數學相關論文
㈠ 寫一篇關於生活中的數學的小論文
切西來瓜
炎熱的夏天,西瓜便成了一自種解渴的水果.這天小明的媽媽買了一個大西瓜回家.她准備考一考小明.她
問小明:「怎麼樣切西瓜切出9片只用4刀?」這個問題難倒了小明,他拿出一個張紙一個鉛筆,畫呀畫,怎麼也不知道怎麼切.他實在想不出方法,便去問媽媽答案是什麼?媽媽笑了笑說:「用井字切法呀!」說完用刀切西瓜給小明做了一個示範。
小明明白了,拿著一片大西瓜津津有味的吃了起來。這時媽媽又問:「用4刀切8片呢?」小明動了動腦筋,自豪地說用米字切法.媽媽誇他是個好學生。
只用動動腦筋,世界上沒有什麼事可以難住你的。
㈡ 一篇生活中的數學小論文
生活中的數學「對我來說什麼都可以變成數學。」數學家笛卡兒曾這樣說過。「宇宙之大,粒子之微,火箭之速,化工之巧,地球之變,日用之繁,無處不用數學。」我國家喻戶曉的數學家華羅庚也曾下過這樣的結論。的確,正如兩位前輩所說,數學與我們的生活息息相關,數學的腳步無處不在。 2006年已經接近尾聲了,迎面而來的是新的一年——2007年。行走在繁華的大街上,隨處可見商家打出的「滿400送400」,「滿300送300」的促銷招牌。「這真實惠!」消費者們蜂擁而至,商場里人山人海,搶購成風。此情此景,真讓人以為回到了物資短缺的年代。實際上商家心裡早打好了如意算盤。俗話說:只有買虧,沒有賣虧,「滿400送400元券」只是商家的一種促銷手段,其中暗藏著數學問題,暗藏著商業機密,暗藏著許多玄機。 去年,我們一家三口,也在新年之際在商場里「血拚」,當時是滿400送400元券。我們先用980元買了一件蘋果牌的皮夾克給爸爸,送來了800元購物券。我們並沒有過分浪費,花了300元券買了一件298元藏青色的李寧牌棉襖,又用剩下的500元券中的488買了一件太子龍男裝(由於是購物券,不設找零)。到底便宜了多少?298+488+980=1766(元)——這是原來不打折時需要花的錢。980/1776,所打的折扣大約是五五折。 我的姑姑和姑夫從前也做過服裝生意,我對服裝的進貨成本與銷售價的關系也有些了解。服裝的進價一般只佔建議零售價的20%~30%。隨著競爭的加劇和商場促銷力度越來越大,為了保持利潤,商家或廠家還不斷地把衣服的建議零售價標高。就如前幾天在電視中看見的一位消費者所說,某一品牌同一款式的一條尼料的褲子,三年前建議零售價還只是299元,今年標價變成了999元。這么一算,進價大概只有商場里售價的10%~20%。就算打了五五折,商家還穩賺三至五成的毛利。 廣告,廣告,便是廣而告之。許多人一窩蜂似的趕來搶購、血拚,商場的人流量多了,商品銷售量也快速增長。就按人流量是平時的三倍算,這里又出現了一個數學問題。假設平時人流量少時,一件商品按8折銷售。8折減去進價2折,標價部分的6成就成了毛利。雖然現在「滿400送400元券」時同一件商品可能只賺三至五成,但銷量起碼是平時的三倍以上。就按三成毛利和三倍銷量來計算,3×3=9,與平時的6成毛利相比,一天能多賺50%。雖說這樣賣每件單位毛利率有所下降,毛利額卻因銷售量的增加而增長,更因大量銷售而加快了資金周轉,帶來額外的收益。 商品標價和促銷中有數學,購物消費中有數學,裝修房子有數學,織毛衣中有數學……總而言之,數學在現實生活中無處不在!
㈢ 中國數學的發展歷史的論文
劉 徽
劉徽(生於公元250年左右),是中國數學史上一個非常偉大的數學家,在世界數學史上,也佔有傑出的地位.他的傑作《九章算術注》和《海島算經》,是我國最寶貴的數學遺產.
賈 憲
賈憲,中國古代北宋時期傑出的數學家。曾撰寫的《黃帝九章演算法細草》(九卷)和《演算法斆古集》(二卷)(斆xiào,意:數導)均已失傳。
他的主要貢獻是創造了"賈憲三角"和增乘開方法,增乘開方法即求高次冪的正根法。目前中學數學中的混合除法,其原理和程序均與此相仿,增乘開方法比傳統的方法整齊簡捷、又更程序化,所以在開高次方時,尤其顯出它的優越性,這個方法的提出要比歐洲數學家霍納的結論早七百多年。
秦九韶
秦九韶(約1202--1261),字道古,四川安岳人。先後在湖北,安徽,江蘇,浙江等地做官,1261年左右被貶至梅州,(今廣東梅縣),不久死於任所。他與李冶,楊輝,朱世傑並稱宋元數學四大家。早年在杭州「訪習於太史,又嘗從隱君子受數學」,1247年寫成著名的《數書九章》。《數書九章》全書凡18卷,81題,分為九大類。其最重要的數學成就----「大衍總數術」(一次同餘組解法)與「正負開方術"(高次方程數值解法),使這部宋代算經在中世紀世界數學史上佔有突出的地位。
李冶
李冶(1192----1279),原名李治,號敬齋,金代真定欒城人,曾任鈞州(今河南禹縣)知事,1232年鈞州被蒙古軍所破,遂隱居治學,被元世祖忽必烈聘為翰林學士,僅一年,便辭官回鄉。1248年撰成《測圓海鏡》,其主要目的是說明用天元術列方程的方法。「天元術」與現代代數中的列方程法相類似,「立天元一為某某」,相當於「設x為某某「,可以說是符號代數的嘗試。李冶還有另一步數學著作《益古演段》(1259)也是講解天元術的。
朱世傑
朱世傑(1300前後),字漢卿,號松庭,寓居燕山(今北京附近),「以數學名家周遊湖海二十餘年」,「踵門而學者雲集」(莫若、祖頤:《四元玉鑒》後序)。朱世傑數學代表作有《算學啟蒙》(1299)和《四元玉鑒》(1303)。《算術啟蒙》是一部通俗數學名著,曾流傳海外,影響了朝鮮、日本數學的發展。《四元玉鑒》則是中國宋元數學高峰的又一個標志,其中最傑出的數學創造有「四元術」(多元高次方程列式與消元解法)、「垛積術」(高階等差數列求和)與「招差術」(高次內插法).
祖沖之
祖沖之(公元429~500年)祖籍是現今河北省淶源縣,他是南北朝時代的一位傑出科學家。他不僅是一位數學家,同時還通曉天文歷法、機械製造、音樂等領域,並且是一位天文學家。
祖沖之在數學方面的主要成就是關於圓周率的計算,他算出的圓周率為3.1415926<π<3.1415927,這一結果的重要意義在於指出誤差的范圍,是當時世界最傑出的成就。祖沖之確定了兩個形式的π值,約率355/173(≈3.1415926)密率22/7(≈3.14),這兩個數都是π的漸近分數。
祖 暅
祖暅,祖沖之之子,同其父祖沖之一起圓滿解決了球面積的計算問題,得到正確的體積公式。現行教材中著名的「祖暅原理」,在公元五世紀可謂祖暅對世界傑出的貢獻。
楊輝
楊輝,中國南宋時期傑出的數學家和數學教育家。在13世紀中葉活動於蘇杭一帶,其著作甚多。
他著名的數學書共五種二十一卷。著有《詳解九章演算法》十二卷(1261年)、《日用演算法》二卷(1262年)、《乘除通變本末》三卷(1274年)、《田畝比類乘除演算法》二卷(1275年)、《續古摘奇演算法》二卷(1275年)。
他在《續古摘奇演算法》中介紹了各種形式的"縱橫圖"及有關的構造方法,同時"垛積術"是楊輝繼沈括"隙積術"後,關於高階等差級數的研究。楊輝在"纂類"中,將《九章算術》246個題目按解題方法由淺入深的順序,重新分為乘除、分率、合率、互換、二衰分、疊積、盈不足、方程、勾股等九類。
趙 爽
趙爽,三國時期東吳的數學家。曾注《周髀算經》,他所作的《周髀算經注》中有一篇《勾股圓方圖注》全文五百餘字,並附有雲幅插圖(已失傳),這篇注文簡練地總結了東漢時期勾股算術的重要成果,最早給出並證明了有關勾股弦三邊及其和、差關系的二十多個命題,他的證明主要是依據幾何圖形面積的換算關系。
趙爽還在《勾股圓方圖注》中推導出二次方程 (其中a>0,A>0)的求根公式 在《日高圖注》中利用幾何圖形面積關系,給出了"重差術"的證明。(漢代天文學家測量太陽高、遠的方法稱為重差術)。
明安圖】(1692——1765) 清代蒙古族傑出數學家、天文學家。字靜庵。蒙古正白旗(今內蒙古錫林郭勒盟正白旗)人,為蒙古族人。康熙九年(1670),被選入欽天監學習天文、歷象和數學
㈣ 關於數學的論文
有啊
我給你
㈤ 求一篇關於數學的論文
國哈佛大學心理學教授丹尼爾·霍爾曼在《情感智商》一書中指出,在對一個人成功起作用的要素中智商佔20%,而情商則佔80%,在人的創造活動中,這些情感因素能起到啟動、定向、引導、維持、強化、調節、補充等多方面的重要作用。小學數學教師如何運用適當的教學策略,才能構建數學樂園,充分調動和開發學生的情商和智商?本人有如下體會
一、建立民主、平等、和諧的師生關系,讓學生生動活潑、主動地發展
有人說:「教育不是居高臨下的教訓,而應是平等的交流,什麼時候,學生與教師的眼光平視了,我們的教育也就成功了一半。」而能使教師真心彎下腰來與學生平視的,是愛、是母親對孩子般發自內心的愛。所以,愛是教育的基礎。沒有了愛,也就沒有了教育。作為教師,只有熱愛、尊重、理解和信任學生,才能發揮學生的主動性,縮小師生心靈的差距,從而喚起學生的情感共鳴,激活學生思維的波濤。在教學活動中,教師親切的眼神,會心的微笑,生動的語言,對學生回答問題的精彩部分給予肯定表揚,及用手輕輕地在他的頭上摸一摸,都會讓學生感受到快慰,感受到學習的愉快。在課間活動中,與學生一塊游戲、談心,與學生成為朋友,使他們喜歡你,愛上你的課,讓他們充分感受到老師的愛。教師要力求轉變角色,變數學知識的傳播者為數學活動的組織者、指導者、參與者,讓學生積極思考,大膽發言,教師要當好「小學生」,認真傾聽學生的發言,隨時插問「不明白」的問題。例如,「為什麼?根據是什麼?你能說出理由嗎?」等等,這既能檢驗「小老師」解決問題的真實性,又能鍛煉他們的邏輯思維能力和口頭表達能力。只有在這種民主、平等、自由的課堂氛圍中學生才能感受到愛和尊重、樂觀和自信,才能敢於發表自己的見解,提出自己的觀點,才能爭辯質疑,標新立異,才能生動活潑,大膽探索。
二、挖掘教材本身的魅力和課堂教學的藝術魅力,激發學生的情感,激活學生的思維
首先要使學生感到生活中無處不在的數學有無窮的奧妙,引起學生的好奇和激情,使其產生強烈的學習願望,形成良好的心理動力。如,學生已認識了平、閏年之後,讓學生隨意說一個年份,教師順口就能答出是平年或閏年,引起學生的好奇,激發學生的求知慾:老師為什麼這么「神」?接著教會學生巧算方法。從學生恍然大悟、會心的笑中,我知道學生已體驗到了數學的趣味和奧妙。在教學《面積和面積單位》一課時,每建立一面積單位的表象,我都積極鼓勵學生舉日常生活中的恰當例子。如:一平方厘米,學生會說「大拇指甲蓋」「紐扣」等,有個學生說「門牙」,這時我拿起1平方厘米的正方形紙片比了比,並說,「長這么大的兩顆門牙,漂亮嗎?」引起學生鬨堂大笑。從笑聲中,學生感受到了學習的愉快,也體會到了「數學就在身邊」。在教學《小數的性質》時,我出了一道有趣的數學題,在黑板上寫出「8、80、800」,問:誰能加上適當的單位並用「等號」把這三個數連起來?這個問題學生感到新奇,思維十分活躍。有的說加上元、角、分,有的說加上分米、厘米、毫米,課堂氣氛十分活躍。此時,我又提出一個問題,誰能用同一單位把上面各式表示出來?學生一聽,思維更加活躍,就是平時不愛動腦筋的同學也和同桌同學討論開了,爭先恐後地說:8元=8.0元=8.00元,8米=8.0米=8.00米,……當學生聽到老師的熱情贊語後,覺得自己就是知識的發現者、探索者。從而也消除了「數學可怕」的心理,進而產生了強大的內部動力,使學生的數學學習變成一種自我需要,喚起學生參與學習的興趣和創造的慾望。
㈥ 關於數學論文
數學教學中培養學生創造思維能力
21世紀將是一個知識創新的世紀,新世紀正在召喚大批高素質創造型人才。人的創造力包括創造思維能力和創造個性兩個方面,而創造思維是創造力的核心。所謂創造思維就是與眾不同的思考。數學教學中所研究的創造思維,一般是指對思維主體來說是新穎獨到的一種思維活動。它包括發現新事物,提示新規律,創造新方法,解決新問題等思維過程。盡管這種思維結果通常並不是首次發現或前所未有的,但一定是思維主體自身的首次發現或超越常規的思考。它具有獨特性、求異性、批判性等思維特徵,思考問題的突破常規和新穎獨特是創造思維的具體表現。這種思維能力是正常人經過培養可以具備的。那麼如何培養學生的創造思維能力呢?
一、指導觀察
觀察是信息輸入的通道,是思維探索的大門。敏銳的觀察力是創造思維的起步器。可以說,沒有觀察就沒有發現,更不能有創造。兒童的觀察能力是在學習過程中實現的,在課堂中,怎樣培養學生的觀察力呢?
首先,在觀察之前,要給學生提出明確而又具體的目的、任務和要求。其次,要在觀察中及時指導。比如要指導學生根據觀察的對象有順序地進行觀察,要指導學生選擇適當的觀察方法,要指導學生及時地對觀察的結果進行分析總結等。第三,要科學地運用直觀教具及現代教學技術,以支持學生對研究的問題做仔細、深入的觀察。第四,要努力培養學生濃厚的觀察興趣。例如教學圓的認識時,我把一根細線的兩端各系一個小球,然後 甩動其中一個小球,使它旋轉成一個圓。引導學生觀察小球被甩動時,一端固定不動,另一端旋轉一周形成圓的過程。提問:"你發現了什麼?"學生們紛紛發言:"小球旋轉形成了一個圓"小球始終繞著中心旋轉而不跑到別的地方去。"我還看見好像有無數條線"……¨從這些學生樸素的語言中,其實蘊含著豐富的內涵,滲透了圓的定義:到定點的距離相等的點的軌跡。看到"無數條線"則為理解圓的半徑有無數條提供了感性材料。
二、引導想像
想像是思維探索的翅膀。愛因斯坦說:"想像比知識更重要,因為知識是有限的,而想像可以包羅整個宇宙。"在教學中,引導學生進行數學想像,往往能縮短解決問題的時間,獲得數學發現的機會,鍛煉數學思維。
想像不同於胡思亂想。數學想像一般有以下幾個基本要素。第一,因為想像往往是一種知識飛躍性的聯結,因此要有扎實的基礎知識和豐富的經驗的支持。第二,是要有能迅速擺脫表象干擾的敏銳的洞察力和豐富的想像力。第三,要有執著追求的情感。因此,培養學生的想像力,首先要使學生學好有關的基礎知識。其次,新知識的產生除去推理外,常常包含前人的想像因素,因此在教學中應根據教材潛在的因素,創設想像情境,提供想像材料,誘發學生的創造性想像。例如,在復習三角形、平行四邊形、梯形面積時,要求學生想像如何把梯形的上底變得與下底同樣長,這時變成什麼圖形?與梯形面積有什麼關系?如果把梯形上底縮短為0,這時又變成了什麼圖形?與梯形面積有什麼關系?問題一提出學生想像的閘門打開了:三角形可以看作上底為0的梯形,平行四邊形可以看作是上底和下底相等的梯形。這樣拓寬了學生思維的空間,培養了學生想像思維的能力。
三、鼓勵求異
求異思維是創造思維發展的基礎。它具有流暢性、變通性和創造性的特徵。求異思維是指從不同角度,不同方向,去想別人沒想不到,去找別人沒有找到的方法和竅門。要求異必須富有聯想,好於假設、懷疑、幻想,追求盡可能新,盡可能獨特,即與眾不同的思路。課堂教學要鼓勵學生去大膽嘗試,勇於求異,激發學生創新慾望。例如:教學"分數應用題"時,有這么一道習題:"修路隊修一條3600米的公路,前4天修了全長的1/6,照這樣的速度,修完餘下的工
程還要多少天?"就要引導學生從不同角度去思考,用不同方法去解答。用上具體量,解1;3600÷(3600×1/6÷4)-4;解2:(3600-3600×1/6)÷(3600×1/6÷4);解3:4×[(3600-3600×1/6)] ÷(3600×1/6÷4)。思維較好的同學將本題與工程問題聯系起來,拋開3600米這個具體量,將全程看作單位「1」,解4:1÷(1/6÷4)-4;解5:(1-1/6)÷(1/6÷4);解6:4×(1÷1/6-1);此時學生思維處於高度活躍狀態,又有同學想出 解7:4÷1/6-4;解8:4×(1÷1/6)-4;解9:4×(6-1)。學生在求異思維中不斷獲得解決問題的簡捷方法,有利於各層次的同學參與,有利於創造思維能力的發展。
四、誘發靈感
靈感是一種直覺思維。它大體是指由於長期實踐,不斷積累經驗和知識而突然產生的富有創造性的思路。它是認識上質的飛躍。靈感的發生往往伴隨著突破和創新。
在教學中,教師應及時捕捉和誘發學生學習中出現的靈感,對於學生別出心裁的想法,違反常規的解答,標新立異的構思,哪怕只有一點點的新意,都應及時給予肯定。同時,還應當運用數形結合、變換角度、類比形式等方法去誘導學生的數學直覺和靈感,促使學生能直接越過邏輯推理而尋找到解決問題的突破口。
例如,有這樣的一道題:把3/7、6/13、4/9、12/25用">"號排列起來。對於這道題,學生通常都是採用先通分再比較的方法,但由於公分母太大,解答非常麻煩。為此,我在教學中,安排學生回頭觀察後桌同學抄的題目(7/3、13/6、9/4、25/12),然後再想一想可以怎樣比較這些數的大小,倒過來的數字誘發了學生瞬間的靈感,使很多學生尋找到把這些分數化成同分子分數再比較大小的簡捷方法。
總之,人貴在創造,創造思維是創造力的核心。培養有創新意識和創造才能的人才是中華民族振興的需要,讓我們共同從課堂做起。
㈦ 數學論文
數學是研究數量、結構、變化以及空間模型等概念的一門學科。透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察中產生。數學家們拓展這些概念,為了公式化新的猜想以及從合適選定的公理及定義中建立起嚴謹推導出的真理。
目錄
簡介名稱來源
數學的意義數學史
數學研究的各領域
數學的分類數學的五大分支
數學分支
數學分類
數學的發展史
國外數學名家阿基米德
高斯
牛頓
萊布尼茨
中國古代數學發展史中國古代數學的萌芽
中國古代數學體系的形成
中國古代數學的發展
中國古代數學的繁榮
中西方數學的融合
中國古代著名數學家及其主要貢獻劉徽(生於公元250年左右)
祖沖之(公元429年—公元500年)
中國古代其他著名數學家及其主要貢獻
以華人數學家命名的研究成果
數學名言
數學中有關的名詞
現代數學衍生品簡介 名稱來源
數學的意義 數學史
數學研究的各領域
數學的分類 數學的五大分支
數學分支
數學分類
數學的發展史
國外數學名家 阿基米德
高斯
牛頓
萊布尼茨
中國古代數學發展史 中國古代數學的萌芽
中國古代數學體系的形成
中國古代數學的發展
中國古代數學的繁榮
中西方數學的融合
中國古代著名數學家及其主要貢獻 劉徽(生於公元250年左右)
祖沖之(公元429年—公元500年)
中國古代其他著名數學家及其主要貢獻
以華人數學家命名的研究成果數學名言數學中有關的名詞現代數學衍生品展開
編輯本段簡介
名稱來源
數學【shù xué】(■;希臘語:μαθηματικ?)西方源自於古這一詞在希臘語的μ?θημα(máthēma),其有學習、學問、科學,以及另外還有個較狹隘且技術性的意義-「數學研究」,即使在其語源內。其形容詞意義為和學習有關的或用功的,亦會被用來指數學的。其在英語中表面上的復數形式,及在法語中的表面復數形式les mathématiques,可溯至拉丁文的中性復數mathematica,由西塞羅譯自希臘文復數τα μαθηματικ?(ta mathēmatiká),此一希臘語被亞里士多德拿來指「萬物皆數」的概念。(拉丁文:Mathemetica)原意是數和數的技術。 我國古代把數學叫算術,又稱算學,最後才改為數學。
編輯本段數學的意義
數學,作為人類思維的表達形式,反映了人們積極進取的意志、縝密周詳的推理及對完美境界的追求。它的基本要素是:邏輯和直觀、分析和推理、共性和個性。雖然不同的傳統學派可以強調不同的側面,然而正是這些互相對立的力量的相互作用,以及它們綜合起來的努力,才構成了數學科學的生命力、可用性和它的崇高價值。
數學史
基礎數學的知識與運用是個人與團體生活中不可或缺的一部分。其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見。從那時開始,其發展便持續不斷地有小幅度的進展,直至16世紀的文藝復興時期,因著和新科學發現相作用而生成的數學革新導致了知識的加速,直至今日。 今日,數學被使用在世界不同的領域上,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展。數學家也研究純數學,也就是數學本身,而不以任何實際應用為目標。雖然許多以純數學開始的研究,但之後會發現許多應用。 創立於二十世紀三十年代的法國的布爾巴基學派認為:數學,至少純數學,是研究抽象結構的理論。結構,就是以初始概念和公理出發的演繹系統。布學派認為,有三種基本的抽象結構:代數結構(群,環,域……),序結構(偏序,全序……),拓撲結構(鄰域,極限,連通性,維數……)。
編輯本段數學研究的各領域
數學主要的學科首要產生於商業上計算的需要、了解數字間的關系、測量土地及預測天文事件。這四種需要大致地與數量、結構、空間及變化(即算術、代數、幾何及分析)等數學上廣泛的子領域相關連著。除了上述主要的關注之外,亦有用來探索由數學核心至其他領域上之間的連結的子領域:至邏輯、至集合論(基礎)、至不同科學的經驗上的數學(應用數學)、及較近代的至不確定性的嚴格學習。 數量 數量的學習起於數,一開始為熟悉的自然數及整數與被描述在算術內的自然數及整數的算術運算。整數更深的性質被研究於數論中,此一理論包括了如費馬最後定理之著名的結果。 當數系更進一步發展時,整數被承認為有理數的子集,而有理數則包含於實數中,連續的數量即是以實數來表示的。實數則可以被進一步廣義化成復數。數的進一步廣義化可以持續至包含四元數及八元數。自然數的考慮亦可導致超限數,它公式化了計數至無限的這一概念。另一個研究的領域為其大小,這個導致了基數和之後對無限的另外一種概念:阿列夫數,它允許無限集合之間的大小可以做有意義的比較。 結構 許多如數及函數的集合等數學物件都有著內含的結構。這些物件的結構性質被探討於群、環、體及其他本身即為此物件的抽象系統中。此為抽象代數的領域。在此有一個很重要的概念,即向量,且廣義化至向量空間,並研究於線性代數中。向量的研究結合了數學的三個基本領域:數量、結構及空間。向量分析則將其擴展至第四個基本的領域內,即變化。 空間 空間的研究源自於幾何-尤其是歐式幾何。三角學則結合了空間及
數,且包含有著名的勾股定理。現今對空間的研究更推廣到了更高維的幾何、非歐幾何(其在廣義相對論中扮演著核心的角色)及拓撲學。數和空間在解析幾何、微分幾何和代數幾何中都有著很重要的角色。在微分幾何中有著纖維叢及流形上的計算等概念。在代數幾何中有著如多項式方程的解集等幾何物件的描述,結合了數和空間的概念;亦有著拓撲群的研究,結合了結構與空間。李群被用來研究空間、結構及變化。 基礎與哲學 為了搞清楚數學基礎,數學邏輯和集合論等領域被發展了出來。德國數學家康托(Georg Cantor,1845-1918)首創集合論,大膽地向「無窮大」進軍,為的是給數學各分支提供一個堅實的基礎,而它本身的內容也是相當豐富的,提出了實無窮的存在,為以後的數學發展作出了不可估量的貢獻。Cantor的工作給數學發展帶來了一場革命。由於他的理論超越直觀,所以曾受到當時一些大數學家的反對,Pioncare也把集合論比作有趣的「病理情形」,Kronecker還擊Cantor是「神經質」,「走進了超越數的地獄」.對於這些非難和指責,Cantor仍充滿信心,他說:「我的理論猶如磐石一般堅固,任何反對它的人都將搬起石頭砸自己的腳.」 集合論在20世紀初已逐漸滲透到了各個數學分支,成為了分析理論,測度論,拓撲學及數理科學中必不可少的工具。20世紀初世界上最偉大的數學家Hilbert在德國傳播了Cantor的思想,把他稱為「數學家的樂園」和「數學思想最驚人的產物」。英國哲學家Russell把Cantor的工作譽為「這個時代所能誇耀的最巨大的工作」。 數學邏輯專注在將數學置於一堅固的公理架構上,並研究此一架構的成果。就其本身而言,其為哥德爾第二不完備定理的產地,而這或許是邏輯中最廣為流傳的成果-總存在一不能被證明的真實定理。現代邏輯被分成遞歸論、模型論和證明論,且和理論計算機科學有著密切的關連性。
編輯本段數學的分類
離散數學 模糊數學
數學的五大分支
1.經典數學 2.近代數學 3.計算機數學 4.隨機數學 5.經濟數學
數學分支
1.算術 2.初等代數 3.高等代數 4. 數論 5.歐幾里得幾何 6.非歐幾里得幾何 7.解析幾何 8.微分幾何 9.代數幾何 10.射影幾何學 11.幾何拓撲學 12.拓撲學 13.分形幾何 14.微積分學 15. 實變函數論 16.概率和統計學 17.復變函數論 18.泛函分析 19.偏微分方程 20.常微分方程 21.數理邏輯 22.模糊數學 23.運籌學 24.計算數學 25.突變理論 26.數學物理學
數學分類
符號、語言與嚴謹 在現代的符號中,簡單的表示式可能描繪出復雜的概念。此一圖像即是由一簡單方程所產生的。 我們現今所使用的大部分數學符號都是到了16世紀後才被發明出來的。在此之前,數學被文字書寫出來,這是個會限制住數學發展的刻苦程序。現今的符號使得數學對於專家而言更容易去控作,但初學者卻常對此感到怯步。它被極度的壓縮:少量的符號包含著大量的訊息。如同音樂符號一般,現今的數學符號有明確的語法和難以以其他方法書寫的訊息編碼。 數學語言亦對初學者而言感到困難。如何使這些字有著比日常用語更精確的意思。亦困惱著初學者,如開放和域等字在數學里有著特別的意思。數學術語亦包括如同胚及可積性等專有名詞。但使用這些特別符號和專有術語是有其原因的:數學需要比日常用語更多的精確性。數學家將此對語言及邏輯精確性的要求稱為「嚴謹」。 嚴謹是數學證明中很重要且基本的一部分。數學家希望他們的定理以系統化的推理依著公理被推論下去。這是為了避免錯誤的「定理」,依著不可靠的直觀,而這情形在歷史上曾出現過許多的例子。在數學中被期許的嚴謹程度因著時間而不同:希臘人期許著仔細的論點,但在牛頓的時代,所使用的方法則較不嚴謹。牛頓為了解決問題所做的定義到了十九世紀才重新以小心的分析及正式的證明來處理。今日,數學家們則持續地在爭論電腦輔助證明的嚴謹度。當大量的計量難以被驗證時,其證明亦很難說是有效地嚴謹。
編輯本段數學的發展史
世界數學發展史 數學,起源於人類早期的生產活動,為中國古代六藝之一,亦被古希臘學者視為哲學之起點。數學的希臘語Μαθηματικ? mathematikós)意思是「學問的基礎」,源於ματθημα(máthema)(「科學,知識,學問」)。 數學的演進大約可以看成是抽象化的持續發展,或是題材的延展。第一個被抽象化的概念大概是數字,其對兩個蘋果及兩個橘子之間有某樣相同事物的認知是人類思想的一大突破。 除了認知到如何去數實際物質的數量,史前的人類亦了解如何去數抽象物質的數量,如時間-日、季節和年。算術(加減乘除)也自然而然地產生了。古代的石碑亦證實了當時已有幾何的知識。 更進一步則需要寫作或其他可記錄數字的系統,如符木或於印加帝國內用來儲存數據的奇普。歷史上曾有過許多且分歧的記數系統。 從歷史時代的一開始,數學內的主要原理是為了做稅務和貿易等相關多計算,為了了解數字間的關系,為了測量土地,以及為了預測天文事件而形成的。這些需要可以簡單地被概括為數學對數量、結構、空間及時間方面的研究。 到了16世紀,算術、初等代數、以及三角學等初等數學已大體完備。17世紀變數概念的產生使人們開始研究變化中的量與量的互相關系和圖形間的互相變換。在研究經典力學的過程中,微積分的方法被發明。隨著自然科學和技術的進一步發展,為研究數學基礎而產生的集合論和數理邏輯等也開始慢慢發展。 數學從古至今便一直不斷地延展,且與科學有豐富的相互作用,並使兩者都得到好處。數學在歷史上有著許多的發現,並且直至今日都還不斷地發現中。依據Mikhail B. Sevryuk於美國數學會通報2006年1月的期刊中所說,「存在於數學評論資料庫中論文和書籍的數量自1940年(數學評論的創刊年份)現已超過了一百九十萬份,而且每年還增加超過七萬五千份的細目。此一學海的絕大部分為新的數學定理及其證明。」
編輯本段國外數學名家
阿基米德
阿基米德(公元前287年—公元前212年),古希臘哲學家、數學家、物理學家。出生於西西里島的敘拉古。阿基米德到過亞歷山大里亞,據說他住在亞歷山大里亞時期發明了阿基米德式螺旋抽水機。後來阿基米德成為兼數學家與力學家的偉大學者,並且享有「力學之父」的美稱。阿基米德流傳於世的數學著作有10餘種,多為希臘文手稿。
高斯
數學天才——高斯 高斯是德國數學家、物理學家和天文學家。 高斯一生下來,就對一切現象和事物十分好奇,而且決心弄個水落石出。7歲那年,高斯第一次上學了。 在全世界廣為流傳的一則故事說,高斯10歲時算出布特納給學生們出的將1到100的所有整數加起來的算術題,布特納當時給孩子們出的是一道更難的加法題:81297+81495+81693+…+100899。說完高斯也算完並把寫有答案的小石板交了上去,當時只有他寫的答案是正確的。數學史家們傾向於認為,高斯當時已掌握了等差數列求和的方法。一位年僅10歲的孩子,能獨立發現這一數學方法實屬很不平常。 高斯的學術地位,歷來被人們推崇得很高。他有「數學王子」、「數學家之王」的美稱。
牛頓
牛頓是英國物理學家和數學家。
在學校里,牛頓是個古怪的孩子,就喜歡自己設計、自己動手,做風箏、日晷、滴漏之類器物。他對周圍的一切充滿好奇,但並不顯得特別聰明。 1665~1666年嚴重的鼠疫席捲了倫敦,劍橋離倫敦不遠,為恐波及,學校因此而停課,牛頓於1665年6月離校返鄉。一天在樹下閑坐,看到一個蘋果落在地上,便開始捉摸,這種將蘋果往下拉的力會不會也在控制著月球。由此牛頓推導出物體的下落速度改變率與重力的大小成正比,而重力大小與距地心距離的平方成反比。後來牛頓的棱鏡實驗也使他一舉成名。 牛頓最卓越的數學成就是創立了微積分,此外對解析幾何與綜合幾何都有貢獻。 牛頓有兩句名言是大家所熟知的。他在一封信中寫道:「如果我比別人看得遠些,那是因為我站在巨人們的肩上。」據說他還講過:「我不知道世人對我怎麼看;但在我自己看來就好像只是一個在海濱嬉戲的孩子,不時地為比別人找到一塊光滑的卵石或一隻更美麗的貝殼而感到高興,而我面前的
浩瀚的真理海洋,卻還完全是個謎。」
萊布尼茨
戈特弗里德·威廉·凡·萊布尼茨(Gottfried Wilhelm von Leibniz,1646年7月1日~1716年11月14日)德國最重要的自然科學家、數學家、物理學家、歷史學家和哲學家,一位舉世罕見的科學天才,和牛頓(1643年1月4日—1727年3月31日)同為微積分的創建人。他博覽群書,涉獵網路,對豐富人類的科學知識寶庫做出了不可磨滅的貢獻。
編輯本段中國古代數學發展史
數學古稱算學,是中國古代科學中一門重要的學科,根據中國古代數學發展的特點,可以分為五個時期:萌芽;體系的形成;發展;繁榮和中西方數學的融合。
中國古代數學的萌芽
原始公社末期,私有制和貨物交換產生以後,數與形的概念有了進一步的發展,仰韶文化時期出土的陶器,上面已刻有表示1234的符號。到原始公社末期,已開始用文字元號取代結繩記事了。 西安半坡出土的陶器有用1~8個圓點組成的等邊三角形和分正方形為100個小正方形的圖案,半坡遺址的房屋基址都是圓形和方形。為了畫圓作方,確定平直,人們還創造了規、矩、准、繩等作圖與測量工具。據《史記·夏本紀》記載,夏禹治水時已使用了這些工具。 商代中期,在甲骨文中已產生一套十進制數字和記數法,其中最大的數字為三萬;與此同時,殷人用十個天乾和十二個地支組成甲子、乙丑、丙寅、丁卯等60個名稱來記60天的日期;在周代,又把以前用陰、陽符號構成的八卦表示八種事物發展為六十四卦,表示64種事物。 公元前一世紀的《周髀算經》提到西周初期用矩測量高、深、廣、遠的方法,並舉出勾股形的勾三、股四、弦五以及環矩可以為圓等例子。《禮記·內則》篇提到西周貴族子弟從九歲開始便要學習數目和記數方法,他們要受禮、樂、射、馭、書、數的訓練,作為「六藝」之一的數已經開始成為專門的課程。 春秋戰國之際,籌算已得到普遍的應用,籌算記數法已使用十進位值制,這種記數法對世界數學的發展是有劃時代意義的。這個時期的測量數學在生產上有了廣泛應用,在數學上亦有相應的提高。 戰國時期的百家爭鳴也促進了數學的發展,尤其是對於正名和一些命題的爭論直接與數學有關。名家認為經過抽象以後的名詞概念與它們原來的實體不同,他們提出「矩不方,規不可以為圓」,把「大一」(無窮大)定義為「至大無外」,「小一」(無窮小)定義為「至小無內」。還提出了「一尺之棰,日取其半,萬世不竭」等命題。 而墨家則認為名來源於物,名可以從不同方面和不同深度反映物。墨家給出一些數學定義。例如圓、方、平、直、次(相切)、端(點)等等。 墨家不同意「一尺之棰」的命題,提出一個「非半」的命題來進行反駁:將一線段按一半一半地無限分割下去,就必將出現一個不能再分割的「非半」,這個「非半」就是點。 名家的命題論述了有限長度可分割成一個無窮序列,墨家的命題則指出了這種無限分割的變化和結果。名家和墨家的數學定義和數學命題的討論,對中國古代數學理論的發展是很有意義的。
中國古代數學體系的形成
秦漢是封建社會的上升時期,經濟和文化均得到迅速發展。中國古代數學體系正是形成於這個時期,它的主要標志是算術已成為一個專門的學科,以及以《九章算術》為代表的數學著作的出現。 《九章算術》是戰國、秦、漢封建社會創立並鞏固時期數學發展的總結,就其數學成就來說,堪稱是世界數學名著。例如分數四則運算、今有術(西方稱三率法)、開平方與開立方(包括二次方程數值解法)、盈不足術(西方稱雙設法)、各種面積和體積公式、線性方程組解法、正負數運算的加減法則、勾股形解法(特別是勾股定理和求勾股數的方法)等,水平都是很高的。其中方程組解法和正負數加減法則在世界數學發展上是遙遙領先的。就其特點來說,它形成了一個以籌算為中心、與古希臘數學完全不同的獨立體系。 《九章算術》有幾個顯著的特點:採用按類分章的數學問題集的形式;算式都是從籌算記數法發展起來的;以算術、代數為主,很少涉及圖形性質;重視應用,缺乏理論闡述等。 這些特點是同當時社會條件與學術思想密切相關的。秦漢時期,一切科學技術都要為當時確立和鞏固封建制度,以及發展社會生產服務,強調數學的應用性。最後成書於東漢初年的《九章算術》,排除了戰國時期在百家爭鳴中出現的名家和墨家重視名詞定義與邏輯的討論,偏重於與當時生產、生活密切相結合的數學問題及其解法,這與當時社會的發展情況是完全一致的。 《九章算術》在隋唐時期曾傳到朝鮮、日本,並成為這些國家當時的數學教科書。它的一些成就如十進位值制、今有術、盈不足術等還傳到印度和阿拉伯,並通過印度、阿拉伯傳到歐洲,促進了世界數學的發展。