中世紀的中國數學
劉 徽
劉徽(生於公元250年左右),是中國數學史上一個非常偉大的數學家,在世界數學史上,也佔有傑出的地位.他的傑作《九章算術注》和《海島算經》,是我國最寶貴的數學遺產.
賈 憲
賈憲,中國古代北宋時期傑出的數學家。曾撰寫的《黃帝九章演算法細草》(九卷)和《演算法斆古集》(二卷)(斆xiào,意:數導)均已失傳。
他的主要貢獻是創造了"賈憲三角"和增乘開方法,增乘開方法即求高次冪的正根法。目前中學數學中的混合除法,其原理和程序均與此相仿,增乘開方法比傳統的方法整齊簡捷、又更程序化,所以在開高次方時,尤其顯出它的優越性,這個方法的提出要比歐洲數學家霍納的結論早七百多年。
秦九韶
秦九韶(約1202--1261),字道古,四川安岳人。先後在湖北,安徽,江蘇,浙江等地做官,1261年左右被貶至梅州,(今廣東梅縣),不久死於任所。他與李冶,楊輝,朱世傑並稱宋元數學四大家。早年在杭州「訪習於太史,又嘗從隱君子受數學」,1247年寫成著名的《數書九章》。《數書九章》全書凡18卷,81題,分為九大類。其最重要的數學成就----「大衍總數術」(一次同餘組解法)與「正負開方術"(高次方程數值解法),使這部宋代算經在中世紀世界數學史上佔有突出的地位。
李冶
李冶(1192----1279),原名李治,號敬齋,金代真定欒城人,曾任鈞州(今河南禹縣)知事,1232年鈞州被蒙古軍所破,遂隱居治學,被元世祖忽必烈聘為翰林學士,僅一年,便辭官回鄉。1248年撰成《測圓海鏡》,其主要目的是說明用天元術列方程的方法。「天元術」與現代代數中的列方程法相類似,「立天元一為某某」,相當於「設x為某某「,可以說是符號代數的嘗試。李冶還有另一步數學著作《益古演段》(1259)也是講解天元術的。
朱世傑
朱世傑(1300前後),字漢卿,號松庭,寓居燕山(今北京附近),「以數學名家周遊湖海二十餘年」,「踵門而學者雲集」(莫若、祖頤:《四元玉鑒》後序)。朱世傑數學代表作有《算學啟蒙》(1299)和《四元玉鑒》(1303)。《算術啟蒙》是一部通俗數學名著,曾流傳海外,影響了朝鮮、日本數學的發展。《四元玉鑒》則是中國宋元數學高峰的又一個標志,其中最傑出的數學創造有「四元術」(多元高次方程列式與消元解法)、「垛積術」(高階等差數列求和)與「招差術」(高次內插法).
祖沖之
祖沖之(公元429~500年)祖籍是現今河北省淶源縣,他是南北朝時代的一位傑出科學家。他不僅是一位數學家,同時還通曉天文歷法、機械製造、音樂等領域,並且是一位天文學家。
祖沖之在數學方面的主要成就是關於圓周率的計算,他算出的圓周率為3.1415926<π<3.1415927,這一結果的重要意義在於指出誤差的范圍,是當時世界最傑出的成就。祖沖之確定了兩個形式的π值,約率355/173(≈3.1415926)密率22/7(≈3.14),這兩個數都是π的漸近分數。
祖 暅
祖暅,祖沖之之子,同其父祖沖之一起圓滿解決了球面積的計算問題,得到正確的體積公式。現行教材中著名的「祖暅原理」,在公元五世紀可謂祖暅對世界傑出的貢獻。
楊輝
楊輝,中國南宋時期傑出的數學家和數學教育家。在13世紀中葉活動於蘇杭一帶,其著作甚多。
他著名的數學書共五種二十一卷。著有《詳解九章演算法》十二卷(1261年)、《日用演算法》二卷(1262年)、《乘除通變本末》三卷(1274年)、《田畝比類乘除演算法》二卷(1275年)、《續古摘奇演算法》二卷(1275年)。
他在《續古摘奇演算法》中介紹了各種形式的"縱橫圖"及有關的構造方法,同時"垛積術"是楊輝繼沈括"隙積術"後,關於高階等差級數的研究。楊輝在"纂類"中,將《九章算術》246個題目按解題方法由淺入深的順序,重新分為乘除、分率、合率、互換、二衰分、疊積、盈不足、方程、勾股等九類。
趙 爽
趙爽,三國時期東吳的數學家。曾注《周髀算經》,他所作的《周髀算經注》中有一篇《勾股圓方圖注》全文五百餘字,並附有雲幅插圖(已失傳),這篇注文簡練地總結了東漢時期勾股算術的重要成果,最早給出並證明了有關勾股弦三邊及其和、差關系的二十多個命題,他的證明主要是依據幾何圖形面積的換算關系。
趙爽還在《勾股圓方圖注》中推導出二次方程 (其中a>0,A>0)的求根公式 在《日高圖注》中利用幾何圖形面積關系,給出了"重差術"的證明。(漢代天文學家測量太陽高、遠的方法稱為重差術)。
明安圖】(1692——1765) 清代蒙古族傑出數學家、天文學家。字靜庵。蒙古正白旗(今內蒙古錫林郭勒盟正白旗)人,為蒙古族人。康熙九年(1670),被選入欽天監學習天文、歷象和數學
2. 古代中國的數學成就與西方的有什麼不同
中國數學在歷史上有過輝煌的成就。出現了著名的數學家。三國時代有劉徽,南北朝時代有祖沖之父子,唐初有王孝通,北宋有賈憲和沈括,宋元之際有秦九韶、楊輝、李冶和朱世傑等人。他們都在數學中不同領域內有所創造有所發明。我國古代的數學名著《九章算術》已聞名於全世界。與同時期的巴比侖後期數學相比,《九章算術》的成就是遠超的.談圓周率時就提到劉徽和祖沖之,談解高次數學方程時就提到賈憲、秦九韶和楊輝。
公元十世紀阿拉伯數學家著的數學書,書名叫《歐幾里得算術》(The arithmetie of al-Uqlidsi,一九七八年出版,這里歐幾里得並不是指古希臘撰幾何原本的歐幾里得。中世紀阿拉伯人把歐幾里得視為算聖,故有些數學著作冠歐幾里得之名)。其中乘法,三位數乘三位數,列位相乘,先以乘數的首位數遍乘被乘數,乘訖退一位再以乘數的第二位數遍乘被乘數等,最後得乘積。其步驟與我國古代籌算乘法一致。
籌算上一籌表示五,下一籌表示一,便連想到珠算上一珠表示五,下一珠表示一這方面上來了。由籌算演變為珠算,歷史上脈絡可尋。過去都講明朝數學落後,但明朝廣泛使用了珠算,並且又把珠算傳播到日本、朝鮮及東南亞國家而流傳至今。
3. 中國古代數學有哪些成就
最牛的當然是《九章算術》了
劉 徽
劉徽(生於公元250年左右),南北朝時期數學史上一個非常偉大的數學家,在世界數學史上,也佔有傑出的地位.他的傑作《九章算術注》和《海島算經》,是我國最寶貴的數學遺產.
賈 憲
賈憲,中國古代北宋時期傑出的數學家。曾撰寫的《黃帝九章演算法細草》(九卷)和《演算法斆古集》(二卷)(斆xiào,意:數導)均已失傳。
他的主要貢獻是創造了"賈憲三角"和增乘開方法,增乘開方法即求高次冪的正根法。目前中學數學中的混合除法,其原理和程序均與此相仿,增乘開方法比傳統的方法整齊簡捷、又更程序化,所以在開高次方時,尤其顯出它的優越性,這個方法的提出要比歐洲數學家霍納的結論早七百多年。
秦九韶
秦九韶(約1202--1261),字道古,四川安岳人。先後在湖北,安徽,江蘇,浙江等地做官,1261年左右被貶至梅州,(今廣東梅縣),不久死於任所。他與李冶,楊輝,朱世傑並稱宋元數學四大家。早年在杭州「訪習於太史,又嘗從隱君子受數學」,1247年寫成著名的《數書九章》。《數書九章》全書凡18卷,81題,分為九大類。其最重要的數學成就----「大衍總數術」(一次同餘組解法)與「正負開方術"(高次方程數值解法),使這部宋代算經在中世紀世界數學史上佔有突出的地位。
李冶
李冶(1192----1279),原名李治,號敬齋,金代真定欒城人,曾任鈞州(今河南禹縣)知事,1232年鈞州被蒙古軍所破,遂隱居治學,被元世祖忽必烈聘為翰林學士,僅一年,便辭官回鄉。1248年撰成《測圓海鏡》,其主要目的是說明用天元術列方程的方法。「天元術」與現代代數中的列方程法相類似,「立天元一為某某」,相當於「設x為某某「,可以說是符號代數的嘗試。李冶還有另一步數學著作《益古演段》(1259)也是講解天元術的。
朱世傑
朱世傑(1300前後),字漢卿,號松庭,寓居燕山(今北京附近),「以數學名家周遊湖海二十餘年」,「踵門而學者雲集」(莫若、祖頤:《四元玉鑒》後序)。朱世傑數學代表作有《算學啟蒙》(1299)和《四元玉鑒》(1303)。《算術啟蒙》是一部通俗數學名著,曾流傳海外,影響了朝鮮、日本數學的發展。《四元玉鑒》則是中國宋元數學高峰的又一個標志,其中最傑出的數學創造有「四元術」(多元高次方程列式與消元解法)、「垛積術」(高階等差數列求和)與「招差術」(高次內插法).
祖沖之
祖沖之(公元429~500年)祖籍是現今河北省淶源縣,他是南北朝時代的一位傑出科學家。他不僅是一位數學家,同時還通曉天文歷法、機械製造、音樂等領域,並且是一位天文學家。
祖沖之在數學方面的主要成就是關於圓周率的計算,他算出的圓周率為3.1415926<π<3.1415927,這一結果的重要意義在於指出誤差的范圍,是當時世界最傑出的成就。祖沖之確定了兩個形式的π值,約率355/173(≈3.1415926)密率22/7(≈3.14),這兩個數都是π的漸近分數。
祖 暅
祖暅,祖沖之之子,同其父祖沖之一起圓滿解決了球面積的計算問題,得到正確的體積公式。現行教材中著名的「祖暅原理」,在公元五世紀可謂祖暅對世界傑出的貢獻。
楊輝
楊輝,中國南宋時期傑出的數學家和數學教育家。在13世紀中葉活動於蘇杭一帶,其著作甚多。
他著名的數學書共五種二十一卷。著有《詳解九章演算法》十二卷(1261年)、《日用演算法》二卷(1262年)、《乘除通變本末》三卷(1274年)、《田畝比類乘除演算法》二卷(1275年)、《續古摘奇演算法》二卷(1275年)。
他在《續古摘奇演算法》中介紹了各種形式的"縱橫圖"及有關的構造方法,同時"垛積術"是楊輝繼沈括"隙積術"後,關於高階等差級數的研究。楊輝在"纂類"中,將《九章算術》246個題目按解題方法由淺入深的順序,重新分為乘除、分率、合率、互換、二衰分、疊積、盈不足、方程、勾股等九類。
趙 爽
趙爽,三國時期東吳的數學家。曾注《周髀算經》,他所作的《周髀算經注》中有一篇《勾股圓方圖注》全文五百餘字,並附有雲幅插圖(已失傳),這篇注文簡練地總結了東漢時期勾股算術的重要成果,最早給出並證明了有關勾股弦三邊及其和、差關系的二十多個命題,他的證明主要是依據幾何圖形面積的換算關系。
趙爽還在《勾股圓方圖注》中推導出二次方程 (其中a>0,A>0)的求根公式 在《日高圖注》中利用幾何圖形面積關系,給出了"重差術"的證明。(漢代天文學家測量太陽高、遠的方法稱為重差術)。
4. 中世紀中國數學家及其成就是什麼
中世紀祖沖之的圓周率、勾股定理、歷法、子午線的計算。數學家簡介:
劉徽
關於劉徽的生平,我們幾乎什麼都不了解。《隋書》「律歷志」中提到「魏陳留王景元四年劉徽注九章」,由此知道劉徽是公元3世紀魏晉時人,並於公元263年撰《九章算術注》。《九章算術注》包含了劉徽本人的許多創造,完全可以看成是獨立的著作,奠定了這位數學家在中國數學史上的不朽地位。
劉徽數學成就中最突出的是「割圓術」和體積理論。
祖沖之
祖沖之活躍於南朝宋、齊兩代,出生於歷法世家,本人做過南徐州(今鎮江)從事史和公府參軍,都是地位不高的小官,但他卻成為歷代為數很少能名列正史的數學家之一。《南齊史》「祖沖之傳」說他「探異今古」,「革新變舊」,並記載了他與守舊派官員戴法興關於歷法問題的一場辯論。祖沖之在公元462年創制了一部歷法《大明歷》,大明歷在當時是最先進的歷法,卻遭到戴法興等人的竭力反對。戴法興是當朝權臣,《宋書》中說凡官員任免、生殺賞罰,皇帝都要同他商量,而祖沖之不過居從事史的微職,卻敢於在皇帝面前與戴法興辯論,並直指戴「浮辭虛貶」,「堅執偏論」。祖沖之還將他反駁戴法興的議論寫成一篇《駁議》,這篇文章後來被收入《宋書》,其中提供了有關祖沖之數學貢獻的重要線索。
祖沖之在文章一開始說他早年「專攻數術」,「發現立圓舊誤,張衡述而弗改;漢時斛銘,劉歆詭繆其數」。這里「立圓舊誤」是指《九章算術》中錯誤的球體積公式;「漢時斛銘」則是指王莽時代所造銅斛上的數據,系東漢學者劉歆所寫,根據這些數據可推出劉歆用的圓周率數值為 。祖沖之批評這兩項數學結果是「算氏之巨疵」,並說他本人「昔以暇日,撰正眾謬,理據炳然」。由此可見,球體積的推導和圓周率的計算是祖沖之本人引以為榮的兩大數學成就,只可惜關於這兩項工作的原著已不能看到。祖沖之的代表性數學著作是《綴術》(綴—連接,組合之意)。《南齊書·祖沖之傳》說祖沖之「注九章,造綴術數十篇」,但《綴術》也未能留傳下來。我們現在對祖沖之這兩項成就的了解,得於其他一些零散的史料。
以上是抄的網路的,希望有所幫助
5. 我國古代有哪些著名的數學著作
1、《張丘建算經》:中國古代數學著作。(約公元5世紀)現傳本有92問,比較突出的成就有最大公約數與最小公倍數的計算,各種等差數列問題的解決、某些不定方程問題求解等。
2、《四元玉鑒》:《四元玉鑒》是元代傑出數學家朱世傑的代表作,其中的成果被視為中國籌算系統發展的頂峰。是一部成就輝煌的數學名著,受到近代數學史研究者的高度評價,認為是中國數學著作中最重要的一部,同時也是中世紀最傑出的數學著作之一。
3、《數書九章》:《數書九章》是對《九章算術》的繼承和發展,概括了宋元時期中國傳統數學的主要成就,標志著中國古代數學的高峰。當它還是抄本時就先後被收入《永樂大典》和《四庫全書》。1842年第一次印刷後即在中國民間廣泛流傳。
秦九韶所創造的正負開方術和大衍求一術長期以來影響著中國數學的研究方向。焦循、李銳、張敦仁、駱騰鳳、時曰醇、黃宗憲等數學家的著述都是在《數書九章》的直接或間接影響下完成的。秦九韶的成就也代表了中世紀世界數學發展的主流與最高水平,在世界數學史上佔有崇高的地位。
4、《九章算術》:《九章算術》確定了中國古代數學的框架,以計算為中心的特點,密切聯系實際,以解決人們生產、生活中的數學問題為目的的風格。
其影響之深,以致以後中國數學著作大體採取兩種形式:或為之作注,或仿其體例著書;甚至西算傳入中國之後,人們著書立說時還常常把包括西算在內的數學知識納入九章的框架。
5、《孫子算經》:《孫子算經》是中國古代重要的數學著作。成書大約在四、五世紀,也就是大約一千五百年前,作者生平和編寫年不詳。傳本的《孫子算經》共三卷。
卷上敘述算籌記數的縱橫相間制度和籌算乘除法,卷中舉例說明籌算分數演算法和籌算開平方法。卷下第31題,可謂是後世「雞兔同籠」題的始祖,後來傳到日本,變成「鶴龜算」。
6. 古中國的數學史與西方國家的不同點
中國數學在歷史上有過輝煌的成就。出現了著名的數學家。三國時代有劉徽,南北朝時代有祖沖之父子,唐初有王孝通,北宋有賈憲和沈括,宋元之際有秦九韶、楊輝、李冶和朱世傑等人。他們都在數學中不同領域內有所創造有所發明。我國古代的數學名著《九章算術》已聞名於全世界。與同時期的巴比侖後期數學相比,《九章算術》的成就是遠超的.談圓周率時就提到劉徽和祖沖之,談解高次數學方程時就提到賈憲、秦九韶和楊輝。
公元十世紀阿拉伯數學家著的數學書,書名叫《歐幾里得算術》(The arithmetie of al-Uqlidsi,一九七八年出版,這里歐幾里得並不是指古希臘撰幾何原本的歐幾里得。中世紀阿拉伯人把歐幾里得視為算聖,故有些數學著作冠歐幾里得之名)。其中乘法,三位數乘三位數,列位相乘,先以乘數的首位數遍乘被乘數,乘訖退一位再以乘數的第二位數遍乘被乘數等,最後得乘積。其步驟與我國古代籌算乘法一致。
籌算上一籌表示五,下一籌表示一,便連想到珠算上一珠表示五,下一珠表示一這方面上來了。由籌算演變為珠算,歷史上脈絡可尋。過去都講明朝數學落後,但明朝廣泛使用了珠算,並且又把珠算傳播到日本、朝鮮及東南亞國家而流傳至今。
7. 中世紀中國的數學成就
張丘建--<張丘建算經>
《張丘建算經》三卷,據錢寶琮考,約成書於公元~485年間.張丘建,北魏時清河(今山東臨清一帶)人,生平不詳。最小公倍數的應用、等差數列各元素互求以及「百雞術」等是其主要成就。「百雞術」是世界著名的不定方程問題。13世紀義大利斐波那契《算經》、15世紀阿拉伯阿爾·卡西<<算術之鑰》等著作中均出現有相同的問題。
賈憲:〈〈黃帝九章算經細草〉〉
中國古典數學家在宋元時期達到了高峰,這一發展的序幕是「賈憲三角」(二項展開系數表)的發現及與之密切相關的高次開方法(「增乘開方法」)的創立。賈憲,北宋人,約於1050年左右完成〈〈黃帝九章算經細草〉〉,原書佚失,但其主要內容被楊輝(約13世紀中)著作所抄錄,因能傳世。楊輝〈〈詳解九章演算法〉〉(1261)載有「開方作法本源」圖,註明「賈憲用此術」。這就是著名的「賈憲三角」,或稱「楊輝三角」。〈〈詳解九章演算法〉〉同時錄有賈憲進行高次冪開方的「增乘開方法」。
賈憲三角在西方文獻中稱「帕斯卡三角」,1654年為法國數學家 B·帕斯卡重新發現。
秦九韶:〈〈數書九章〉〉
秦九韶(約1202~1261),字道吉,四川安岳人,先後在湖北、安徽、江蘇、浙江等地做官,1261年左右被貶至梅州(今廣東梅縣),不久死於任所。秦九韶與李冶、楊輝、朱世傑並稱宋元數學四大家。他早年在杭州「訪習於太史,又嘗從隱君子受數學」,1247年寫成著名的〈〈數書九章〉〉。〈〈數書九章〉〉全書共18卷,81題,分九大類(大衍、天時、田域、測望、賦役、錢谷、營建、軍旅、市易)。其最重要的數學成就——「大衍總數術」(一次同餘組解法)與「正負開方術」(高次方程數值解法),使這部宋代算經在中世紀世界數學史上佔有突出的地位。
李冶:《測圓海鏡》——開元術
隨著高次方程數值求解技術的發展,列方程的方法也相應產生,這就是所謂「開元術」。在傳世的宋元數學著作中,首先系統闡述開元術的是李冶的《測圓海鏡》。
李冶(1192~1279)原名李治,號敬齋,金代真定欒城人,曾任鈞州(今河南禹縣)知事,1232年鈞州被蒙古軍所破,遂隱居治學,被元世祖忽必烈聘為翰林學士,僅一年,便辭官回家。1248年撰成《測圓海鏡》,其主要目的就是說明用開元術列方程的方法。「開元術」與現代代數中的列方程法相類似,「立天元一為某某」,相當於「設x為某某」,可以說是符號代數的嘗試。李冶還有另一部數學著作《益古演段》(1259),也是講解開元術的。
朱世傑:《四元玉鑒》
朱世傑(1300前後),字漢卿,號松庭,寓居燕山(今北京附近),「以數學名家周遊湖海二十餘年」,「踵門而學者雲集」。朱世傑數學代表作有《算學啟蒙》(1299)和《四元玉鑒》(1303)。《算學啟蒙》是一部通俗數學名著,曾流傳海外,影響了朝鮮、日本數學的發展。《四元玉鑒》則是中國宋元數學高峰的又一個標志,其中最傑出的數學創作有「四元術」(多元高次方程列式與消元解法)、「垛積法」(高階等差數列求和)與「招差術」(高次內插法)
華羅庚
「數學,如音樂一樣,以奇才輩出而著稱,這些人即便沒有受過正規的教育也才華橫溢。雖然華羅庚謙虛地避免使用奇才這個詞,但它卻恰當地描述了這位傑出的中國數學家。」 --G·B·Kolata
華羅庚是一個傳奇式的人物,是一個自學成才的數學家。
他1910年11月12日出生於江蘇省金壇縣一個城市貧民的家庭,1985年6月12日,中國數學屆隕滅一顆巨星-華羅庚在日本講學時不幸因心肌梗塞逝世了。
華羅庚是蜚聲中外的數學家。他是中國解析數論、典型群、矩陣幾何學、自守與多復便函數等多方面研究的創始人與開拓者。他的著名學術論文《典型域上的多元復變函數論》,由於應用了前人沒有用過的方法,在數學領域內做了開拓性的工作,於1957年榮獲我國科學一等獎。他研究的成果被國際數學界命名為「華氏定理」,「布勞威爾-加當-華定理」。華羅庚一生精勤不倦,奮斗不息,著作很多,研究領域很廣。他共發表學術論文約二百篇,專著有《堆壘素數論》、《高等數學引論》、《指數和的估計及其在數論中的應用》、《典型群》、《多復變數函數論中的典型域的分析》、《數論引導》、《數值積分及其應用》、《從單位圓談起》、《優選法》、《二階兩個自變數兩個未知函數的常系數偏微分方程》、《華羅庚論文選集》等12部。
回答者:deviland11 - 首席運營官 十三級 12-29 18:38
提問者對於答案的評價:非常感謝,我的手抄報有著落啦!哈哈!您覺得最佳答案好不好? 目前有 1 個人評價
100% (1)
0% (0)
其他回答 共 1 條
你好.
陳景潤:小時候,教授送我一顆明珠
20多年前,一篇轟動全中國的報告文學《哥德巴赫猜想》,使得一位數學奇才一夜之間街知巷聞、家喻戶曉。在一定程度上,這個人的事跡甚至還推動了一個尊重科學、尊重知識和尊重人才的偉大時代早日到來。他的名字叫做陳景潤。
不善言談,他曾是一個「丑小鴨」。通常,一個先天的聾子目光會特別犀利,一個先天的盲人聽覺會十分敏銳,而一個從小不被人注意、不受人歡迎的「丑小鴨」式的人物,常常也會身不由己或者說百般無奈之下窮思冥想,探究事理,格物致知,在天地萬物間重新去尋求一個適合自己的位置,發展自己的潛能潛質。你可以說這是被逼的,但這么一「逼」往往也就「逼」出來不少偉人。比如童年時代的陳景潤。陳景潤1933年出生在一個郵局職員的家庭,剛滿4歲,抗日戰爭開始了。不久,日寇的狼煙燒至他的家鄉福建,全家人倉皇逃入山區,孩子們進了山區學校。父親疲於奔波謀生,無暇顧及子女的教育;母親是一個勞碌終身的舊式家庭婦女,先後育有12個子女,但最後存活下來的只有6個。陳景潤排行老三,上有兄姐、下有弟妹,照中國的老話,「中間小囡軋扁頭「,加上他長得瘦小孱弱,其不受父母歡喜、手足善待可想而知。在學校,沉默寡言、不善辭令的他處境也好不到哪裡去。不受歡迎、遭人欺負,時時無端挨人打罵。可偏偏他又生性倔強,從不曲意討饒,以求改善境遇,不知不覺地便形成了一種自我封閉的內向性格。人總是需要交流的,特別是孩子。稟賦一般的孩子面對這種困境可能就此變成了行為乖張的木訥之人,但陳景潤沒有。對數字、符號那種天生的熱情,使得他忘卻了人生的艱難和生活的煩惱,一門心思地鑽進了知識的寶塔,他要尋求突破,要到那裡面去覓取人生的快樂。所謂因材施教,就是通過一定的教育教學方法和手段,為每一個學生創造一個根據自己的特點充分得到發展的空間。
小小陳景潤,自己對自己因材施教著。
一生大幸,小學生邂逅大教授但是,他畢竟還是個孩子。除了埋頭書卷,他還需要面對面、手把手的引導。畢竟,能給孩子帶來最大、最直接和最鮮活的靈感和歡樂的,還是那種人與人之間的、耳提面命式的,能使人心靈上迸射出輝煌火花的交流和接觸。所幸,後來隨著家人回到福州,陳景潤遇到了他自謂是終身獲益匪淺的名師沈元。
沈元是中國著名的空氣動力學家,航空工程教育家,中國航空界的泰斗。他本是倫敦大學帝國理工學院畢業的博士、清華大學航空系主任,1948年回到福州料理家事,正逢戰事,只好留在福州母校英華中學暫時任教,而陳景潤恰恰就是他任教的那個班上的學生。
大學名教授教幼童,自有他與眾不同、出手不凡的一招。針對教學對象的年齡和心理特點,沈元上課,常常結合教學內容,用講故事的方法,深入淺出地介紹名題名解,輕而易舉地就把那些年幼的學童循循誘入了出神入化的科學世界,激起他們嚮往科學、學習科學的巨大熱情。比如這一天,沈元教授就興致勃勃地為學生們講述了一個關於哥德巴赫猜想的故事。
師手遺「珠「,照亮少年奮斗的前程
「我們都知道,在正整數中,2、4、6、8、10......,這些凡是能被2整除的數叫偶數;1、3、5、7、9,等等,則被叫做奇數。還有一種數,它們只能被1和它們自身整除,而不能被其他整數整除,這種數叫素數。「
像往常一樣,整個教室里,寂靜地連一根綉花針掉在地上的聲音都能聽見,只有沈教授沉穩渾厚的嗓音在回響。
「二百多年前,一位名叫哥德巴赫的德國中學教師發現,每個不小於6的偶數都是兩個素數之和。譬如,6=3+3,12=5+7,18=7+11,24=11+13......反反復復的,哥德巴赫對許許多多的偶數做了成功的測試,由此猜想每一個大偶數都可以寫成兩個素數之和。」沈教授說到這里,教室里一陣騷動,有趣的數學故事已經引起孩子們極大的興趣。
「但是,猜想畢竟是猜想,不經過嚴密的科學論證,就永遠只能是猜想。」這下子輪到小陳景潤一陣騷動了。不過是在心裡。
該怎樣科學論證呢?我長大了行不行呢?他想。後來,哥德巴赫寫了一封信給當時著名的數學家歐勒。歐勒接到信十分來勁兒,幾乎是立刻投入到這個有趣的論證過程中去。但是,很可惜,盡管歐勒為此幾近嘔心瀝血,鞠躬盡瘁,卻一直到死也沒能為這個猜想作出證明。從此,哥德巴赫猜想成了一道世界著名的數學難題,二百多年來,曾令許許多多的學界才俊、數壇英傑為之前赴後繼,競相折腰。教室里已是一片沸騰,孩子們的好奇心、想像力一下全給調動起來。
「數學是自然科學的皇後,而這位皇後頭上的皇冠,則是數論,我剛才講到的哥德巴赫猜想,就是皇後皇冠上的一顆璀璨奪目的明珠啊!」
沈元一氣呵成地講完了關於哥德巴赫猜想的故事。同學們議論紛紛,很是熱鬧,內向的陳景潤卻一聲不出,整個人都「痴」了。這個沉靜、少言、好冥思苦想的孩子完全被沈元的講述帶進了一個色彩斑斕的神奇世界。在別的同學嘖嘖贊嘆、但贊嘆完了也就完了的時候,他卻在一遍一遍暗自跟自己講:
「你行嗎?你能摘下這顆數學皇冠上的明珠嗎?」
一個是大學教授,一個是黃口小兒。雖然這堂課他們之間並沒有嚴格意義上的交流、甚至連交談都沒有,但又的確算得上一次心神之交,因為它奠就了小陳景潤一個美麗的理想,一個奮斗的目標,並讓他願意為之奮斗一輩子!多年以後,陳景潤從廈門大學畢業,幾年後,被著名數學家華羅庚慧眼識中,伯樂相馬,調入中國科學院數學研究所。自此,在華羅庚的帶領下,陳景潤日以繼夜地投入到對哥德巴赫猜想的漫長而卓絕的論證過程之中。
1966年,中國數學界升起一顆耀眼的新星,陳景潤在中國《科學通報》上告知世人,他證明了(1+2)!
1973年2月,從「文革「浩劫中奮身站起的陳景潤再度完成了對(1+2)證明的修改。其所證明的一條定理震動了國際數學界,被命名為「陳氏定理」。不知道後來沈元教授還能否記得自己當年對這幫孩子們都說了些什麼,但陳景潤卻一直記得,一輩子都那樣清晰。
名人成長路
陳景潤(1933-1996),當代著名數學家。1950年,僅以高二學歷考入廈門大學,1953年畢業留校任教。1957年調入中國科學院數學研究所,後任研究員。1973年發表論文《大偶數表為一個素數及一個不超過二個素數的乘積之積》。1979年,論文《算術級數中的最小素數》問世。1980年當選為中國科學院學部委員(中國科學院院士)。
女數學家王貞儀(1768-1797 ),字德卿,江寧人,是清代學者王錫琛之女,著有《西洋籌算增刪》一卷、《重訂策算證訛》一卷、《象數窺余》四卷、《術算簡存》五卷、《籌算易知》一卷。
從她遺留下來的著作可以看出,她是一位從事天文和籌算研究的女數學家。算籌,又被稱為籌、策、籌策等,有時亦稱為運算元,是一種棒狀的計算工具。一般是竹製或木製的一批同樣長短粗細的小棒,也有用金屬、玉、骨等質料製成的,不用時放在特製的算袋或運算元筒里,使用時在特製的算板、氈或直接在桌上排布。應用「算籌」進行計算的方法叫做「籌算」,算籌傳入日本稱為「算術」。算籌在中國起源甚早,《老子》中有一句「善數者不用籌策」的記述,現在所見的最早記載是《孫子算經》,至明朝籌算漸漸為珠算所取代。
17世紀初葉,英國數學家納皮爾發明了一種算籌計演算法,明末介紹到我國,也稱為「籌算」。清代著名數學家梅文鼎、戴震等人曾加以研究。戴震稱其為「策算」。王貞儀也從事研究由西洋傳入我國的這種籌算,並且寫了三卷書向國人介紹西洋籌算。她在著作中對西洋籌算進行增補講解,使之簡易明了。王貞儀介紹的納皮爾算籌乘除法,當時的讀者認為容易了解,但與當時我國的乘除法籌算的方法相比,顯得較繁雜,因此,數學家們沒有使用西洋籌算,一直使用中國籌演算法。今天的讀者把中外籌算乘除法視為老古董,採用的是由外國傳入的筆算四則運算,這種筆算於1903年才開始被使用,故我國與世界接軌使用筆算的歷史只有100年。
數學會女前輩高揚芝
高揚芝(1906-1978 ),江西南昌人,從小學習勤奮,特別喜歡數學。
高中畢業後考入北京大學數學系,由於學習成績優秀,1930年大學畢業後應聘到上海大同大學擔任數學教員,後成為教授、數學系主任。在課堂教學中,她遵循《學記》中所說的:「善歌者使人繼其聲,善教者使人繼其志。」所以,高揚芝的數學教學一貫是兢兢業業、講求實效,深受學生歡迎。
高揚芝長期從事數學分析(舊時叫高等微積分)、高等代數和復變函數等課程的教學與研究。她深知,高等數學比初等數學更加抽象,外行人常常把它看成是由冷酷的定義、定理、法則統治著的王國。因此,高教授常常告訴學生,數學結構嚴謹,證明簡潔,蘊含著數學的美。它像一座迷宮,只要你潛心學習、研究,就能尋求到走出迷宮的正確道路。一旦順利走出迷宮,成功的愉悅會使你興奮不已,你會向新的、更復雜的迷宮挑戰,這就是數學的魅力。
她在上海大同大學工作不到五年的時間里,自身潛在的科研天賦很快被喚醒催發。經過刻苦鑽研教材,結合教學實踐,她撰寫出論文《Clebsch氏級數改正》,1935年在交通大學主編的《科學通訊》上連載,得到同行好評。解放後,她又著有《極限淺說》《行列式》等科普讀物多部。
高揚芝是中國數學會創始時的少數女性前輩之一。1935年7月25日中國數學會在上海交通大學圖書館舉行成立大會,共有33人出席,高揚芝就是其中的一位。在這次年會上,她被推選為中國數學會評議會評議,後連任第二、三屆評議會評議。1951年8月,中國數學會在北京大學召開了規模空前的第一次全國代表大會,高揚芝出席了大會。她是這次到會代表63人中惟一的女代表。20世紀60年代,她被選為江蘇省數學會副理事長。
第一位數學女博士徐瑞雲
徐瑞雲,1915年6月15日生於上海,1927年2月考入上海著名的公立務本女中讀書。徐瑞雲從小喜歡數學,讀中學時對數學的興趣更加濃厚,因此,1932年9月高中畢業後報考了浙江大學數學系。當時,浙大數學系的教授有朱叔麟、錢寶琮、陳建功和蘇步青。此外,還有幾位講師、助教。數學系的課程主要由陳建功和蘇步青擔任。當時數學系的學生很少,前一屆兩個班學生共五人,她這屆也不過十幾人。
當時蘇步青才30歲,看上去十分年輕,因此徐瑞雲的同學中有人認為蘇步青是助教,可是聽完一堂課後就不住地贊嘆說:「想不到助教竟能講得這么好。」這件事引起知情者的鬨笑。徐瑞雲在陳建功和蘇步青的教導下,勤奮學習,專心聽講,認真做筆記,她的考試成績經常是滿分。1936年7月,徐瑞雲以優異成績畢業了,被浙大數學系留校任助教。1937年2月,26歲的徐瑞雲與28歲的生物系助教江希明喜結伉儷。新婚三個月後,徐瑞雲夫婦獲得亨伯特留學德國的獎學金,雙雙乘船漂洋赴德國留學,攻讀博士學位。
徐瑞雲有幸被德國著名的數學大師卡拉凱屋獨利接受,由他擔任她的數學博士指導老師。當時有不少學生想請他作導師,他都沒有同意。而徐瑞雲這位東方女士因學習勤奮,數學功底扎實,成了卡拉凱屋獨利的關門弟子。徐瑞雲主要研究三角級數論。這門學科起源於物理學的熱傳導問題的傅里葉分析的主要部分,是當時國際上研究的熱門之一,在中國還是一個空白。
徐瑞雲為將來能在分析、函數論方面趕上世界先進水平,廢寢忘食,廣擷博採,把大部分時間都用在圖書館里。1940年底,徐瑞雲獲得博士學位,成了中國歷史上第一位女數學博士。她的博士論文「關於勒貝格分解中奇異函數的傅里葉展開」,1941年發表在德國《數學時報》上。
完成學業的徐瑞雲夫婦,隨即離德回國,於1941年4月回到母校,雙雙被聘為副教授,正式登上在戰火硝煙的大後方培養人才的講台。在艱苦的條件下,陳建功和蘇步青沒有中斷在杭州時共創的函數論和微分幾何兩個數學討論班,這是一種教學相長、遴選英彥的科研形式,徐瑞雲也參與其間。1944年11月,英國駐華科學考察團團長李約瑟參觀了浙大數學系和理學院,連聲稱贊道:「你們這里是東方的劍橋!」這更加激勵了徐瑞雲的勤奮工作。她這時教的學生曹錫華、葉彥謙、金福臨、趙民義、孫以豐、楊宗道等,後來都成了傑出的數學家和數學教育家。1946年,31歲的徐瑞雲提升為正教授。
1952年,徐瑞雲調入浙江師院,被任命為數學系主任,從此全身投入了艱苦的創建數學系的工作中。在她的領導下,沒有幾年功夫,數學系已初具規模,教學質量不斷提高。第一屆本科畢業生約有三分之一考取了研究生。他們系也成為全國同行的楷模,進入全國同行前列。徐瑞雲在建設數學系的同時,沒有忘記科學研究。她翻譯了蘇聯那湯松的名著《實變函數論》。譯本於1955年由高等教育出版社出版。
8. 親們,中世紀的中國數學都講什麼內容
中世紀有1000年的跨度,其中包括了隋唐到明朝的大跨度
綜觀包括中世紀在內內的古代中國數容學史,數學家們大多是在以八股文取得一定的功名之後,才從事自己喜歡的數學研究。他們沒有希臘的亞歷山大大學和圖書館那樣
的群體研究機構和資料信息中心,只能以文養理或以官養理。這樣一來,就難以全身心地投入研究。以數學進步較快的宋朝為例,多數數學家出身低級官吏,他們的
注意力主要放在平民百姓和技術人員關心的問題上,因此忽略了理論工作。即使是著述,也大多以注釋前人著作的方式進行。
功利主義當然有它的社會根源,學者們總是首先致力於統治階級要求解決的問題。在中國古代,數學的重要性主要是通過它與歷法的關系顯現出來,後者因為與信仰
有關而成為帝王牢牢掌控的一個特權。趙爽證明勾股定理以後,便用它來求取某些與歷法相關的一元二次方程的根;祖沖之之所以偏愛用約率和密率來表示圓周率,
目的是為了准確地計算閏年的周期;而秦九韶的大衍術(中國剩餘定理)主要用來上元積年的推算,後者可以幫助確定回歸年、朔望月等天文常數。
9. 中國數學發展史
中國古代是一個在世界上數學領先的國家,用近代科目來分類的話,可以看出無論在算術、代數、幾何和三角各方而都十分發達。現在就讓我們來簡單回顧一下初等數學在中國發展的歷史。
(一)屬於算術方面的材料
大約在3000年以前中國已經知道自然數的四則運算,這些運算只是一些結果,被保存在古代的文字和典籍中。乘除的運算規則在後來的"孫子算經"(公元三世紀)內有了詳細的記載。中國古代是用籌來計數的,在我們古代人民的計數中,己利用了和我們現在相同的位率,用籌記數的方法是以縱的籌表示單位數、百位數、萬位數等;用橫的籌表示十位數、千位數等,在運算過程中也很明顯的表現出來。"孫子算經"用十六字來表明它,"一從十橫,百立千僵,千十相望,萬百相當。" 和其他古代國家一樣,乘法表的產生在中國也很早。乘法表中國古代叫九九,估計在2500年以前中國已有這個表,在那個時候人們便以九九來代表數學。現在我們還能看到漢代遺留下來的木簡(公元前一世紀)上面寫有九九的乘法口訣。
現有的史料指出,中國古代數學書"九章算術"(約公元一世紀前後)的分數運演算法則是世界上最早的文獻,"九章算術"的分數四則運算和現在我們所用的幾乎完全一樣。
古代學習算術也從量的衡量開始認識分數,"孫子算經"(公元三世紀)和"夏候陽算經"(公元六、七世紀)在論分數之前都開始講度量衡,"夏侯陽算經"卷上在敘述度量衡後又記著:"十乘加一等,百乘加二等,千乘加三等,萬乘加四等;十除退一等,百除退二等,千除退三等,萬除退四等。"這種以十的方冪來表示位率無疑地也是中國最早發現的。
小數的記法,元朝(公元十三世紀)是用低一格來表示,如13.56作1356 。
在算術中還應該提出由公元三世紀"孫子算經"的物不知數題發展到宋朝秦九韶(公元1247年)的大衍求一術,這就是中國剩餘定理,相同的方法歐洲在十九世紀才進行研究。 宋朝楊輝所著的書中(公元1274年)有一個1—300以內的因數表,例如297用"三因加一損一"來代表,就是說297=3×11×9,(11=10十1叫加一,9=10—1叫損一)。楊輝還用"連身加"這名詞來說明201—300以內的質數。
(二)屬於代數方面的材料
從"九章算術"卷八說明方程以後,在數值代數的領域內中國一直保持了光輝的成就。
"九章算術"方程章首先解釋正負術是確切不移的,正象我們現在學習初等代數時從正負數的四則運算學起一樣,負數的出現便豐富了數的內容。
我們古代的方程在公元前一世紀的時候已有多元方程組、一元二次方程及不定方程幾種。
一元二次方程是借用幾何圖形而得到證明。
不定方程的出現在二千多年前的中國是一個值得重視的課題,這比我們現在所熟知的希臘丟番圖方程要早三百多年。
具有x3+px2+qx=A和x3+px2=A形式的三次方程,中國在公元七世紀的唐代王孝通"緝古算經"已有記載,用"從開立方除之"而求出數字解答(可惜原解法失傳了),不難想像王孝通得到這種解法時的愉快程度,他說誰能改動他著作內的一個字可酬以千金。
十一世紀的賈憲已發明了和霍納(1786—1837)方法相同的數字方程解法,我們也不能忘記十三世紀中國數學家秦九韶在這方面的偉大貢獻。
在世界數學史上對方程的原始記載有著不同的形式,但比較起來不得不推中國天元術的簡潔明了。四元術是天元術發展的必然產物。
級數是古老的東西,二千多年前的"周髀算經"和"九章算術"都談到算術級數和幾何級數。十四世紀初中國元代朱世傑的級數計算應給予很高的評價,他的有些工作歐洲在十八、九世紀的著作內才有記錄。十一世紀時代,中國已有完備的二項式系數表,並且還有這表的編制方法。
歷史文獻揭示出在計算中有名的盈不足術是由中國傳往歐洲的。
內插法的計算,中國可上溯到六世紀的劉焯,並且七世紀末的僧一行有不等間距的內插法計算。
10. 中世紀數學家
中國
數學家劉徽
數學家祖沖之
墨家學派之長,墨子
三國時期魏國王粲
周朝商高
三國時期王蕃
後魏高允
唐代張遂何承天:公元370-447年
張邱建:約公元5世紀 鄭玄:漢代
張蒼:約公元前152年
祖沖之:公元429-500年
辛研:春秋時代
耿壽昌:約公元前50年
祖日桓:公元5-6世紀
惠 施: 戰國
劉歆:公元前50-後20年
甄鸞:約公元535-566年
王莽: 約公元一世紀
乘馬延平:西元前30年
張鑽:西元540年
張衡:公元78-139年
劉焯:公元544-610年
高允: 公元390~487年
徐岳 : 公元168-188年
李淳風:公元604-672年
信都芳: 南北朝後齊
劉徽:約公元3世紀
僧一行:公元683-727年
元延明:西元約6世紀
洪:約公元206年
王孝通:公元7世紀初
劉宴: 約第八世紀
陳熾:西元220年
孫子:年代不詳
丁謂: 北宋
趙爽:約公元220年
商高:約周朝
許商:西漢
王蕃:公元228-266年
張遂:約唐初
夏侯陽:約後魏時
德國人 數學家 奧托
德國 數學家柯倫
德國 數學家柯倫
英國 數學家梅欽
英國 數學家尚可斯
法國 數學家韋達
花拉子模 花拉子米