當前位置:首頁 » 語數英語 » 數學八上

數學八上

發布時間: 2021-08-02 10:36:32

數學八上

1
x²+(1/x²)
=(x+(1/x))²-2
x⁴+(1/x⁴)
=[x²+(1/x²)]²-2
(x+(1/x))²-(x-(1/x))²=4
2
x²+4x+1=0
x+(1/x)=-4
其他過程 同上題

㈡ 八上數學

不知道你學過基本三角函數運算沒有,不過這好像只能這樣算

由題易知
∠ABD=∠CBE=22.5°
則 BD=AB/cosABD=AB/cos22.5
CE=BC*sin∠CBE=根號2AB*sin22.5
BD/CE=(AB/cos22.5)/(根號2AB*sin22.5)
=1/cos22.5/根號2*sin22.5
=根號2/(2sin22.5cos22.5)
=根號2/sin45
=2

BD=2CE
得證

希望你能看得懂。 求採納 好累的

㈢ 八上數學

6786

㈣ 八上數學

因為是折疊
所以△AED全等BED
因為角A=30
所以BC=1/2AD(30度角定義)
又因為角CBE=DBE ,BE=BE
所以△cbe全等與△dbe
又因為角cbe=30度
所以ce=1/2be
所以ac=ce+be=10 ,即de+be=10 ,即3de=3ce=10
因此de=10/3

採納嘛 其實我也不容易的啊

㈤ 八上數學

AB⊥CD,理由如下:

㈥ 最新人教版初中數學八年級上冊都有哪些章節,內容分別是什麼

  • 新人教版 八年級 上學期
    • 第11章 全等三角形
      • 11.1 全等三角形
        • K9:全等圖形
        • KA:全等三角形的性質
      • 11.2 三角形全等的判定
        • KB:全等三角形的判定
        • KC:直角三角形全等的判定
        • KE:全等三角形的應用
        • KD:全等三角形的判定與性質
      • 11.3 角的平分線的性質
        • KF:角平分線的性質
    • 第12章 軸對稱
      • 12.1 軸對稱
        • KG:線段垂直平分線的性質
        • P1:生活中的軸對稱現象
        • P2:軸對稱的性質
        • P3:軸對稱圖形
        • P4:鏡面對稱
      • 12.2 作軸對稱圖形
        • P5:關於x軸、y軸對稱的點的坐標
        • P6:坐標與圖形變化-對稱
        • P7:作圖-軸對稱變換
      • 12.3 等腰三角形
        • KH:等腰三角形的性質
        • KI:等腰三角形的判定
        • KJ:等腰三角形的判定與性質
        • KK:等邊三角形的性質
        • KL:等邊三角形的判定
        • KM:等邊三角形的判定與性質
        • KO:含30度角的直角三角形
      • 12.4 專題訓練與提升
        • P9:剪紙問題
        • PA:軸對稱-最短路線問題
        • PB:翻折變換(折疊問題)
    • 第13章 實數
      • 13.1 平方根
        • 21:平方根
        • 22:算術平方根
        • 23:非負數的性質:算術平方根
      • 13.2 立方根
        • 24:立方根
        • 25:計算器—數的開方
      • 13.3 實數
        • 26:無理數
        • 27:實數
        • 29:實數與數軸
        • 28:實數的性質
        • 2A:實數大小比較
        • 2B:估算無理數的大小
        • 2C:實數的運算
    • 第14章 一次函數
      • 14.1 變數與函數
        • E1:常量與變數
        • E2:函數的概念
        • E3:函數關系式
        • E4:函數自變數的取值范圍
        • E5:函數值
        • E6:函數的圖象
        • E7:動點問題的函數圖象
        • E8:函數的表示方法
      • 14.2 一次函數
        • F1:一次函數的定義
        • F2:正比例函數的定義
        • F3:一次函數的圖象
        • F4:正比例函數的圖象
        • F5:一次函數的性質
        • F6:正比例函數的性質
        • F7:一次函數圖象與系數的關系
        • F8:一次函數圖象上點的坐標特徵
        • F9:一次函數圖象與幾何變換
        • FA:待定系數法求一次函數解析式
        • FB:待定系數法求正比例函數解析式
      • 14.3 用函數觀點看方程(組)與不等式
        • FC:一次函數與一元一次方程
        • FD:一次函數與一元一次不等式
        • FE:一次函數與二元一次方程(組)
        • FF:兩條直線相交或平行問題
      • 14.4 課題學習 選擇方案
        • FG:根據實際問題列一次函數關系式
        • FH:一次函數的應用
        • FI:一次函數綜合題
    • 第15章 整式的乘除與因式分解

㈦ 人教版八年級上冊數學內容

最低0.27元/天開通網路文庫會員,可在文庫查看完整內容>
原發布者:ycfx2011
八年級數學講義第11章三角形一、三角形的概念1.三角形的定義 由不在同一直線上的三條線段首尾順次連結所組成的圖形叫做三角形 要點:①三條線段;②不在同一直線上;③首尾順次相接. 2.三角形的表示 △ABC中,邊:AB,BC,AC或c,a,b.頂點:A,B,C.內角:∠A,∠B,∠C.. 二、三角形的邊1.三角形的三邊關系:(證明所有幾何不等式的唯一方法)(1)三角形任意兩邊之和大於第三邊:b+c>a(2)三角形任意兩邊之差小於第三邊:b-ca時,就可構成三角形.1.2確定三角形第三邊的取值范圍:兩邊之差<第三邊<兩邊之和.2.三角形的主要線段2.1三角形的高線從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足之間的線段叫做三角形的高線.①銳角三角形三條高線交於三角形內部一點;②直角三角形三條高線交於直角頂點;③鈍角三角形三條高線所在直線交於三角形外部一點2.2三角形的角平分線三角形一個角的平分線與它的對邊相交,這個角的頂點與交點之間的線段叫做三角形的角平分線。三條角平分線交於三角形內部一點.2.3三角形的中線連結三角形一個頂點與它對邊中點的線段叫做三角形的中線。三角形的三條中線交於三角形內部一點.三、三角形的角1三角形內角和定理結論1:△ABC中:∠A+∠B+∠C=180° ※三角形中至少有2個銳角結論2:在直角三角形中,兩個銳角互余.

㈧ 新人教版八年級上冊數學知識點總結

第十一章 全等三角形

1.
全等三角形的性質:全等三角形對應邊相等、對應角相等。

2.
全等三角形的判定:三邊相等(SSS)、兩邊和它們的夾角相等(SAS)、兩角和它們的夾邊(ASA)、兩角和其中一角的對邊對應相等(AAS)、斜邊和直角邊相等的兩直角三角形(HL)。

3.
角平分線的性質:角平分線平分這個角,角平分線上的點到角兩邊的距離相等

4.
角平分線推論:角的內部到角的兩邊的距離相等的點在叫的平分線上。

5.
證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:①、確定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關系),②、回顧三角形判定,搞清我們還需要什麼,③、正確地書寫證明格式(順序和對應關系從已知推導出要證明的問題).

6.
第十二章 軸對稱

1.如果一個圖形沿某條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。

2.軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。

3.角平分線上的點到角兩邊距離相等。

4.線段垂直平分線上的任意一點到線段兩個端點的距離相等。

5.與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。

6.軸對稱圖形上對應線段相等、對應角相等。

7.畫一圖形關於某條直線的軸對稱圖形的步驟:找到關鍵點,畫出關鍵點的對應點,按照原圖順序依次連接各點。

8.點(x,y)關於x軸對稱的點的坐標為(x,-y)

點(x,y)關於y軸對稱的點的坐標為(-x,y)

點(x,y)關於原點軸對稱的點的坐標為(-x,-y)

9.等腰三角形的性質:等腰三角形的兩個底角相等,(等邊對等角)

等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為「三線合一」。

10.等腰三角形的判定:等角對等邊。

11.等邊三角形的三個內角相等,等於60°,

12.等邊三角形的判定: 三個角都相等的三角形是等腰三角形。

有一個角是60°的等腰三角形是等邊三角形

有兩個角是60°的三角形是等邊三角形。

13.直角三角形中,30°角所對的直角邊等於斜邊的一半。

14.直角三角形斜邊上的中線等於斜邊的一半

第十三章 實數

※算術平方根:一般地,如果一個正數x的平方等於a,即x2=a,那麼正數x叫做a的算術平方根,記作 。0的算術平方根為0;從定義可知,只有當a≥0時,a才有算術平方根。

※平方根:一般地,如果一個數x的平方根等於a,即x2=a,那麼數x就叫做a的平方根。

※正數有兩個平方根(一正一負)它們互為相反數;0隻有一個平方根,就是它本身;負數沒有平方根。

※正數的立方根是正數;0的立方根是0;負數的立方根是負數。

數a的相反數是-a,一個正實數的絕對值是它本身,一個負數的絕對值是它的相反數,0的絕對值是0

第十四章 一次函數

1.畫函數圖象的一般步驟:一、列表(一次函數只用列出兩個點即可,其他函數一般需要列出5個以上的點,所列點是自變數與其對應的函數值),二、描點(在直角坐標系中,以自變數的值為橫坐標,相應函數的值為縱坐標,描出表格中的個點,一般畫一次函數只用兩點),三、連線(依次用平滑曲線連接各點)。

2.根據題意寫出函數解析式:關鍵找到函數與自變數之間的等量關系,列出等式,既函數解析式。

3.若兩個變數x,y間的關系式可以表示成y=kx+b(k≠0)的形式,則稱y是x的一次函數(x為自變數,y為因變數)。特別地,當b=0時,稱y是x的正比例函數。

4.正比列函數一般式:y=kx(k≠0),其圖象是經過原點(0,0)的一條直線。

5.正比列函數y=kx(k≠0)的圖象是一條經過原點的直線,當k>0時,直線y=kx經過第一、三象限,y隨x的增大而增大,當k<0時,直線y=kx經過第二、四象限,y隨x的增大而減小,在一次函數y=kx+b中: 當k>0時,y隨x的增大而增大; 當k<0時,y隨x的增大而減小。

6.已知兩點坐標求函數解析式(待定系數法求函數解析式):

把兩點帶入函數一般式列出方程組

求出待定系數

把待定系數值再帶入函數一般式,得到函數解析式

7.會從函數圖象上找到一元一次方程的解(既與x軸的交點坐標橫坐標值),一元一次不等式的解集,二元一次方程組的解(既兩函數直線交點坐標值)

第十五章 整式的乘除與因式分解

1.同底數冪的乘法

※同底數冪的乘法法則: (m,n都是正數)是冪的運算中最基本的法則,在應用法則運算時,要注意以下幾點:

①法則使用的前提條件是:冪的底數相同而且是相乘時,底數a可以是一個具體的數字式字母,也可以是一個單項或多項式;

②指數是1時,不要誤以為沒有指數;

③不要將同底數冪的乘法與整式的加法相混淆,對乘法,只要底數相同指數就可以相加;而對於加法,不僅底數相同,還要求指數相同才能相加;

④當三個或三個以上同底數冪相乘時,法則可推廣為 (其中m、n、p均為正數);

⑤公式還可以逆用: (m、n均為正整數)

2.冪的乘方與積的乘方

※1. 冪的乘方法則: (m,n都是正數)是冪的乘法法則為基礎推導出來的,但兩者不能混淆.

※2. .

※3. 底數有負號時,運算時要注意,底數是a與(-a)時不是同底,但可以利用乘方法則化成同底,

如將(-a)3化成-a3

※4.底數有時形式不同,但可以化成相同。

※5.要注意區別(ab)n與(a+b)n意義是不同的,不要誤以為(a+b)n=an+bn(a、b均不為零)。

※6.積的乘方法則:積的乘方,等於把積每一個因式分別乘方,再把所得的冪相乘,即 (n為正整數)。

※7.冪的乘方與積乘方法則均可逆向運用。

3. 整式的乘法

※(1). 單項式乘法法則:單項式相乘,把它們的系數、相同字母分別相乘,對於只在一個單項式里含有的字母,連同它的指數作為積的一個因式。

單項式乘法法則在運用時要注意以下幾點:

①積的系數等於各因式系數積,先確定符號,再計算絕對值。這時容易出現的錯誤的是,將系數相乘與指數相加混淆;

②相同字母相乘,運用同底數的乘法法則;

③只在一個單項式里含有的字母,要連同它的指數作為積的一個因式;

④單項式乘法法則對於三個以上的單項式相乘同樣適用;

⑤單項式乘以單項式,結果仍是一個單項式。

※(2).單項式與多項式相乘

單項式乘以多項式,是通過乘法對加法的分配律,把它轉化為單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。

單項式與多項式相乘時要注意以下幾點:

①單項式與多項式相乘,積是一個多項式,其項數與多項式的項數相同;

②運算時要注意積的符號,多項式的每一項都包括它前面的符號;

③在混合運算時,要注意運算順序。

※(3).多項式與多項式相乘

多項式與多項式相乘,先用一個多項式中的每一項乘以另一個多項式的每一項,再把所得的積相加。

多項式與多項式相乘時要注意以下幾點:

①多項式與多項式相乘要防止漏項,檢查的方法是:在沒有合並同類項之前,積的項數應等於原兩個多項式項數的積;

②多項式相乘的結果應注意合並同類項;

③對含有同一個字母的一次項系數是1的兩個一次二項式相乘 ,其二次項系數為1,一次項系數等於兩個因式中常數項的和,常數項是兩個因式中常數項的積。對於一次項系數不為1的兩個一次二項式(mx+a)和(nx+b)相乘可以得

4.平方差公式

¤1.平方差公式:兩數和與這兩數差的積,等於它們的平方差,

※即 。

¤其結構特徵是:

①公式左邊是兩個二項式相乘,兩個二項式中第一項相同,第二項互為相反數;

②公式右邊是兩項的平方差,即相同項的平方與相反項的平方之差。

5.完全平方公式

¤1. 完全平方公式:兩數和(或差)的平方,等於它們的平方和,加上(或減去)它們的積的2倍,

¤即 ;

¤口決:首平方,尾平方,2倍乘積在中央;

¤2.結構特徵:

①公式左邊是二項式的完全平方;

②公式右邊共有三項,是二項式中二項的平方和,再加上或減去這兩項乘積的2倍。

¤3.在運用完全平方公式時,要注意公式右邊中間項的符號,以及避免出現 這樣的錯誤。

添括弧法則:添正不變號,添負各項變號,去括弧法則同樣

6. 同底數冪的除法

※1. 同底數冪的除法法則:同底數冪相除,底數不變,指數相減,即 (a≠0,m、n都是正數,且m>n).

※2. 在應用時需要注意以下幾點:

①法則使用的前提條件是「同底數冪相除」而且0不能做除數,所以法則中a≠0.

②任何不等於0的數的0次冪等於1,即 ,如 ,(-2.50=1),則00無意義.

③任何不等於0的數的-p次冪(p是正整數),等於這個數的p的次冪的倒數,即 ( a≠0,p是正整數), 而0-1,0-3都是無意義的;當a>0時,a-p的值一定是正的; 當a<0時,a-p的值可能是正也可能是負的,如 ,

④運算要注意運算順序.

7.整式的除法

¤1.單項式除法單項式

單項式相除,把系數、同底數冪分別相除,作為商的因式,對於只在被除式里含有的字母,則連同它的指數作為商的一個因式;

¤2.多項式除以單項式

多項式除以單項式,先把這個多項式的每一項除以單項式,再把所得的商相加,其特點是把多項式除以單項式轉化成單項式除以單項式,所得商的項數與原多項式的項數相同,另外還要特別注意符號。

8. 分解因式

※1. 把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式.

※2. 因式分解與整式乘法是互逆關系.

因式分解與整式乘法的區別和聯系:

(1)整式乘法是把幾個整式相乘,化為一個多項式;

(2)因式分解是把一個多項式化為幾個因式相乘.

分解因式的一般方法:

1. 提公共因式法

※1. 如果一個多項式的各項含有公因式,那麼就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式.這種分解因式的方法叫做提公因式法.

如:

※2. 概念內涵:

(1)因式分解的最後結果應當是「積」;

(2)公因式可能是單項式,也可能是多項式;

(3)提公因式法的理論依據是乘法對加法的分配律,即:

※3. 易錯點點評:

(1)注意項的符號與冪指數是否搞錯;

(2)公因式是否提「干凈」;

(3)多項式中某一項恰為公因式,提出後,括弧中這一項為+1,不漏掉.

2. 運用公式法

※1. 如果把乘法公式反過來,就可以用來把某些多項式分解因式.這種分解因式的方法叫做運用公式法.

※2. 主要公式:

(1)平方差公式:

(2)完全平方公式:

¤3. 易錯點點評:

因式分解要分解到底.如 就沒有分解到底.

※4. 運用公式法:

(1)平方差公式:

①應是二項式或視作二項式的多項式;

②二項式的每項(不含符號)都是一個單項式(或多項式)的平方;

③二項是異號.

(2)完全平方公式:

①應是三項式;

②其中兩項同號,且各為一整式的平方;

③還有一項可正負,且它是前兩項冪的底數乘積的2倍.

3. 因式分解的思路與解題步驟:

(1)先看各項有沒有公因式,若有,則先提取公因式;

(2)再看能否使用公式法;

(3)用分組分解法,即通過分組後提取各組公因式或運用公式法來達到分解的目的;

(4)因式分解的最後結果必須是幾個整式的乘積,否則不是因式分解;

(5)因式分解的結果必須進行到每個因式在有理數范圍內不能再分解為止.

4. 分組分解法:

※1. 分組分解法:利用分組來分解因式的方法叫做分組分解法.

如:

※2. 概念內涵:

分組分解法的關鍵是如何分組,要嘗試通過分組後是否有公因式可提,並且可繼續分解,分組後是否可利用公式法繼續分解因式.

※3. 注意: 分組時要注意符號的變化.

5. 十字相乘法:

※1.對於二次三項式 ,將a和c分別分解成兩個因數的乘積, , , 且滿足 ,往往寫成 的形式,將二次三項式進行分解.

如:

※2. 二次三項式 的分解:

※3. 規律內涵:

(1)理解:把 分解因式時,如果常數項q是正數,那麼把它分解成兩個同號因數,它們的符號與一次項系數p的符號相同.

(2)如果常數項q是負數,那麼把它分解成兩個異號因數,其中絕對值較大的因數與一次項系數p的符號相同,對於分解的兩個因數,還要看它們的和是不是等於一次項系數p.

※4. 易錯點點評:

(1)十字相乘法在對系數分解時易出錯;

(2)分解的結果與原式不等,這時通常採用多項式乘法還原後檢驗分解的是否正確.
第十一章 全等三角形

1.
全等三角形的性質:全等三角形對應邊相等、對應角相等。

2.
全等三角形的判定:三邊相等(SSS)、兩邊和它們的夾角相等(SAS)、兩角和它們的夾邊(ASA)、兩角和其中一角的對邊對應相等(AAS)、斜邊和直角邊相等的兩直角三角形(HL)。

3.
角平分線的性質:角平分線平分這個角,角平分線上的點到角兩邊的距離相等

4.
角平分線推論:角的內部到角的兩邊的距離相等的點在叫的平分線上。

5.
證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:①、確定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關系),②、回顧三角形判定,搞清我們還需要什麼,③、正確地書寫證明格式(順序和對應關系從已知推導出要證明的問題).

6.
第十二章 軸對稱

1.如果一個圖形沿某條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。

2.軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。

3.角平分線上的點到角兩邊距離相等。

4.線段垂直平分線上的任意一點到線段兩個端點的距離相等。

5.與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。

6.軸對稱圖形上對應線段相等、對應角相等。

7.畫一圖形關於某條直線的軸對稱圖形的步驟:找到關鍵點,畫出關鍵點的對應點,按照原圖順序依次連接各點。

8.點(x,y)關於x軸對稱的點的坐標為(x,-y)

點(x,y)關於y軸對稱的點的坐標為(-x,y)

點(x,y)關於原點軸對稱的點的坐標為(-x,-y)

9.等腰三角形的性質:等腰三角形的兩個底角相等,(等邊對等角)

等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為「三線合一」。

10.等腰三角形的判定:等角對等邊。

11.等邊三角形的三個內角相等,等於60°,

12.等邊三角形的判定: 三個角都相等的三角形是等腰三角形。

有一個角是60°的等腰三角形是等邊三角形

有兩個角是60°的三角形是等邊三角形。

13.直角三角形中,30°角所對的直角邊等於斜邊的一半。

14.直角三角形斜邊上的中線等於斜邊的一半

第十三章 實數

※算術平方根:一般地,如果一個正數x的平方等於a,即x2=a,那麼正數x叫做a的算術平方根,記作 。0的算術平方根為0;從定義可知,只有當a≥0時,a才有算術平方根。

※平方根:一般地,如果一個數x的平方根等於a,即x2=a,那麼數x就叫做a的平方根。

※正數有兩個平方根(一正一負)它們互為相反數;0隻有一個平方根,就是它本身;負數沒有平方根。

※正數的立方根是正數;0的立方根是0;負數的立方根是負數。

數a的相反數是-a,一個正實數的絕對值是它本身,一個負數的絕對值是它的相反數,0的絕對值是0

第十四章 一次函數

1.畫函數圖象的一般步驟:一、列表(一次函數只用列出兩個點即可,其他函數一般需要列出5個以上的點,所列點是自變數與其對應的函數值),二、描點(在直角坐標系中,以自變數的值為橫坐標,相應函數的值為縱坐標,描出表格中的個點,一般畫一次函數只用兩點),三、連線(依次用平滑曲線連接各點)。

2.根據題意寫出函數解析式:關鍵找到函數與自變數之間的等量關系,列出等式,既函數解析式。

3.若兩個變數x,y間的關系式可以表示成y=kx+b(k≠0)的形式,則稱y是x的一次函數(x為自變數,y為因變數)。特別地,當b=0時,稱y是x的正比例函數。

4.正比列函數一般式:y=kx(k≠0),其圖象是經過原點(0,0)的一條直線。

5.正比列函數y=kx(k≠0)的圖象是一條經過原點的直線,當k>0時,直線y=kx經過第一、三象限,y隨x的增大而增大,當k<0時,直線y=kx經過第二、四象限,y隨x的增大而減小,在一次函數y=kx+b中: 當k>0時,y隨x的增大而增大; 當k<0時,y隨x的增大而減小。

6.已知兩點坐標求函數解析式(待定系數法求函數解析式):

把兩點帶入函數一般式列出方程組

求出待定系數

把待定系數值再帶入函數一般式,得到函數解析式

7.會從函數圖象上找到一元一次方程的解(既與x軸的交點坐標橫坐標值),一元一次不等式的解集,二元一次方程組的解(既兩函數直線交點坐標值)

第十五章 整式的乘除與因式分解

1.同底數冪的乘法

※同底數冪的乘法法則: (m,n都是正數)是冪的運算中最基本的法則,在應用法則運算時,要注意以下幾點:

①法則使用的前提條件是:冪的底數相同而且是相乘時,底數a可以是一個具體的數字式字母,也可以是一個單項或多項式;

②指數是1時,不要誤以為沒有指數;

③不要將同底數冪的乘法與整式的加法相混淆,對乘法,只要底數相同指數就可以相加;而對於加法,不僅底數相同,還要求指數相同才能相加;

④當三個或三個以上同底數冪相乘時,法則可推廣為 (其中m、n、p均為正數);

⑤公式還可以逆用: (m、n均為正整數)

2.冪的乘方與積的乘方

※1. 冪的乘方法則: (m,n都是正數)是冪的乘法法則為基礎推導出來的,但兩者不能混淆.

※2. .

※3. 底數有負號時,運算時要注意,底數是a與(-a)時不是同底,但可以利用乘方法則化成同底,

如將(-a)3化成-a3

※4.底數有時形式不同,但可以化成相同。

※5.要注意區別(ab)n與(a+b)n意義是不同的,不要誤以為(a+b)n=an+bn(a、b均不為零)。

※6.積的乘方法則:積的乘方,等於把積每一個因式分別乘方,再把所得的冪相乘,即 (n為正整數)。

※7.冪的乘方與積乘方法則均可逆向運用。

3. 整式的乘法

※(1). 單項式乘法法則:單項式相乘,把它們的系數、相同字母分別相乘,對於只在一個單項式里含有的字母,連同它的指數作為積的一個因式。

單項式乘法法則在運用時要注意以下幾點:

①積的系數等於各因式系數積,先確定符號,再計算絕對值。這時容易出現的錯誤的是,將系數相乘與指數相加混淆;

②相同字母相乘,運用同底數的乘法法則;

③只在一個單項式里含有的字母,要連同它的指數作為積的一個因式;

④單項式乘法法則對於三個以上的單項式相乘同樣適用;

⑤單項式乘以單項式,結果仍是一個單項式。

※(2).單項式與多項式相乘

單項式乘以多項式,是通過乘法對加法的分配律,把它轉化為單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。

單項式與多項式相乘時要注意以下幾點:

①單項式與多項式相乘,積是一個多項式,其項數與多項式的項數相同;

②運算時要注意積的符號,多項式的每一項都包括它前面的符號;

③在混合運算時,要注意運算順序。

※(3).多項式與多項式相乘

多項式與多項式相乘,先用一個多項式中的每一項乘以另一個多項式的每一項,再把所得的積相加。

多項式與多項式相乘時要注意以下幾點:

①多項式與多項式相乘要防止漏項,檢查的方法是:在沒有合並同類項之前,積的項數應等於原兩個多項式項數的積;

②多項式相乘的結果應注意合並同類項;

③對含有同一個字母的一次項系數是1的兩個一次二項式相乘 ,其二次項系數為1,一次項系數等於兩個因式中常數項的和,常數項是兩個因式中常數項的積。對於一次項系數不為1的兩個一次二項式(mx+a)和(nx+b)相乘可以得

4.平方差公式

¤1.平方差公式:兩數和與這兩數差的積,等於它們的平方差,

※即 。

¤其結構特徵是:

①公式左邊是兩個二項式相乘,兩個二項式中第一項相同,第二項互為相反數;

②公式右邊是兩項的平方差,即相同項的平方與相反項的平方之差。

5.完全平方公式

¤1. 完全平方公式:兩數和(或差)的平方,等於它們的平方和,加上(或減去)它們的積的2倍,

¤即 ;

¤口決:首平方,尾平方,2倍乘積在中央;

¤2.結構特徵:

①公式左邊是二項式的完全平方;

②公式右邊共有三項,是二項式中二項的平方和,再加上或減去這兩項乘積的2倍。

¤3.在運用完全平方公式時,要注意公式右邊中間項的符號,以及避免出現 這樣的錯誤。

添括弧法則:添正不變號,添負各項變號,去括弧法則同樣

6. 同底數冪的除法

※1. 同底數冪的除法法則:同底數冪相除,底數不變,指數相減,即 (a≠0,m、n都是正數,且m>n).

※2. 在應用時需要注意以下幾點:

①法則使用的前提條件是「同底數冪相除」而且0不能做除數,所以法則中a≠0.

②任何不等於0的數的0次冪等於1,即 ,如 ,(-2.50=1),則00無意義.

③任何不等於0的數的-p次冪(p是正整數),等於這個數的p的次冪的倒數,即 ( a≠0,p是正整數), 而0-1,0-3都是無意義的;當a>0時,a-p的值一定是正的; 當a<0時,a-p的值可能是正也可能是負的,如 ,

④運算要注意運算順序.

7.整式的除法

¤1.單項式除法單項式

單項式相除,把系數、同底數冪分別相除,作為商的因式,對於只在被除式里含有的字母,則連同它的指數作為商的一個因式;

¤2.多項式除以單項式

多項式除以單項式,先把這個多項式的每一項除以單項式,再把所得的商相加,其特點是把多項式除以單項式轉化成單項式除以單項式,所得商的項數與原多項式的項數相同,另外還要特別注意符號。

8. 分解因式

※1. 把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式.

※2. 因式分解與整式乘法是互逆關系.

因式分解與整式乘法的區別和聯系:

(1)整式乘法是把幾個整式相乘,化為一個多項式;

(2)因式分解是把一個多項式化為幾個因式相乘.

分解因式的一般方法:

1. 提公共因式法

※1. 如果一個多項式的各項含有公因式,那麼就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式.這種分解因式的方法叫做提公因式法.

如:

※2. 概念內涵:

(1)因式分解的最後結果應當是「積」;

(2)公因式可能是單項式,也可能是多項式;

(3)提公因式法的理論依據是乘法對加法的分配律,即:

※3. 易錯點點評:

(1)注意項的符號與冪指數是否搞錯;

(2)公因式是否提「干凈」;

(3)多項式中某一項恰為公因式,提出後,括弧中這一項為+1,不漏掉.

2. 運用公式法

※1. 如果把乘法公式反過來,就可以用來把某些多項式分解因式.這種分解因式的方法叫做運用公式法.

※2. 主要公式:

(1)平方差公式:

(2)完全平方公式:

¤3. 易錯點點評:

因式分解要分解到底.如 就沒有分解到底.

※4. 運用公式法:

(1)平方差公式:

①應是二項式或視作二項式的多項式;

②二項式的每項(不含符號)都是一個單項式(或多項式)的平方;

③二項是異號.

(2)完全平方公式:

①應是三項式;

②其中兩項同號,且各為一整式的平方;

③還有一項可正負,且它是前兩項冪的底數乘積的2倍.

3. 因式分解的思路與解題步驟:

(1)先看各項有沒有公因式,若有,則先提取公因式;

(2)再看能否使用公式法;

(3)用分組分解法,即通過分組後提取各組公因式或運用公式法來達到分解的目的;

(4)因式分解的最後結果必須是幾個整式的乘積,否則不是因式分解;

(5)因式分解的結果必須進行到每個因式在有理數范圍內不能再分解為止.

4. 分組分解法:

※1. 分組分解法:利用分組來分解因式的方法叫做分組分解法.

如:

※2. 概念內涵:

分組分解法的關鍵是如何分組,要嘗試通過分組後是否有公因式可提,並且可繼續分解,分組後是否可利用公式法繼續分解因式.

㈨ 數學八年級上冊知識點,要總結歸納

八年級上冊數學復習提綱
1 全等三角形的對應邊、對應角相等 ¬
2邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等 ¬
3 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等 ¬
4 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等 ¬
5 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等 ¬
6 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等 ¬
7 定理1 在角的平分線上的點到這個角的兩邊的距離相等 ¬
8 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上 ¬
9 角的平分線是到角的兩邊距離相等的所有點的集合 ¬
10 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角) ¬
21 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊 ¬
22 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合 ¬
23 推論3 等邊三角形的各角都相等,並且每一個角都等於60° ¬
24 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊) ¬
25 推論1 三個角都相等的三角形是等邊三角形 ¬
26 推論 2 有一個角等於60°的等腰三角形是等邊三角形 ¬
27 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半 ¬
28 直角三角形斜邊上的中線等於斜邊上的一半 ¬
29 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 ¬
30 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上 ¬
31 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合 ¬
32 定理1 關於某條直線對稱的兩個圖形是全等形 ¬
33 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線 ¬
34定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上 ¬
35逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱 ¬
36勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2 ¬
37勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形 ¬
38定理 四邊形的內角和等於360° ¬
39四邊形的外角和等於360° ¬
40多邊形內角和定理 n邊形的內角的和等於(n-2)×180° ¬
41推論 任意多邊的外角和等於360° ¬
42平行四邊形性質定理1 平行四邊形的對角相等 ¬
43平行四邊形性質定理2 平行四邊形的對邊相等 ¬
44推論 夾在兩條平行線間的平行線段相等 ¬
45平行四邊形性質定理3 平行四邊形的對角線互相平分 ¬
46平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形 ¬
47平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形 ¬
48平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形 ¬
49平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形 ¬
50矩形性質定理1 矩形的四個角都是直角 ¬
51矩形性質定理2 矩形的對角線相等 ¬
52矩形判定定理1 有三個角是直角的四邊形是矩形 ¬
53矩形判定定理2 對角線相等的平行四邊形是矩形 ¬
54菱形性質定理1 菱形的四條邊都相等 ¬
55菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角 ¬
56菱形面積=對角線乘積的一半,即S=(a×b)÷2 ¬
57菱形判定定理1 四邊都相等的四邊形是菱形 ¬
58菱形判定定理2 對角線互相垂直的平行四邊形是菱形 ¬
59正方形性質定理1 正方形的四個角都是直角,四條邊都相等 ¬
60正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角 ¬
61定理1 關於中心對稱的兩個圖形是全等的 ¬
62定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分 ¬
63逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一 ¬
點平分,那麼這兩個圖形關於這一點對稱 ¬
64等腰梯形性質定理 等腰梯形在同一底上的兩個角相等 ¬
65等腰梯形的兩條對角線相等 ¬
66等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形 ¬
67對角線相等的梯形是等腰梯形 ¬
68平行線等分線段定理 如果一組平行線在一條直線上截得的線段 ¬
相等,那麼在其他直線上截得的線段也相等 ¬
69 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰 ¬
70 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第 ¬
三邊 ¬
71 三角形中位線定理 三角形的中位線平行於第三邊,並且等於它 ¬
的一半 ¬
72 梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的 ¬
一半 L=(a+b)÷2 S=L×h ¬
73 (1)比例的基本性質 如果a:b=c:d,那麼ad=bc ¬
如果ad=bc,那麼a:b=c:d ¬
74 (2)合比性質 如果a/b=c/d,那麼(a±b)/b=(c±d)/d ¬
75 (3)等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼 ¬
(a+c+…+m)/(b+d+…+n)=a/b ¬
76 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應 ¬
線段成比例 ¬
77 推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例 ¬
78 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊 ¬
79 平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例 ¬
80 定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似 ¬
81 相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA) ¬
82 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似 ¬
83 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS) ¬
84 判定定理3 三邊對應成比例,兩三角形相似(SSS) ¬

熱點內容
軟體工程師英語 發布:2025-07-22 01:45:58 瀏覽:620
你的班主任老師 發布:2025-07-22 01:04:08 瀏覽:429
教師資格證科目考試時間 發布:2025-07-22 00:34:56 瀏覽:366
山東正高級教師 發布:2025-07-21 22:53:01 瀏覽:575
哪裡賣小雞 發布:2025-07-21 12:58:31 瀏覽:722
日本教師美女 發布:2025-07-21 12:00:49 瀏覽:961
語文添加符號 發布:2025-07-21 09:48:00 瀏覽:15
班主任德育故事演講稿 發布:2025-07-21 08:55:41 瀏覽:467
師德專題報告 發布:2025-07-21 08:38:32 瀏覽:274
師德師風專業發展總結 發布:2025-07-21 06:32:21 瀏覽:357