的「百雞問題」引出三個未知數的不定方程組問題。
魏晉時期中國數學在理論上有了較大的發展。其中趙爽(生卒年代不詳)和劉徽(生卒年代不詳)的工作被認為是中國古代數學理論體系的開端。三國吳人趙爽是中國古代對數學定理和公式進行證明的最早的數學家之一,對《周髀算經》做了詳盡的注釋,在《勾股圓方圖注》中用幾何方法嚴格證明了勾股定理,他的方法已體現了割補原理的思想。趙爽還提出了用幾何方法求解二次方程的新方法。263年,三國魏人劉徽注釋《九章算術》,在《九章算術注》中不僅對原書的方法、公式和定理進行一般的解釋和推導,系統地闡述了中國傳統數學的理論體系與數學原理,而且在其論述中多有創造,在卷1《方田》中創立割圓術(即用圓內接正多邊形面積無限逼近圓面積的辦法),為圓周率的研究工作奠定理論基礎和提供了科學的演算法,他運用「割圓術」得出圓周率的近似值為3927/1250(即3.1416);在《商功》章中,為解決球體積公式的問題而構造了「牟合方蓋」的幾何模型,為祖暅獲得正確結果開辟了道路;為建立多面體體積理論,運用極限方法成功地證明了陽馬術;他還撰著《海島算經》,發揚了古代勾股測量術----重差術。
南北朝時期的社會長期處於戰爭和分裂狀態,但數學的發展依然蓬勃。出現了《孫子算經》、《夏侯陽算經》、《張丘建算經》等算學著作。約於公元四-五世紀成書的《孫子算經》給出「物不知數」問題並作了解答,導致求解一次同餘組問題在中國的濫暢;《張丘建算經》的「百雞問題」引出三個未知數的不定方程組問題。魏晉時期中國數學在理論上有了較大的發展。其中趙爽(生卒年代不詳)和劉徽(生卒年代不詳)的工作被認為是中國古代數學理論體系的開端。三國吳人趙爽是中國古代對數學定理和公式進行證明的最早的數學家之一,對《周髀算經》做了詳盡的注釋,在《勾股圓方圖注》中用幾何方法嚴格證明了勾股定理,他的方法已體現了割補原理的思想。趙爽還提出了用幾何方法求解二次方程的新方法。263年,三國魏人劉徽注釋《九章算術》,在《九章算術注》中不僅對原書的方法、公式和定理進行一般的解釋和推導,系統地闡述了中國傳統數學的理論體系與數學原理,而且在其論述中多有創造,在卷1《方田》中創立割圓術(即用圓內接正多邊形面積無限逼近圓面積的辦法),為圓周率的研究工作奠定理論基礎和提供了科學的演算法,他運用「割圓術」得出圓周率的近似值為3927/1250(即3.1416);在《商功》章中,為解決球體積公式的問題而構造了「牟合方蓋」的幾何模型,為祖暅獲得正確結果開辟了道路;為建立多面體體積理論,運用極限方法成功地證明了陽馬術;他還撰著《海島算經》,發揚了古代勾股測量術----重差術。
南北朝時期的社會長期處於戰爭和分裂狀態,但數學的發展依然蓬勃。出現了《孫子算經》、《夏侯陽算經》、《張丘建算經》等算學著作。約於公元四-五世紀成書的《孫子算經》給出「物不知數」問題並作了解答,導致求解一次同餘組問題在中國的濫暢;《張丘建算經》的「百雞問題」引出三個未知數的不定方程組問題。

I. 問高手:現代數學發展到了什麼階段,最頂峰是什麼現在數學的前沿熱點是什麼

總體上,現階段的創新性理論發展不及過去的輝煌,「理論」是進入了由「膨回脹分化分支」答到「收縮融合交叉」的階段,「應用」進入了由「片面簡單運用」到「全面復雜滲透」的階段。

比較前沿的理論有:
拓撲學
圖理學(由圖論那裡發展出來)
統一集(集合論的補充、擴充和統一,可以運用到人工智慧領域)
偏微分方程(廣泛的交叉應用)
混沌與分形(一門挺復雜的交叉學科,里頭包含了許許多多的「近符」哲學領域的問題,如混沌與秩序、局部和整體、對稱與非對稱、平衡與失衡、線性與非線性)

數學的前沿熱點,其實也就是經典難題,n百年前哪些吧?他們會說那些東東既古老又年輕的。例如:
費馬(Farmal)大定理:懷爾斯在20世紀末解決了
黎曼(Riemann)猜想
哥德巴赫(Goldbach)猜想

J. 中國古典數學發展的頂峰時期是

在宋元時期達到頂峰。

在古代世界四大文明中,中國數學持續繁榮時期最為長久。從公元前後至公元14世紀,中國古典數學先後經歷了三次發展高潮,即兩漢時期、魏晉南北朝時期和宋元時期,並在宋元時期達到頂峰。

與以證明定理為中心的希臘古典數學不同,中國古代數學是以創造演算法特別是各種解方程的演算法為主線。從線性方程組到高次多項式方程,乃至不定方程,中國古代數學家創造了一系列先進的演算法(中國數學家稱之為「術」);

他們用這些演算法去求解相應類型的代數方程,從而解決導致這些方程的各種各樣的科學和實際問題。特別是,幾何問題也歸結為代數方程,然後用程式化的演算法來求解。因此,中國古代數學具有明顯的演算法化、機械化的特徵。以下擇要舉例說明中國古代數學發展的這種特徵。

(10)數學的頂峰擴展閱讀:

中國古代數學對世界數學發展的貢獻

數學的發展包括了兩大主要活動:證明定理和創造演算法。定理證明是希臘人首倡,後構成數學發展中演繹傾向的脊樑;演算法創造昌盛於古代和中世紀的中國、印度,形成了數學發展中強烈的演算法傾向。統觀數學的歷史將會發現,數學的發展並非總是演繹傾向獨占鰲頭。

在數學史上,演算法傾向與演繹傾向總是交替地取得主導地位。古代巴比倫和埃及式的原始演算法時期,被希臘式的演繹幾何所接替,而在中世紀,希臘數學衰落下去,演算法傾向在中國、印度等東方國度繁榮起來;東方數學在文藝復興前夕通過阿拉伯傳播到歐洲,對近代數學興起產生了深刻影響。

事實上,作為近代數學誕生標志的解析幾何與微積分,從思想方法的淵源看都不能說是演繹傾向而是演算法傾向的產物。

熱點內容
五年級教師家訪記錄 發布:2025-09-02 03:44:10 瀏覽:236
2008年考研數學二 發布:2025-09-02 01:20:54 瀏覽:430
不得不的英語 發布:2025-09-01 22:53:22 瀏覽:85
初三上冊物理知識點 發布:2025-09-01 21:25:06 瀏覽:843
生物防治的缺點 發布:2025-09-01 20:13:53 瀏覽:176
如何進行英語教學 發布:2025-09-01 19:42:48 瀏覽:688
老師玩少年 發布:2025-09-01 19:03:20 瀏覽:519
上古卷軸5物理插件 發布:2025-09-01 18:25:33 瀏覽:497
初中語文仿句 發布:2025-09-01 18:10:17 瀏覽:553
百思達數學 發布:2025-09-01 17:44:11 瀏覽:359