數學的四大領域
數學研究的各領域 數學主要的學科首要產生於商業上計算的需要、了解數與數之間的關系、測量土地及預測天文事件。這四種需要大致地與數量、結構、空間及變化(即算術、代數、幾何及分析)等數學上廣泛的領域相關連著。除了上述主要的關注之外,亦有用來探索由數學核心至其他領域上之間的連結的子領域:至邏輯、至集合論(基礎)、至不同科學的經驗上的數學(應用數學)、及較近代的至不確定性的嚴格學習。 數量數量的學習起於數,一開始為熟悉的自然數及整數與被描述在算術內的自然數及整數的算術運算。整數更深的性質被研究於數論中,此一理論包括了如費馬最後定理之著名的結果。 當數系更進一步發展時,整數被承認為有理數的子集,而有理數則包含於實數中,連續的數量即是以實數來表示的。實數則可以被進一步廣義化成復數。數的進一步廣義化可以持續至包含四元數及八元數。自然數的考慮亦可導致超限數,它公式化了計數至無限的這一概念。另一個研究的領域為其大小,這個導致了基數和之後對無限的另外一種概念:阿列夫數,它允許無限集合之間的大小可以做有意義的比較。 結構許多如數及函數的集合等數學物件都有著內含的結構。這些物件的結構性質被探討於群、環、體及其他本身即為此物件的抽象系統中。此為抽象代數的領域。在此有一個很重要的概念,即向量,且廣義化至向量空間,並研究於線性代數中。向量的研究結合了數學的三個基本領域:數量、結構及空間。向量分析則將其擴展至第四個基本的領域內,即變化。 空間空間的研究源自於幾何-尤其是歐式幾何。三角學則結合了空間及 數,且包含有非常著名的勾股定理。現今對空間的研究更推廣到了更高維的幾何、非歐幾何(其在廣義相對論中扮演著核心的角色)及拓撲學。數和空間在解析幾何、微分幾何和代數幾何中都有著很重要的角色。在微分幾何中有著纖維叢及流形上的計算等概念。在代數幾何中有著如多項式方程的解集等幾何物件的描述,結合了數和空間的概念;亦有著拓撲群的研究,結合了結構與空間。李群被用來研究空間、結構及變化。 基礎與哲學為了搞清楚數學基礎,數學邏輯和集合論等領域被發展了出來。德國數學家康托(Georg Cantor,1845-1918)首創集合論,大膽地向「無窮大」進軍,為的是給數學各分支提供一個堅實的基礎,而它本身的內容也是相當豐富的,提出了實無窮的存在,為以後的數學發展作出了不可估量的貢獻。Cantor的工作給數學發展帶來了一場革命。由於他的理論超越直觀,所以曾受到當時一些大數學家的反對,Pioncare也把集合論比作有趣的「病理情形」,Kronecker還擊Cantor是「神經質」,「走進了超越數的地獄」.對於這些非難和指責,Cantor仍充滿信心,他說:「我的理論猶如磐石一般堅固,任何反對它的人都將搬起石頭砸自己的腳.」 集合論在20世紀初已逐漸滲透到了各個數學分支,成為了分析理論,測度論,拓撲學及數理科學中必不可少的工具。20世紀初世界上最偉大的數學家Hilbert在德國傳播了Cantor的思想,把他稱為「數學家的樂園」和「數學思想最驚人的產物」。英國哲學家Russell把Cantor的工作譽為「這個時代所能誇耀的最巨大的工作」。 數學邏輯專注在將數學置於一堅固的公理架構上,並研究此一架構的成果。就其本身而言,其為哥德爾第二不完備定理的產地,而這或許是邏輯中最廣為流傳的成果-總存在一不能被證明的真實定理。現代邏輯被分成遞歸論、模型論和證明論,且和理論計算機科學有著密切的關連性。
Ⅱ 人小學數學 四大領域中的哪個
1。實踐與綜合應用」
2。「數與代數」
3。「空間與圖形」
4。「統計與可能性「
並列為小學數學的四大學習領域
Ⅲ 數學四大領域都研究什麼
1.算術的研究 主要是指《高斯的名著《算術研究》》 1801年,高斯的名著《算術研究》問世。《算術研究》是用拉丁文寫成的。這部書是高斯大學畢業前夕開始撰寫的,前後花了三年時間。1800年,高斯將手稿寄給法國科學院,請求出版,卻遭到拒絕,於是高斯只好自籌資金發表。 目錄 內容範圍 學術意義 核心課題 同餘理論 二次互反律 二次互反律發展型的理論 數論問題中復數的作用 首先是對復數的承認 復數帶進了數論內容範圍 學術意義核心課題 同餘理論 二次互反律 二次互反律發展型的理論數論問題中復數的作用 首先是對復數的承認 復數帶進了數論內容範圍在這本書的序言一開頭,高斯明確地說明了本書的范圍:「本書所研究的是數學中的整數部分,分數和無理數不包括在內。」 [編輯本段]學術意義《算術研究》是一部劃時代的作品,它結束了19世紀以前數論的無系統狀態。在這部書中,高斯對前人在數論中的一切傑出而又零星的成果予以系統的整理,並積極加以推廣,給出了標准化的記號,把研究的問題和解決這些問題的已知方法進行了分類,還引進了新的方法。 [編輯本段]核心課題全書共有三個核心課題:同餘理論、齊式論及剩餘論和二次互反律。這些都是高斯貢獻給數論的卓越成就。 同餘理論同餘是《算術研究》中的一個基本研究課題。這個概念不是高斯首先提出的,但是給同餘引入現代的符號並予以系統研究的卻是高斯。他詳細地討論了同餘數的運算、多項式同餘式的基本定理以及冪的同餘等各種問題。他還運用冪的同餘理論證明了費馬小定理。 二次互反律二次互反律是高斯最得意的成果之一,它在數論中佔有極為重要的地位。正如美國現代數學家狄克遜(1874—1954)所說:「它是數論中最重要的工具,並且在數論發展史上佔有中心位置。」其實,高斯早在1796年就已經得出了這個定理及其證明。發表在《算術研究》中的則是另一種證明。 二次互反律發展從二次互反律出發,高斯相繼引出了雙二次互反律和三次互反律,以及與此相聯系的雙二次和三次剩餘理論。為了使三次和雙二次剩餘理論優美而簡單,高斯又發展出了復整數和復整數數論;而它的進一步結果必然是代數數理論,這方面由高斯的學生戴德金(1831—1916)作出了決定性的貢獻。 [編輯本段]型的理論在《算術研究》中,高斯出乎尋常的以最大的篇幅討論了型的理論。他從拉格朗日的著作中抽象出了型的等價概念後,便一鼓作氣地提出了一系列關於型的等價定理和型的復合理論,他的工作有效地向人們展現了型的重要性——用於證明任何多個關於整數數的定理。正是由於高斯的帶領,使型的理論成為19世紀數論的一個主要課題。高斯關於型和型類的幾何表式的論述是如今所謂數的幾何學的開端。 [編輯本段]數論問題中復數的作用高斯對數論問題的處理,有許多涉及到復數。 首先是對復數的承認這是個老問題。18、19世紀不少傑出的數學家都曾被「復數究竟是什麼?」搞不清楚。萊布尼茲、歐拉等數學大師對此一籌莫展。高斯在代數基本定理的證明中無條件地使用了復數。這使得原先僅從運算通行性這點考慮對復數的承認,擴大到在重大的代數問題的證明中來確認復數的地位。高斯以其對該定理的高超證明,使數學界不僅對高斯而且對復數刮目相待。 復數帶進了數論高斯不僅如此,他又把復數帶進了數論,並且創立了復整數理論。在這一理論中,高斯證明了復整數在本質上具有和普通整數相同的性質。歐幾里得在普通整數中證明了算術基本定理——每個整數可唯一地分解為素數的乘積,高斯則在復整數中得出並證明,只要不把四個可逆元素(±1,±i)作為不同的因數,那麼這個唯一分解定理對復數也成立。高斯還指出,包括費馬大定理在內的普通素數的許多定理都可能轉化為復數的定理(擴大到復數領域)。 [編輯本段]當時的評價《算術研究》似乎任何一個學過中學普通代數的人都可以理解,但是,它完全不是給初學者看的。在當時,讀懂這本書的人較少。困難不是詳細的計算示例而是對主題的理解和對深奧思路的認識。由於全書有7個部分,人們風趣地稱它是部「加七道封漆的著作」。 [編輯本段]傳播《算術研究》出版後,很多青年數學家紛紛購買此書並加以研究,狄利克雷(1805—1859)就是其中之一。狄利克雷是德國著名數學家,對分析、數論等有多方面的貢獻。他把《算術研究》視為心愛的寶貝,把書藏在罩袍里貼胸的地方,走到哪兒帶到哪兒,一有空就拿出來閱讀。晚上睡覺的時候,把它墊在枕頭下面,在睡前還讀上幾段。功夫不負有心人,憑著這股堅韌不拔的毅力,狄利克雷終於第一個打開了「七道封漆」。後來他以通俗的形式對《算術研究》作了詳細的介紹和解釋,使這部艱深的作品逐漸為較多的人所理解和掌握。 [編輯本段]數學界的認可關於《算術研究》和狄利克雷之間還有一段感人的故事。1849年7月16日,正好是高斯獲得博士學位50周年。哥廷根大學舉行慶祝活動,其中有一個別出心裁的節目,他們要高斯用《算術研究》中一頁原稿來點燃自己的煙斗。狄利克雷正好站在高斯身旁,他看到這個情景完全驚呆了。在最後一剎那,他不顧一切地從自己恩師的手中搶下了這頁原稿,並把它珍藏起來。這頁手稿直到狄利克雷逝世以後,編輯人員在整理他的遺稿中才重新發現了它。 《算術研究》發表後,拉格朗日曾經悲觀地以為「礦源已經挖盡」、數學正瀕臨絕境,當他看完《算術研究》後興奮地看到了希望的曙光。這位68歲高齡的老人致信高斯表示由衷的祝賀: 「您的《算術研究》已立刻使您成為第一流的數學家。我認為,最後一章包含了最優美的分析的發現。為尋找這一發現,人們作了長時間的探索。……相信我,沒有人比我更真誠地為您的成就歡呼。」 關於這部著作,19世紀德國著名數學史家莫里茨·康托曾發表過高見,他說: 「高斯曾說:『數學是科學的女皇,數論則是數學的女皇。』如果這是真理,我們還可以補充一點:《算術研究》是數論的憲章。」 《算術研究》是高斯一生中的巨著。暮年高斯在談到這部書時說:「《算術研究》是歷史的財富。」 [編輯本段]高斯的成就高斯原本計劃繼續撰寫《算術研究》第2卷,但由於工作的變化和研究興趣的轉移,這一計劃未能實現。 高斯的許多數學成就都是在他去世後才被人們發現的。從1796年3月30日高斯用尺規作出正17邊形後,他開始記科學日記,並且長期堅持下來,到1814年7月9日。高斯的科學日記是1898年哥廷根皇家學會為了研究高斯,向高斯的孫子借來的。從此,這本科學日記的內容才在高斯逝世43年後流傳。這本日記共146項研究成果,由於僅供個人使用,所以每一條記錄往往只寫三言兩語,十分簡短。有的條目簡單得甚至專家也摸不著頭腦。 1796年10月11日, Vicimus GEGAN 1799年4月8日, 這兩項研究成果,至今仍是個謎。 在1796年7月10日中有這樣一條日記: EYPHKA!num=△+△+△ EYPHKA是希臘文找到了的意思。當年,阿基米德在洗澡的時候突然發現了浮力定律,興奮地從浴缸一躍而起,在大街上狂奔高喊的就是「EYPHKA!」高斯在這里找到了費馬提出的一個困難定理的證明:每個正整數是三個三角數之和。 高斯的科學日記一經披露,轟動了整個科學界。人們第一次了解到,有許多重大成果高斯實際上早就發現,而公開發表得很晚,有的甚至生前根本沒有發表。有關橢圓函數雙周期性的內容一直到日記發表的時候人們才知道,以致這個重大成果在日記里整整沉睡了100年。1797年3月19日的一條日記清楚表明,高斯已經發現了這個成果;後來又有一條,說明高斯還進一步認識到一般情況下的雙周期性。這個問題後來經過雅可比(1804—1851)和阿貝爾獨立研究發展,才成為19世紀函數論的核心。類似的例子不勝枚舉。 這樣大量的重大發現在日記里竟被埋沒了幾十年甚至一個世紀!面對這一不可思議的事實,數學家無不大為震驚。如果及時發表這些內容,無疑會給高斯帶來空前的榮譽,因為日記中的任何一項成果都是當時世界第一流的。如果及時發表這些內容,就可以免得後來的數學家在許多重要領域中的苦苦摸索,數學史因而將大大改寫。有的數學家估計,數學的發展可能要比現在先進半個世紀之多。 [編輯本段]當時的社會環境和高斯個人性格為什麼會出現這現象呢?這與當時的社會環境和高斯個人性格有十分重要的關系。 18世紀,數學界貫穿著激烈的爭論,數學家們各持己見,互相指責,由於缺乏嚴格的論證,在爭論中又產生了種種錯誤。為了證明自己的論點,他們往往自吹自擂,互相諷刺挖苦,這類爭論給高斯留下了深刻的印象。高斯雖然出身貧微,卻和他的父母一樣,有著極強的自尊心,加之他對科學研究的極端慎重的態度,使他生前沒有公開這本日記。他認為,這些研究成果還須進一步加以論證。他在科學研究上遵循的格言是「寧少毋濫」。 高斯這種嚴謹的治學態度,雖然使後輩科學家付出了巨大的代價,但是,也給科學研究帶來了好處。高斯出版的著作至今仍然像第一次出版一樣正確而重要,他的出版物就是法典,比人類其他法典都更高明,因為不論何時何地從未發現其中有任何毛病。 高斯治學的態度正如他在自己的肖像下工工整整地寫下的《李爾王》中的一段格言一樣: 「大自然,您是我的女神,我一生的效勞都服從於您的規律。」 高斯在數學領域中的成就是巨大的。後來人們問起他成功的秘訣,他以其特有的謙遜方法回答道: 「如果別人思考數學的真理像我一樣深入持久,他也會找到我的發現。」 為了證明自己的結論,有一次他指著《算術研究》第633頁上一個問題動情地說: 「別人都說我是天才,別信它!你看這個問題只佔短短幾行,卻使我整整花了4年時間。4年來我幾乎沒有一個星期不在考慮它的符號問題。」更多的你可以參考這個網址: http://zjyx.sxtge.net/Resource/Book/E/KPTS/joy02010/0003_ts086011.htm
Ⅳ 新課程下的小學數學教學內容分為幾大領域
新課程下的小學數學教學內容如下:
1、小學數學一個重要的內容是數的擴展,從數物體個數的整數到負數,其中經歷了小數、分數、還有一個無理數——圓周率。其教育價值是知道數的形成與擴展都是出於人的需要,滲透探究新知的思想,也為今後的學習鋪平道路,知道隨著人類不斷進化,生產生活中不斷的要求有新的數種的誕生,以適應迅猛發展的社會的需求。
2、再者,初步的幾何知識包括點線面立體圖形的教育價值體現在,建立學生的空間觀念,讓思維立體化,大腦認識世界的空間進一步擴展,主要就是開發大腦固有的潛能,由平面到立體是一個質的飛躍。老師的點撥和引領至關重要。
至於數與形的結合在小學階段只做了孕伏,就是正反比例的圖像,為順利過渡到中學的函數做准備.蜻蜓點水,一帶而過。
3、正反比例是小學的重點和難點,這一內容的設置,一可以解決生活和生產中的實際問題,活躍思維;二能培養學生對立統一的辯證觀點,在變與不變中找到問題的關鍵,相關聯的兩個變數,在變化的過程中,遵循著某種規則,就是第三種量的不變.這里蘊伏著函數的思想,這是體現這一內容的核心之所在。
4、應用題在小學數學中佔有舉足輕重的地位,它是開發學生智力潛能的重要陣地,人的思維潛能是在不斷地提出問題和解決問題的往復循環中被逐漸開發出來的,應用題內容是一很好的滲透滲透數學思想的載體,通過它讓學生初步建立解決實際問題的數學模型,進而有效地把思維引向深入。數學是思維的體操,缺乏數學思維的課堂是死寂的課堂。
5、還有一部分內容是數學廣角,它的設置為學有餘力的學生提供了展示的平台,體現了好學生更要受到關愛的先進的教學理念。思維素質是一個人整體素質的核心,思路開闊,一個問題擺在面前,可以預設出多種解決方案,並進行比較,找到最佳的方案,這樣的人是聰明的人。
小學數學的價值:讓學生擁有良好的思維方式,找到解決問題的捷徑,突破思維定勢的束縛,去大膽的設想,求真創新,勇於叩擊真理的大門,用獨特的視角去審視紛繁復雜的事物,開動腦筋,獨辟蹊徑,走出一條屬於自己的人生之路。這才是教育的真正含義!
Ⅳ 請問小學數學四大板塊分別是什麼
按內容分為:數與代數,幾何與圖形,統計與概率,實踐與綜合應用.
按領域分為:知識與技能,數學思考,問題解決,情感與態度.
Ⅵ 厘米和米 是數學四大領域的哪個領域
厘米和米表示長度的計算單位,屬於數學四大領域中的實踐與綜合應用。
根據《數學課程標准》,數學四大領域分為:
1、數與代數
2、空間與圖形
3、統計與概率
4、實踐與綜合運用
厘米是一個長度計量單位,等於一米的百分之一。長度單位,英語符號即縮寫為:cm,1厘米=1/100米。1cm(厘米)=10mm(毫米)=0.1dm(分米)=0.01m(米)。
(6)數學的四大領域擴展閱讀:
《數學課程標准》在每個學段均安排了數與代數、空間與圖形、統計與概率和實踐與綜合運用這四個領域的學習內容。
在小學階段,數與代數領域的學習內容有:
數的認識、數的運算、常見的量、式與方程、正反比例和探索規律;空間與圖形領域的學習內容有:圖形的認識、測量、圖形與位置、圖形與變換;統計與概率領域的學習內容有:統計、可能性;實踐與綜合運用領域的學習內容包括:實踐活動、綜合應用。
Ⅶ 數學廣角 屬於四大領域中的哪一領域
「數學廣角」 其原型是屬於奧數訓練課,不屬於「四大板塊」內容,根據他們的內在聯系又可以融入四大板塊之中
Ⅷ .小學《數學課程標准》中的四個學習領域是什麼
四個學習領域分別是:"數與代數""空間與圖形""統計與概率""實踐與綜合應用"。
數感主要表現在:理解數的意義;能用多種方法來表示數;能在具體的情境中把握數的相對大小關系;能用數來表達和交流信息;能為解決問題而選擇適當的演算法;能估計運算的結果,並對結果的合理性作出解釋。
符號感主要表現在:能從具體情境中抽象出數量關系和變化規律,並用符號來表示;理解符號所代表的數量關系和變化規律;會進行符號間的轉換;能選擇適當的程序和方法解決用符號所表達的問題。
空間觀念主要表現在:能由實物的形狀想像出幾何圖形,由幾何圖形想像出實物的形狀,進行幾何體與其三視圖、展開圖之間的轉化;能根據條件做出立體模型或畫出圖形;能從較復雜的圖形中分解出基本的圖形,並能分析其中的基本元素及其關系;能描述實物或幾何圖形的運動和變化;能採用適當的方式描述物體間的位置關系;能運用圖形形象地描述問題,利用直觀來進行思考。
統計觀念主要表現在:能從統計的角度思考與數據信息有關的問題;能通過收集數據、描述數據、分析數據的過程作出合理的決策,認識到統計對決策的作用;能對數據的來源、處理數據的方法,以及由此得到的結果進行合理的質疑。
應用意識主要表現在:認識到現實生活中蘊含著大量的數學信息、數學在現實世界中有著廣泛的應用;面對實際問題時,能主動嘗試著從數學的角度運用所學知識和方法尋求解決問題的策略;面對新的數學知識時,能主動地尋找其實際背景,並探索其應用價值。
推理能力主要表現在:能通過觀察、實驗、歸納、類比等獲得數學猜想,並進一步尋求證據、給出證明或舉出反例;能清晰、有條理地表達自己的思考過程,做到言之有理、落筆有據;在與他人交流的過程中,能運用數學語言合乎邏輯地進行討論與質疑。
(8)數學的四大領域擴展閱讀
數學是人們對客觀世界定性把握和定量刻畫、.逐漸抽象概括、形成方法和理論,並進行廣泛應用的過程。20世紀中葉以來,數學自身發生了巨大的變化,特別是與計算機的結合,使得數學在研究領域、研究方式和應用范圍等方面得到了空前的拓展。
數學可以幫助人們更好地探求客觀世界的規律,並對現代社會中大量紛繁復雜的信息作出恰當的選擇與判斷,同時為人們交流信息提供了一種有效、簡捷的手段。數學作為一種普遍適用的技術,有助於人們收集、整理、描述信息,建立數學模型,進而解決問題,直接為社會創造價值。
義務教育階段的數學課程,其基本出發點是促進學生全面、持續、和諧地發展。它不僅要考慮數學自身的特點,更應遵循學生學習數學的心理規律,強調從學生已有的生活經驗出發,讓學生親身經歷將實際問題抽象成數學模型並進行解釋與應用的過程,進而使學生獲得對數學理解的同時,在思維能力、情感態度與價值觀等多方面得到進步和發展。
參考資料來源:網路-全日制義務教育·數學課程標准
參考資料來源:網路-數學課程標准
Ⅸ 初中階段數學內容分為哪四個領域
1、初中階段數學內容分為幾何、代數、概率、統計四個領域。
2、幾何,就是研究空間結構及性質的一門學科。它是數學中最基本的研究內容之一,與分析、代數等等具有同樣重要的地位,並且關系極為密切。
3、代數是研究數、數量、關系、結構與代數方程(組)的通用解法及其性質的數學分支。初等代數一般在中學時講授,介紹代數的基本思想。
4、概率亦稱「或然率」。它反映隨機事件出現的可能性(likelihood)大小。隨機事件是指在相同條件下,可能出現也可能不出現的事件。
5、統計指指對某一現象有關的數據的搜集、整理、計算、分析、解釋、表述等的活動。
(9)數學的四大領域擴展閱讀:
1、平面幾何的內容也很自然地過渡到了三維空間的立體幾何。為了計算體積和面積問題,人們實際上已經開始涉及微積分的最初概念。
2、笛卡爾引進坐標系後,代數與幾何的關系變得明朗, 且日益緊密起來。這就促使了解析幾何的產生。
3、解析幾何是由笛卡爾、費馬分別獨立創建的。這又是一次具有里程碑意義的事件。從解析幾何的觀點出發,幾何圖形的性質可以歸結為方程的分析性質和代數性質。幾何圖形的分類問題(比如把圓錐曲線分為三類),也就轉化為方程的代數特徵分類的問題,即尋找代數不變數的問題。
4、立體幾何歸結為三維空間解析幾何的研究范疇,從而研究二次曲面(如球面,橢球面、錐面、雙曲面,鞍面)的幾何分類問題,就歸結為研究代數學中二次型的不變數問題。
5、無論是在代數還是在分析中,代數結構都是最常見到的結構之一。十九世紀前半葉末,隨著哈密頓四元數理論的建立,非交換代數的研究已經開始. 在十九世紀下半葉,隨著M.S.李的工作,非結合代數出現了. 到二十世紀初,由於放棄實數體或復數體作為運算元域的限制,代數得到了重大擴展.
6、與外代數,對稱代數,張量代數,克利福德代數等一起,代數結構在多重線性代數中也建立了起來。
Ⅹ 義務教育階段數學課程內容的四大領域分別是什麼 麻煩會的人告訴一聲!
應該是:數與代數,空間與圖形,統計與概率,實踐與綜合運用。