數學的解決問題
① 數學解決問題
歸一問題
【含義】 在解題時,先求出一份是多少(即單一量),然後以單一量為標准,求出所要求的數量。這類應用題叫做歸一問題。
【數量關系】 總量÷份數=1份數量
1份數量×所佔份數=所求幾份的數量
另一總量÷(總量÷份數)=所求份數
【解題思路和方法】 先求出單一量,以單一量為標准,求出所要求的數量。
例1 買5支鉛筆要0.6元錢,買同樣的鉛筆16支,需要多少錢?
例2 3台拖拉機3天耕地90公頃,照這樣計算,5台拖拉機6 天耕地多少公頃?
例3 5輛汽車4次可以運送100噸鋼材,如果用同樣的7輛汽車運送105噸鋼材,需要運幾次?
2歸總問題
【含義】 解題時,常常先找出「總數量」,然後再根據其它條件算出所求的問題,叫歸總問題。所謂「總數量」是指貨物的總價、幾小時(幾天)的總工作量、幾公畝地上的總產量、幾小時行的總路程等。
【數量關系】 1份數量×份數=總量 總量÷1份數量=份數
總量÷另一份數=另一每份數量
【解題思路和方法】 先求出總數量,再根據題意得出所求的數量。
例1 服裝廠原來做一套衣服用布3.2米,改進裁剪方法後,每套衣服用布2.8米。原來做791套衣服的布,現在可以做多少套?
例2 小華每天讀24頁書,12天讀完了《紅岩》一書。小明每天讀36頁書,幾天可以讀完《紅岩》?
例3 食堂運來一批蔬菜,原計劃每天吃50千克,30天慢慢消費完這批蔬菜。後來根據大家的意見,每天比原計劃多吃10千克,這批蔬菜可以吃多少天?
3 和差問題
【含義】 已知兩個數量的和與差,求這兩個數量各是多少,這類應用題叫和差問題。
【數量關系】 大數=(和+差)÷ 2 小數=(和-差)÷ 2
【解題思路和方法】 簡單的題目可以直接套用公式;復雜的題目變通後再用公式。
例1 甲乙兩班共有學生98人,甲班比乙班多6人,求兩班各有多少人?
例2 長方形的長和寬之和為18厘米,長比寬多2厘米,求長方形的面積。
例3 有甲乙丙三袋化肥,甲乙兩袋共重32千克,乙丙兩袋共重30千克,甲丙兩袋共重22千克,求三袋化肥各重多少千克。
例4 甲乙兩車原來共裝蘋果97筐,從甲車取下14筐放到乙車上,結果甲車比乙車還多3筐,兩車原來各裝蘋果多少筐?
4 和倍問題
【含義】 已知兩個數的和及大數是小數的幾倍(或小數是大數的幾分之幾),要求這兩個數各是多少,這類應用題叫做和倍問題。
【數量關系】 總和 ÷(幾倍+1)=較小的數
總和 - 較小的數 = 較大的數 較小的數 ×幾倍 = 較大的數
【解題思路和方法】 簡單的題目直接利用公式,復雜的題目變通後利用公式。
例1 果園里有杏樹和桃樹共248棵,桃樹的棵數是杏樹的3倍,求杏樹、桃樹各多少棵?
例2 東西兩個倉庫共存糧480噸,東庫存糧數是西庫存糧數的1.4倍,求兩庫各存糧多少噸?
例3 甲站原有車52輛,乙站原有車32輛,若每天從甲站開往乙站28輛,從乙站開往甲站24輛,幾天後乙站車輛數是甲站的2倍?
例4 甲乙丙三數之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三數各是多少?
5 差倍問題
【含義】 已知兩個數的差及大數是小數的幾倍(或小數是大數的幾分之幾),要求這兩個數各是多少,這類應用題叫做差倍問題。
【數量關系】 兩個數的差÷(幾倍-1)=較小的數
較小的數×幾倍=較大的數
【解題思路和方法】 簡單的題目直接利用公式,復雜的題目變通後利用公式。
例1 果園里桃樹的棵數是杏樹的3倍,而且桃樹比杏樹多124棵。求杏樹、桃樹各多少棵
② 數學解決問題的步驟
先分析已知條件!如果您認為這個回答對你有一些幫助, 請點擊回答內容右下方的「…」,再點擊「採納」。多謝了!
③ 數學解決問題的一般步驟
第一,從問題出發。解決數學問題,首先要從理解數學問題開始,沒有正確的理解就沒有正確的解答。所以說要從問題出發,分析問題的基本條件,基本要求,梳理基本脈絡,形成基本觀點。這就要求學生要特別注重語言的訓練,包括聽說讀寫等能力的訓練,以實現對題目的充分理解。
第二,從規律出發。數學問題都是有一定規律可遵循的,發現了規律可以事半功倍,發現不了規律只能一頭霧水。如何發現規律?首先要認識規律。數學的規律都是隱藏在各類問題之下的,一般很難發現。這就需要學生日常養成專心聽講的良好習慣,因為這些規律性認識都是經過老師認真備課,精心組織耐心講授出來的。課時要會做筆記,做好筆記,課下做好復習,認識,理解規律,最好能夠自主的去發現規律總結規律。
第三,從結果出發。所謂解決數學問題,在小學和中學階段就是指解決數學題目。數學題目有一個特點,就是一定有一個疑問,有一個答案。為了解答,我們需要認真分析問題,即所謂的有的放矢。從結果出發反推問題所在,從結果中發現數學沖突和矛盾,在結果中理清解題思路。
第四,從邏輯關系出發。解決數學問題的實質是邏輯關系的理順,學生需要從題目中找到各種數量,變數,並建立起這些量之間合理的邏輯關系和數學解釋。羅輯思維能力提升的方法很多,主要是專項邏輯訓練,數字規律認識,圖形類型歸納,數形結合問題等等。在具體的解題過程中,我們需要抓住變數,還要抓住不變數,通過這些量之間的變化關系得出題意中的邏輯關系,進而最終求的結果。
④ 數學的解決問題。
⑤ 解決數學問題的常見方法與思路有哪些
一、用字母表示數的思想
這是基本的數學思想之一 .在代數第一冊第二章「代數初步知識」中,主要體現了這種思想。
例如: 設甲數為a,乙數為b,用代數式表示:(1)甲乙兩數的和的2倍:2(a+b)(2)甲數的2倍與乙數的5倍差:2a-5b
二、數形結合的思想
「數形結合」是數學中最重要的,也是最基本的思想方法之一,是解決許多數學問題的有效思想。「數缺形時少直觀,形無數時難入微」是我國著名數學家華羅庚教授的名言,是對數形結合的作用進行了高度的概括.數學教材中下列內容體現了這種思想。
1、數軸上的點與實數的一一對應的關系。
2、平面上的點與有序實數對的一一對應的關系。
3、函數式與圖像之間的關系。
4、線段(角)的和、差、倍、分等問題,充分利用數來反映形。
5、解三角形,求角度和邊長,引入了三角函數,這是用代數方法解決何問題。
6、「圓」這一章中,圓的定義,點與圓、直線與圓、圓與圓的位置關系等都是化為數量關系來處理的。
7、統計初步中統計的第二種方法是繪制統計圖表,用這些圖表的反映數據的分情況,發展趨勢等。實際上就是通過「形」來反映數據扮布情況,發展趨勢等。實際上就是通過「形」來反映數的特徵,這是數形結合思想在實際中的直接應用。
三、轉化思想 (化歸思想)
在整個初中數學中,轉化(化歸)思想一直貫穿其中。轉化思想是把一個未知(待解決)的問題化為已解決的或易於解決的問題來解決,如化繁為簡、化難為易,化未知為已知,化高次為低次等,它是解決問題的一種最基本的思想,它是數學基本思想方法之一。下列內容體現了這種思想:
1、分式方程的求解是分式方程轉化為前面學過的一元二次方程求解,這里把待解決的新問題化為已解決的問題來求解,體現了轉化思想。
2、解直角三角形;把非直角三形問題化為直角三角形問題;把實際問題轉化為數學問題。
3、證明四邊形的內角和為360度.是把四邊形轉化成兩個三角形的.同時探索多邊形的內角和也是利用轉化的思想的.
四、分類思想
有理數的分類、整式的分類、實數的分類、角的分類,三角形的分類、四邊形的分類、點與圓的位置關系、直線與圓的位置關系,圓與圓的位置關系等都是通過分類討論的。
⑥ 數學的解決問題:
解:
(1)308/(4*7)=308/28=11(噸)
(2)176/11=16(天)
275/11=25(天)
374/11=34(天)
⑦ 數學中什麼是解決問題
就是數學化是指在解決實際問題時通過建立與學生已有知識的聯系從而解決問題的 策略 ,常運用於實際解決問題時,關鍵是在解決問題之前要讓學生明確運用什麼知識和方法來解決問題。
⑧ 怎麼學數學的解決問題
1.扎實打好數學基礎2.培養數學運算能力,養成良好的學習習慣。3.要學會一些必要的檢驗手段,培養自己的求異思維。4.嚴格遵守思維規律,養成嚴謹的思維習慣。
⑨ 怎樣快速的解決問題(數學那些解決問題)
1.要可動腦筋去想
2.要仔細認真地讀要聯想到學習的內容
3.做題一定一定不要著急盡自己最大的努力加油呀!
⑩ 數學解決問題
(1)(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)=0,回到出發點
(2)依次相加,結果依次是+5,+2,+12,+4,-2,+10,0,可見爬完第三步即+10的那一步後離出發點最遠
(3)獎勵的芝麻數2(5+3+10+8+6+12+10)=108粒