數學公式解析
① 求一個數學公式講解
a0=100
an=(a(n-1)+30)*1.1=1.1a(n-1)+33=1.1a(n-1)+33(n-(n-1))
令bn=an+330
則有b0=a0+330=430
bn=1.1b(n-1)=b0*1.1ⁿ=430*1.1ⁿ
an=430*1.1ⁿ-330
② 數學公式里exp是什麼意思,如能把兩個式子解釋說明一下,重謝!
高等數學里的以歐拉數e為底的指數函數。例:EXP{F(X)}是e的F(X)次方。exp(2)就是e的平方。
exp,高等數學里以自然常數e為底的指數函數。指數函數是數學中重要的函數。應用到值e上的這個函數寫為exp(x)。還可以等價的寫為ex,這里的e是數學常數,就是自然對數的底數,近似等於 2.718281828,還稱為歐拉數 。
作為實數變數x的函數,exp(x)的圖像總是正的(在x軸之上)並遞增(從左向右看)。它永不觸及x軸,盡管它可以無限程度地靠近x軸(所以,x軸是這個圖像的水平漸近線。它的反函數是自然對數ln(x)。
(2)數學公式解析擴展閱讀:
基本性質:
1、指數函數的定義域為R,這里的前提是a大於0且不等於1。對於a不大於0的情況,則必然使得函數的定義域不連續,因此我們不予考慮,同時a等於0函數無意義一般也不考慮。
2、指數函數的值域為(0, +∞)。
3、函數圖形都是上凹的。
4、可以看到一個顯然的規律,就是當a從0趨向於無窮大的過程中(不等於0)函數的曲線從分別接近於Y軸與X軸的正半軸的單調遞減函數的位置,趨向分別接近於Y軸的正半軸與X軸的負半軸的單調遞增函數的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。
5、函數總是在某一個方向上無限趨向於X軸,並且永不相交。
③ 數學公式,有哪些請出例
不愛敲鍵盤 | 2008-10-26 16:31:02
有0人認為這個回答不錯 | 有0人認為這個回答沒有幫助
數學的解題方法是隨著對數學對象的研究的深入而發展起來的。六年級的同學們很快就要小學畢業,中學的大門已經向我們敞開。為了能進一步學好數學,有必要掌握初中數學的特點尤其是解題方法。 下面介紹的解題方法,都是初中數學中最常用的,有些方法也是中學教學大綱要求掌握的。同樣這些方法也能給你們現在的學習有些幫助。請同學們把它作為資料好好保存,當然,以後全部學會弄懂,保存大腦當中再好不過了。
1、配方法
所謂配方,就是把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恆等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。
2、因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。
3、換元法
換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。
4、判別式法與韋達定理
一元二次方程ax2+bx+c=0(a、b、c屬於R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。
韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。
5、待定系數法
在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而後根據題設條件列出關於待定系數的等式,最後解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的方法之一。
6、構造法
在解題時,我們常常會採用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利於問題的解決。
7、反證法
反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然後,從這個假設出發,經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。
反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行於/不平行於;垂直於/不垂直於;等於/不等於;大(小)於/不大(小)於;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;唯一/至少有兩個。
歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發,否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。
8、面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計算有關的性質定理,不僅可用於計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯系起來,通過運算達到求證的結果。所以用面積法來解幾何題,幾何元素之間關系變成數量之間的關系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。
9、幾何變換法
在數學問題的研究中,常常運用變換法,把復雜性問題轉化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數學中所涉及的變換主要是初等變換。有一些看來很難甚至於無法下手的習題,可以藉助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數學教學中。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利於對圖形本質的認識。
幾何變換包括:(1)平移;(2)旋轉;(3)對稱。
10、客觀性題的解題方法
選擇題是給出條件和結論,要求根據一定的關系找出正確答案的一類題型。選擇題的題型構思精巧,形式靈活,可以比較全面地考察學生的基礎知識和基本技能,從而增大了試卷的容量和知識覆蓋面。
填空題是標准化考試的重要題型之一,它同選擇題一樣具有考查目標明確,知識復蓋面廣,評卷准確迅速,有利於考查學生的分析判斷能力和計算能力等優點,不同的是填空題未給出答案,可以防止學生猜估答案的情況。
要想迅速、正確地解選擇題、填空題,除了具有準確的計算、嚴密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實例介紹常用方法。
(1)直接推演法:直接從命題給出的條件出發,運用概念、公式、定理等進行推理或運算,得出結論,選擇正確答案,這就是傳統的解題方法,這種解法叫直接推演法。
(2)驗證法:由題設找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當遇到定量命題時,常用此法。
(3)特殊元素法:用合適的特殊元素(如數或圖形)代入題設條件或結論中去,從而獲得解答。這種方法叫特殊元素法。
(4)排除、篩選法:對於正確答案有且只有一個的選擇題,根據數學知識或推理、演算,把不正確的結論排除,餘下的結論再經篩選,從而作出正確的結論的解法叫排除、篩選法。
(5)圖解法:藉助於符合題設條件的圖形或圖象的性質、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。
(6)分析法:直接通過對選擇題的條件和結論,作詳盡的分析、歸納和判斷,從而選出正確的結果,稱為分析法。
④ 用數學公式解釋人生
1、人生的痛苦在於追求錯誤的東西。所謂追求錯誤的東西,就是你在無限趨近於它的時候,才猛然發現,你和它是不連續的。
2、人和人就像數軸上的有理數點,彼此可以靠得很近很近,但你們之間始終存在隔閡。
3、人是不孤獨的,正如數軸上有無限多個有理點,在你的任意一個小鄰域內都可以找到你的夥伴。但人又是寂寞的,正如把整個數軸的無理點標記上以後,就一個人都見不到了。
4、人和命運的關系就像F(x)=x與G(x)=x^2的關系。一開始,你以為命運是你的無窮小量。隨著年齡的增長,你才發現你用盡全力也趕不上命運的步伐。這時候,若不是以一種卑微的姿態走下去,便是結束自己的生命。
5、零點存在定理告訴我們,哪怕你和他站在對立面,只要你們的心還是連續的,你們就能找到你們的平衡點。
6、人生是一個級數,理想是你渴望收斂到的那個值。不必太在意,因為我們要認識到有限的人生刻畫不出無窮的級數,收斂也只是一個夢想罷了。不如腳踏實地,經營好每一天吧。
7、有限覆蓋定理告訴我們,一件事情如果是可以實現的,那麼你只要投入有限的時間和精力就一定可以實現。至於那些在你能力范圍之外的事情,就隨他去吧。
8、痛苦的回憶是可以縮小的,但不可能消亡。區間套最後套出的那一個點在整個區間上微不足道,但一定是存在的,而且刻骨銘心。
9、我們曾有多少的理想和承諾,在經歷幾次求導的考驗之後就面目全非甚至盪然無存?有沒有那麼一個誓言,叫做f(x)=e^x?
10、幸福是可積的,有限的間斷點並不影響它的積累。所以,樂觀地面對人生吧。
⑤ 數學公式,由來解析
=1/3-3/4+1/2=4/12-9/12+6/12=(4-9+6)/12=1/12
⑥ 數學公式,由來,解析
望採納O(∩_∩)O~~
⑦ 數學公式,由來解析都要具備詳細
甲數比乙數少1/4,乙數比甲數多幾分之幾?
解:設甲數為x,乙數為y;
那麼有等式:(y-x)/y=1/4,即4y-4x=y,3y=4x,故x=(3/4)y;或y=(4/3)x
(y-x)/x=[(4/3)x-x]/x=[(1/3)x]/x=1/3;即乙數比甲數多1/3.
比如甲數=3,乙數=4;甲數比乙數少1/4;【(4-3)/4=1/4】【即乙數與甲數的差等於乙數的1/4】
那麼乙數比甲數多1/3.【(4-3)/3=1/3】【即乙數與甲數的差是甲數的1/3】。
⑧ 高中全部數學公式
.集合元素具有①確定性②互異性③無序性
2.集合表示方法①列舉法 ②描述法
③韋恩圖 ④數軸法
3.集合的運算
⑴ A∩(B∪C)=(A∩B)∪(A∩C)
⑵ Cu(A∩B)=CuA∪CuB
Cu(A∪B)=CuA∩CuB
4.集合的性質
⑴n元集合的子集數:2n
真子集數:2n-1;非空真子集數:2n-2
高中數學概念總結
一、 函數
1、 若集合A中有n 個元素,則集合A的所有不同的子集個數為 ,所有非空真子集的個數是 。
二次函數 的圖象的對稱軸方程是 ,頂點坐標是 。用待定系數法求二次函數的解析式時,解析式的設法有三種形式,即 , 和 (頂點式)。
2、 冪函數 ,當n為正奇數,m為正偶數,m<n時,其大致圖象是
3、 函數 的大致圖象是
由圖象知,函數的值域是 ,單調遞增區間是 ,單調遞減區間是 。
二、 三角函數
1、 以角 的頂點為坐標原點,始邊為x軸正半軸建立直角坐標系,在角 的終邊上任取一個異於原點的點 ,點P到原點的距離記為 ,則sin = ,cos = ,tg = ,ctg = ,sec = ,csc = 。
2、同角三角函數的關系中,平方關系是: , , ;
倒數關系是: , , ;
相除關系是: , 。
3、誘導公式可用十個字概括為:奇變偶不變,符號看象限。如: , = , 。
4、 函數 的最大值是 ,最小值是 ,周期是 ,頻率是 ,相位是 ,初相是 ;其圖象的對稱軸是直線 ,凡是該圖象與直線 的交點都是該圖象的對稱中心。
5、 三角函數的單調區間:
的遞增區間是 ,遞減區間是 ; 的遞增區間是 ,遞減區間是 , 的遞增區間是 , 的遞減區間是 。
6、
7、二倍角公式是:sin2 =
cos2 = = =
tg2 = 。
8、三倍角公式是:sin3 = cos3 =
9、半形公式是:sin = cos =
tg = = = 。
10、升冪公式是: 。
11、降冪公式是: 。
12、萬能公式:sin = cos = tg =
13、sin( )sin( )= ,
cos( )cos( )= = 。
14、 = ;
= ;
= 。
15、 = 。
16、sin180= 。
17、特殊角的三角函數值:
0
sin 0 1 0
cos 1 0 0
tg 0 1 不存在 0 不存在
ctg 不存在 1 0 不存在 0
18、正弦定理是(其中R表示三角形的外接圓半徑):
19、由餘弦定理第一形式, =
由餘弦定理第二形式,cosB=
20、△ABC的面積用S表示,外接圓半徑用R表示,內切圓半徑用r表示,半周長用p表示則:
① ;② ;
③ ;④ ;
⑤ ;⑥
21、三角學中的射影定理:在△ABC 中, ,…
22、在△ABC 中, ,…
23、在△ABC 中:
24、積化和差公式:
① ,
② ,
③ ,
④ 。
25、和差化積公式:
① ,
② ,
③ ,
④ 。
三、 反三角函數
1、 的定義域是[-1,1],值域是 ,奇函數,增函數;
的定義域是[-1,1],值域是 ,非奇非偶,減函數;
的定義域是R,值域是 ,奇函數,增函數;
的定義域是R,值域是 ,非奇非偶,減函數。
2、當 ;
對任意的 ,有:
當 。
3、最簡三角方程的解集:
四、 不等式
1、若n為正奇數,由 可推出 嗎? ( 能 )
若n為正偶數呢? ( 均為非負數時才能)
2、同向不等式能相減,相除嗎 (不能)
能相加嗎? ( 能 )
能相乘嗎? (能,但有條件)
3、兩個正數的均值不等式是:
三個正數的均值不等式是:
n個正數的均值不等式是:
4、兩個正數 的調和平均數、幾何平均數、算術平均數、均方根之間的關系是
6、 雙向不等式是:
左邊在 時取得等號,右邊在 時取得等號。
五、 數列
1、等差數列的通項公式是 ,前n項和公式是: = 。
2、等比數列的通項公式是 ,
前n項和公式是:
3、當等比數列 的公比q滿足 <1時, =S= 。一般地,如果無窮數列 的前n項和的極限 存在,就把這個極限稱為這個數列的各項和(或所有項的和),用S表示,即S= 。
4、若m、n、p、q∈N,且 ,那麼:當數列 是等差數列時,有 ;當數列 是等比數列時,有 。
5、 等差數列 中,若Sn=10,S2n=30,則S3n=60;
6、等比數列 中,若Sn=10,S2n=30,則S3n=70;
六、 復數
1、 怎樣計算?(先求n被4除所得的余數, )
2、 是1的兩個虛立方根,並且:
3、 復數集內的三角形不等式是: ,其中左邊在復數z1、z2對應的向量共線且反向(同向)時取等號,右邊在復數z1、z2對應的向量共線且同向(反向)時取等號。
4、 棣莫佛定理是:
5、 若非零復數 ,則z的n次方根有n個,即:
它們在復平面內對應的點在分布上有什麼特殊關系?
都位於圓心在原點,半徑為 的圓上,並且把這個圓n等分。
6、 若 ,復數z1、z2對應的點分別是A、B,則△AOB(O為坐標原點)的面積是 。
7、 = 。
8、 復平面內復數z對應的點的幾個基本軌跡:
① 軌跡為一條射線。
② 軌跡為一條射線。
③ 軌跡是一個圓。
④ 軌跡是一條直線。
⑤ 軌跡有三種可能情形:a)當 時,軌跡為橢圓;b)當 時,軌跡為一條線段;c)當 時,軌跡不存在。
⑥ 軌跡有三種可能情形:a)當 時,軌跡為雙曲線;b) 當 時,軌跡為兩條射線;c) 當 時,軌跡不存在。
七、 排列組合、二項式定理
1、 加法原理、乘法原理各適用於什麼情形?有什麼特點?
加法分類,類類獨立;乘法分步,步步相關。
2、排列數公式是: = = ;
排列數與組合數的關系是:
組合數公式是: = = ;
組合數性質: = + =
= =
3、 二項式定理: 二項展開式的通項公式:
八、 解析幾何
1、 沙爾公式:
2、 數軸上兩點間距離公式:
3、 直角坐標平面內的兩點間距離公式:
4、 若點P分有向線段 成定比λ,則λ=
5、 若點 ,點P分有向線段 成定比λ,則:λ= = ;
=
=
若 ,則△ABC的重心G的坐標是 。
6、求直線斜率的定義式為k= ,兩點式為k= 。
7、直線方程的幾種形式:
點斜式: , 斜截式:
兩點式: , 截距式:
一般式:
經過兩條直線 的交點的直線系方程是:
8、 直線 ,則從直線 到直線 的角θ滿足:
直線 與 的夾角θ滿足:
直線 ,則從直線 到直線 的角θ滿足:
直線 與 的夾角θ滿足:
9、 點 到直線 的距離:
10、兩條平行直線 距離是
11、圓的標准方程是:
圓的一般方程是:
其中,半徑是 ,圓心坐標是
思考:方程 在 和 時各表示怎樣的圖形?
12、若 ,則以線段AB為直徑的圓的方程是
經過兩個圓
,
的交點的圓系方程是:
經過直線 與圓 的交點的圓系方程是:
13、圓 為切點的切線方程是
一般地,曲線 為切點的切線方程是: 。例如,拋物線 的以點 為切點的切線方程是: ,即: 。
注意:這個結論只能用來做選擇題或者填空題,若是做解答題,只能按照求切線方程的常規過程去做。
14、研究圓與直線的位置關系最常用的方法有兩種,即:
①判別式法:Δ>0,=0,<0,等價於直線與圓相交、相切、相離;
②考查圓心到直線的距離與半徑的大小關系:距離大於半徑、等於半徑、小於半徑,等價於直線與圓相離、相切、相交。
15、拋物線標准方程的四種形式是:
16、拋物線 的焦點坐標是: ,准線方程是: 。
若點 是拋物線 上一點,則該點到拋物線的焦點的距離(稱為焦半徑)是: ,過該拋物線的焦點且垂直於拋物線對稱軸的弦(稱為通徑)的長是: 。
17、橢圓標准方程的兩種形式是: 和
。
18、橢圓 的焦點坐標是 ,准線方程是 ,離心率是 ,通徑的長是 。其中 。
19、若點 是橢圓 上一點, 是其左、右焦點,則點P的焦半徑的長是 和 。
20、雙曲線標准方程的兩種形式是: 和
。
21、雙曲線 的焦點坐標是 ,准線方程是 ,離心率是 ,通徑的長是 ,漸近線方程是 。其中 。
22、與雙曲線 共漸近線的雙曲線系方程是 。與雙曲線 共焦點的雙曲線系方程是 。
23、若直線 與圓錐曲線交於兩點A(x1,y1),B(x2,y2),則弦長為 ;
若直線 與圓錐曲線交於兩點A(x1,y1),B(x2,y2),則弦長為 。
24、圓錐曲線的焦參數p的幾何意義是焦點到准線的距離,對於橢圓和雙曲線都有: 。
25、平移坐標軸,使新坐標系的原點 在原坐標系下的坐標是(h,k),若點P在原坐標系下的坐標是 在新坐標系下的坐標是 ,則 = , = 。
九、 極坐標、參數方程
1、 經過點 的直線參數方程的一般形式是: 。
2、 若直線 經過點 ,則直線參數方程的標准形式是: 。其中點P對應的參數t的幾何意義是:有向線段 的數量。
若點P1、P2、P是直線 上的點,它們在上述參數方程中對應的參數分別是 則: ;當點P分有向線段 時, ;當點P是線段P1P2的中點時, 。
3、圓心在點 ,半徑為 的圓的參數方程是: 。
3、 若以直角坐標系的原點為極點,x軸正半軸為極軸建立極坐標系,點P的極坐標為 直角坐標為 ,則 , , 。
4、 經過極點,傾斜角為 的直線的極坐標方程是: ,
經過點 ,且垂直於極軸的直線的極坐標方程是: ,
經過點 且平行於極軸的直線的極坐標方程是: ,
經過點 且傾斜角為 的直線的極坐標方程是: 。
5、 圓心在極點,半徑為r的圓的極坐標方程是 ;
圓心在點 的圓的極坐標方程是 ;
圓心在點 的圓的極坐標方程是 ;
圓心在點 ,半徑為 的圓的極坐標方程是 。
6、 若點M 、N ,則 。
十、 立體幾何
1、求二面角的射影公式是 ,其中各個符號的含義是: 是二面角的一個面內圖形F的面積, 是圖形F在二面角的另一個面內的射影, 是二面角的大小。
2、若直線 在平面 內的射影是直線 ,直線m是平面 內經過 的斜足的一條直線, 與 所成的角為 , 與m所成的角為 , 與m所成的角為θ,則這三個角之間的關系是 。
3、體積公式:
柱體: ,圓柱體: 。
斜稜柱體積: (其中, 是直截面面積, 是側棱長);
錐體: ,圓錐體: 。
台體: , 圓台體:
球體: 。
4、 側面積:
直稜柱側面積: ,斜稜柱側面積: ;
正棱錐側面積: ,正稜台側面積: ;
圓柱側面積: ,圓錐側面積: ,
圓台側面積: ,球的表面積: 。
5、幾個基本公式:
弧長公式: ( 是圓心角的弧度數, >0);
扇形面積公式: ;
圓錐側面展開圖(扇形)的圓心角公式: ;
圓台側面展開圖(扇環)的圓心角公式: 。
經過圓錐頂點的最大截面的面積為(圓錐的母線長為 ,軸截面頂角是θ):
十一、比例的幾個性質
1、比例基本性質:
2、反比定理:
3、更比定理:
5、 合比定理;
6、 分比定理:
7、 合分比定理:
8、 分合比定理:
9、 等比定理:若 , ,則 。
十二、復合二次根式的化簡
當 是一個完全平方數時,對形如 的根式使用上述公式化簡比較方便。
⑵並集元素個數:
n(A∪B)=nA+nB-n(A∩B)
5.N 自然數集或非負整數集
Z 整數集 Q有理數集 R實數集
6.簡易邏輯中符合命題的真值表
p 非p
真 假
假 真
二.函數
1.二次函數的極點坐標:
函數 的頂點坐標為
2.函數 的單調性:
在 處取極值
3.函數的奇偶性:
在定義域內,若 ,則為偶函數;若 則為奇函數
⑨ 請幫忙解析初級數學公式
圖望採納
⑩ 數學公式求解釋