數學家高斯簡介
A. 數學王子高斯的簡介
德國大數學家高斯 ( Carl Friedrich Gauss 1777-1855 ) 是德國最偉
大,最傑出的科學家,如果單純以他的數學成就來說,很少在一門數學的分支里沒有用到他的一些研究成果。
貧寒家庭出身
高斯的祖父是農民,父親除了從事園藝的工作外,也當過各色
各樣的雜工,如護堤員、建築工等等。父親由於貧窮,本身沒有受
過什麼教育。
母親在三十四歲時才結婚,三十五歲生下了高斯。她是一名石
匠的女兒,有一個很聰明的弟弟,他手巧心靈是當地出名的織綢能
手,高斯的這位舅舅,對小高斯很照顧,有機會就教育他,把他所
知道的一些知識傳授給他。而父親可以說是一名」大老粗」,認為
只有力氣能掙錢,學問對窮人是沒有用的。
高斯在晚年喜歡對自己的小孫兒講述自己小時候的故事,他說
他在還不會講話的時候,就已經學會計算了。
他還不到三歲的時候,有一天他觀看父親在計算受他管轄的工
人們的周薪。父親在喃喃的計數,最後長嘆的一聲表示總算把錢算
出來。
父親念出錢數,准備寫下時,身邊傳來微小的聲音:「爸爸!
算錯了,錢應該是這樣.....。」
父親驚異地再算一次,果然小高斯講的數是正確的,奇特的地
方是沒有人教過高斯怎麼樣計算,而小高斯平日靠觀察,在大人不
知不覺時,他自己學會了計算。
另外一個著名的故事亦可以說明高斯很小時就有很快的計算能
力。當他還在小學讀書時,有一天,算術老師要求全班同學算出以
下的算式:
1 + 2 + 3 + 4 + ....+ 98 + 99 + 100 = ?
在老師把問題講完不久,高斯就在他的小石板上端端正正地寫下答
案5050,而其他孩子算到頭昏腦脹,還是算不出來。最後只有高斯
的答案是正確無誤。
原來1 +100= 101
2 + 99 = 101
3 + 98 = 101
.
.
.
50 + 51 = 101
前後兩項兩兩相加,就成了50對和都是 101的配對了
即 101 × 50 = 5050。
按:今用公式表示
1 + 2 + ... + n
高斯的家裡很窮,在冬天晚上吃完飯後,父親就要高斯上
床睡覺,這樣可以節省燃料和燈油。高斯很喜歡讀書,他往往
帶了一梱蕪菁上他的頂樓去,他把蕪菁當中挖空,塞進用粗棉
捲成的燈芯,用一些油脂當燭油,於是就在這發出微弱光亮的
燈下,專心地看書。等到疲勞和寒冷壓倒他時,他才鑽進被窩
睡覺。
高斯的算術老師本來是對學生態度不好,他常認為自己在
窮鄉僻壤教書是懷才不遇,現在發現了「神童」,他是很高興
。但是很快他就感到慚愧,覺得自己懂的數學不多,不能對高
斯有什麼幫助。
他去城裡自掏腰包買了一本數學書送給高斯,高斯很高興
和比他大差不多十歲的老師的助手一起學習這本書。這個小孩
和那個少年建立起深厚的感情,他們花許多時間討論這裡面的
東西。
高斯在十一歲的時候就發現了二項式定理 ( x + y )n的一般
情形,這里 n可以是正負整數或正負分數。當他還是一個小學生
時就對無窮的問題注意了。
有一天高斯在走回家時,一面走一面全神貫注地看書,不
知不覺走進了布倫斯維克 ( Braunschweig ) 宮的庭園,這時布倫
斯維克公爵夫人看到這個小孩那麼喜歡讀書,於是就和他交談,
她發現他完全明白所讀的書的深奧內容。
公爵夫人回去報告給公爵知道,公爵也聽說過在他所管轄
的領地有一個聰明小孩的故事,於是就派人把高斯叫去宮殿。
費迪南公爵 ( Duke Ferdinand ) 很喜歡這個害羞的孩子,
也賞識他的才能,於是決定給他經濟援助,讓他有機會受高深教
育,費迪南公爵對高斯的照顧是有利的,不然高斯的父親是反
對孩子讀太多書,他總認為工作賺錢比去做什麼數學研究是更
有用些,那高斯又怎麼會成材呢?
B. 德國數學家高斯介紹稿
高斯(Johann Carl Friedrich Gauss)(1777年4月30日—1855年2月23日),生於不倫瑞克,卒於哥廷根,德國著名數學家、物理學家、天文學家、大地測量學家。高斯被認為是最重要的數學家,並有數學王子的美譽。
1792年,15歲德高斯進入Braunschweig學院。在那裡,高斯開始對高等數學作研究。獨立發現了二項式定理的一般形式、數論上的「二次互反律」(Law of Quadratic Reciprocity)、質數分布定理(prime numer theorem)、及算術幾何平均(arithmetic-geometric mean)。
1795年高斯進入哥廷根大學。1796年,17歲的高斯得到了一個數學史上極重要的結果,就是《正十七邊形尺規作圖之理論與方法》。
1855年2月23日清晨,高斯於睡夢中去世。
高斯是一對普通夫婦的兒子。他的母親是一個貧窮石匠的女兒,雖然十分聰明,但卻沒有接受過教育,近似於文盲。在她成為高斯父親的第二個妻子之前,她從事女傭工作。他的父親曾做過園丁,工頭,商人的助手和一個小保險公司的評估師。當高斯三歲時便能夠糾正他父親的借債賬目的事情,已經成為一個軼事流傳至今。他曾說,他在麥仙翁堆上學會計算。能夠在頭腦中進行復雜的計算,是上帝賜予他一生的天賦。
高斯用很短的時間計算出了小學老師布置的任務:對自然數從1到100的求和。他所使用的方法是:對50對構造成和101的數列求和(1+100,2+99,3+98……),同時得到結果:5050。這一年,高斯9歲。
哥廷根大學當高斯12歲時,已經開始懷疑元素幾何學中的基礎證明。當他16歲時,預測在歐氏幾何之外必然會產生一門完全不同的幾何學。他導出了二項式定理的一般形式,將其成功的運用在無窮級數,並發展了數學分析的理論。
高斯的老師Bruettner與他助手 Martin Bartels 很早就認識到了高斯在數學上異乎尋常的天賦,同時Herzog Carl Wilhelm Ferdinand von Braunschweig也對這個天才兒童留下了深刻印象。於是他們從高斯14歲其便資助其學習與生活。這也使高斯能夠在公元1792-1795年在Carolinum學院(今天Braunschweig學院的前身)學習。18歲時,高斯轉入哥廷根大學學習。在他19歲時,第一個成功的用尺規構造出了規則的17角形。
高斯於公元1805年10月5日與來自Braunschweig的Johanna Elisabeth Rosina Osthoff小姐(1780-1809)結婚。在公元1806年8月21日迎來了他生命中的第一個孩子約瑟。此後,他又有兩個孩子。Wilhelmine(1809-1840)和Louis(1809-1810)。1807年高斯成為哥廷根大學的教授和當地天文台的台長。
雖然高斯作為一個數學家而聞名於世,但這並不意味著他熱愛教書。盡管如此,他越來越多的學生成為有影響的數學家,如後來聞名於世的Richard Dedekind和黎曼。
高斯墓地高斯非常信教且保守。他的父親死於1808年4月14日,晚些時候的1809年10月11日,他的第一位妻子Johanna也離開人世。次年8月4日高斯迎娶第二位妻子Friederica Wilhelmine (1788-1831)。他們又有三個孩子:Eugen (1811-1896), Wilhelm (1813-1883) 和 Therese (1816-1864)。 1831年9月12日她的第二位妻子也死去,1837年高斯開始學習俄語。1839年4月18日,他的母親在哥廷根逝世,享年95歲。高斯於1855年2月23日凌晨1點在哥廷根去世。他的很多散布在給朋友的書信或筆記中的發現於1898年被發現。
C. 【德國數學家高斯詳細資料】
1.
C.F.
Gauss是
德國著名數學家、物理學家、天文學家、大地測量學家。他有數學王子的美譽,並被譽為歷史上最偉大的數學家之一,和阿基米德、牛頓、歐拉同享盛名。Johann
Carl
Friedrich
Gauss)(1777年4月30日-1855年2月23日),生於不倫瑞克,卒於哥廷根,德國著名數學家、物理學家、天文學家、大地測量學家。高斯的成就遍及數學的各個領域,在數論、非歐幾何、微分幾何、超幾何級數、復變函數論以及橢圓函數論等方面均有開創性貢獻。他十分注重數學的應用,並且在對天文學、大地測量學和磁學的研究中也偏重於用數學方法進行研究。高斯幼時家境貧困,但聰敏異常,1792年,在當地公爵的資助下,不滿15歲的高斯進入了卡羅琳學院學習。在那裡,高斯開始對高等數學作研究。獨立發現了二項式定理的一般形式、數論上的「二次互反律」(Law
of
Quadratic
Reciprocity)、「質數分布定理」(prime
numer
theorem)、及「算術幾何平均」(arithmetic-geometric
mean)。1795年高斯進入哥廷根大學。1796年,19歲的高斯得到了一個數學史上極重要的結果,就是《正十七邊形尺規作圖之理論與方法》。1798年轉入黑爾姆施泰特大學,翌年因證明代數基本定理獲博士學位。1801年,高斯又證明了形如"Fermat素數"邊數的正多邊形可以由尺規作出。從1807年起擔任格丁根大學教授兼格丁根天文台台長。
D. 數學家高斯的故事
用很短的時間計算出了小學老師布置的任務:對自然數從1到100的求和。他所使用的方法是:對50對構造成和101的數列求和(1+100,2+99,3+98……),同時得到結果:5050。這一年,高斯9歲。
小時候高斯家裡很窮,且他父親不認為學問有何用,但高斯依舊喜歡看書,話說在小時候,冬天吃完飯後他父親就會要他上床睡覺,以節省燃油,但當他上床睡覺時,他會將蕪菁的內部挖空,裡面塞入棉布卷,當成燈來使用,以繼續讀書。
當高斯12歲時,已經開始懷疑元素幾何學中的基礎證明。當他16歲時,預測在歐氏幾何之外必然會產生一門完全不同的幾何學,即非歐幾里德幾何學。他導出了二項式定理的一般形式,將其成功的運用在無窮級數,並發展了數學分析的理論。
(4)數學家高斯簡介擴展閱讀:
重大成就:
19世紀30年代,高斯發明了磁強計。他辭去了天文台的工作,而轉向物理的研究。他與韋伯(1804-1891)在電磁學領域共同工作。
他比韋伯年長27歲,以亦師亦友的身份與其合作。1833年,通過受電磁影響的羅盤指針,他向韋伯發送出電報。這不僅是從韋伯的實驗室與天文台之間的第一個電話電報系統,也是世界首創的第一個電話電報系統。盡管線路才8千米長。
1840年,他和韋伯畫出了世界第一張地球磁場圖,並且定出了地球磁南極和磁北極的位置。次年,這些位置得到美國科學家的證實。
高斯在數個領域進行研究,但只把他認為已經成熟的理論發表出來。他經常對他的同事表示,該同事的結論已經被自己以前證明過了,只是因為基礎理論的不完備而沒有發表。批評者說他這樣做是因為喜歡搶出風頭。事實上高斯把他的研究結果都記錄起來了。
他死後,他的20部紀錄著他的研究結果和想法的筆記被發現,證明高斯所說的是事實。一般人認為,20部筆記並非高斯筆記的全部。
下薩克森州和哥廷根大學圖書館已經將高斯的全部著作數位化,並放置於互聯網上。
高斯的肖像曾被印刷在從1989年至2001年流通的10元德國馬克紙幣上。
E. 數學家高斯的資料
卡爾·弗里德里希·高斯(Johann Carl Friedrich Gauss,1777年4月30日-1855年2月23日),出生於不倫瑞克,畢業於哥廷根大學,德國著名數學家,近代數學奠基者之一。 他發現了質數分布定理、正態分布曲線和最小二乘法,一生成就極為豐碩,以其名字「高斯」命名的成果達110個,享有「數學王子」的美譽,和阿基米德、牛頓、歐拉並列為世界四大數學家。1855年2月23日,高斯在哥廷根去世。
F. 關於數學家高斯的故事 大約150~200字
①在成長過程中,幼年的高斯主要得力於他的母親羅捷雅和舅舅弗利德里希(Friederich)。弗利德里希富有智慧,為人熱情而又聰明能幹投身於紡織貿易頗有成就。他發現姐姐的兒子聰明伶利,因此他就把一部分精力花在這位小天才身上,用生動活潑的方式開發高斯的智力。
若干年後,已成年並成就顯赫的高斯回想起舅舅為他所做的一切,深感對他成才之重要,他想到舅舅多產的思想,不無傷感地說,舅舅去世使"我們失去了一位天才"。正是由於弗利德里希慧眼識英才,經常勸導姐夫讓孩子向學者方面發展,才使得高斯沒有成為園丁或者泥瓦匠。
②一天,老師布置了一道題,1+2+3······這樣從1一直加到100等於多少。
高斯很快就算出了答案,起初高斯的老師布特納並不相信高斯算出了正確答案:"你一定是算錯了,回去再算算。」高斯非常堅定,說出答案就是5050。高斯是這樣算的:1+100=101,2+99=101······50+51=101。從1加到100有50組這樣的數,所以50X101=5050。
布特納對他刮目相看。他特意從漢堡買了最好的算術書送給高斯,說:「你已經超過了我,我沒有什麼東西可以教你了。」接著,高斯與布特納的助手巴特爾斯建立了真誠的友誼,直到巴特爾斯逝世。他們一起學習,互相幫助,高斯由此開始了真正的數學研究。
③1788年,11歲的高斯進入了文科學校,他在新的學校里,所有的功課都極好,特別是古典文學、數學尤為突出。他的教師們和慈母把他推薦給伯倫瑞克公爵,希望公爵能資助這位聰明的孩子上學。
布倫茲維克公爵卡爾·威廉·斐迪南召見了14歲的高斯。這位朴實、聰明但家境貧寒的孩子贏得了公爵的同情,公爵慷慨地提出願意作高斯的資助人,讓他繼續學習。
1792年高斯進入布倫茲維克的卡羅琳學院繼續學習。1795年,公爵又為他支付各種費用,送他入德國著名的哥丁根大學,這樣就使得高斯得以按照自己的理想,勤奮地學習和開始進行創造性的研究。
④高斯對自己的工作態度是精益求精,非常嚴格地要求自己的研究成果。他自己曾說:寧可發表少,但發表的東西是成熟的成果。許多當代的數學家要求他,不要太認真,把結果寫出來發表,這對數學的發展是很有幫助的。
其中一個有名的例子是關於非歐幾何的發展。非歐幾何的的開山祖師有三人,高斯、 洛巴切夫斯基,波爾約。其中波爾約的父親是高斯大學的同學,他曾想試著證明平行公理,雖然父親反對他繼續從事這種看起來毫無希望的研究,小波爾約還是沉溺於平行公理。
最後發展出了非歐幾何,並且在1832~1833年發表了研究結果,老波爾約把兒子的成果寄給老同學高斯,想不到高斯卻回信道:我無法誇贊他,因為誇贊他就等於誇獎我自己。
⑤1791年高斯終於找到了資助人--布倫斯維克公爵費迪南(Braunschweig),答應盡一切可能幫助他,高斯的父親再也沒有反對的理由。隔年,高斯進入Braunschweig學院。
這年,高斯十五歲。在那裡,高斯開始對高等數學作研究。並且獨立發現了二項式定理的一般形式、數論上的「二次互逆定理」(Law of Quadratic Reciprocity)、質數分布定理(prime numer theorem)、及算術幾何平均(arithmetic-geometric mean)。
(6)數學家高斯簡介擴展閱讀:
高斯已經指出,正三邊形、正四邊形、正五邊形、正十五邊形和邊數是上述邊數兩倍的正多邊形的幾何作圖是能夠用圓規和直尺實現的,但從那時起關於這個問題的研究沒有多大進展。
高斯在數論的基礎上提出了判斷一給定邊數的正多邊形是否可以幾何作圖的准則。例如,用圓規和直尺可以作圓內接正十七邊形。這樣的發現還是歐幾里得以後的第一個。
這些關於數論的工作對代數數的現代算術理論(即代數方程的解法)作出了貢獻。高斯還將復數引進了數論,開創了復整數算術理論,復整數在高斯以前只是直觀地被引進。
1831年(發表於1832年)他給出了一個如何藉助於x,y平面上的表示來發展精確的復數理論的詳盡說明。
高斯是最早懷疑歐幾里得幾何學是自然界和思想中所固有的那些人之一。歐幾里得是建立系統性幾何學的第一人。他模型中的一些基本思想被稱作公理,它們是透過純粹邏輯構造整個系統的出發點。
在這些公理中,平行線公理一開始就顯得很突出。按照這一公理,通過不在給定直線上的任何點只能作一條與該直線平行的線。
不久就有人推測︰這一公理可從其他一些公理推導出來,因而可從公理系統中刪去。但是關於它的所有證明都有錯誤。高斯是最早認識到可能存在一種不適用平行線公理的幾何學的人之一。他逐漸得出革命性的結論︰確實存在這樣的幾何學,其內部相容並且沒有矛盾。
但因為與同代人的觀點相背,他不敢發表(參閱非歐幾里得幾何條)。
當1830年前後匈牙利的波爾約(Janos Bolyai)和俄國的羅巴切夫斯基獨立地發表非歐幾何學時,高斯宣稱他大約在30年前就得到同樣的結論。高斯也沒有發表特殊復函數方面的工作,可能是因為沒有能從更一般的原理導出它們。因此這一理論不得不在他死後數十年由其他數學家從他著作的計算中重建。
1830年前後,極值(極大和極小)原理在高斯的物理問題和數學研究中開始佔有重要地位,例如流體保持靜止的條件等問題。在探討毛細作用時,他提出了一個數學公式能將流體系統中一切粒子的相互作用、引力以及流體粒子和與它接觸的固體或流體粒子之間的相互作用都考慮在內。
這一工作對於能量守恆原理的發展作出了貢獻。從1830年起高斯就與物理學家威廉·愛德華·韋伯密切合作。由於對地磁學的共同興趣,他們一起建立了一個世界性的系統觀測網。他們在電磁學方面最重要的成果是電報的發展。因為他們的資金有限,所以試驗都是小規模的。
參考資料:
卡爾·弗里德里希·高斯_網路
G. 數學家,高斯的資料。詳細點
高斯[1](Johann Carl Friedrich Gauss)(1777年4月30日—1855年2月23日),生於不倫瑞克,卒於哥廷根,德國著名數學家、物理學家、天文學家、大地測量學家。
高斯1777年4月30日生於不倫瑞克的一個工匠家庭,1855年2月23日卒於哥廷根。幼時家境貧困,但聰敏異常,受一貴族資助才進學校受教育。1795~1798年在格丁根大學學習1798年轉入黑爾姆施泰特大學,翌年因證明代數基本定理獲博士學位。從1807年起擔任格丁根大學教授兼格丁根天文台台長直至逝世。
高斯的成就遍及數學的各個領域,在數論、非歐幾何、微分幾何、超幾何級數、復變函數論以及橢圓函數論等方面均有開創性貢獻。他十分注重數學的應用,並且在對天文學、大地測量學和磁學的研究中也偏重於用數學方法進行研究。
1792年,15歲的高斯進入Braunschweig學院。在那裡,高斯開始對高等數學作研究。獨立發現了二項式定理的一般形式、數論上的「二次互反律」(Law of Quadratic Reciprocity)、「質數分布定理」(prime numer theorem)、及「算術幾何平均」(arithmetic-geometric mean)。
1795年高斯進入哥廷根大學。1796年,19歲的高斯得到了一個數學史上極重要的結果,就是《正十七邊形尺規作圖之理論與方法》。5年以後,高斯又證明了形如"Fermat素數"邊數的正多邊形可以由尺規作出。
1855年2月23日清晨,高斯於睡夢中去世。
H. 數學家高斯的簡歷
高斯是德國數學家 ,也是科學家,他和牛頓、阿基米德,被譽為有史以來的三大數學家。高斯是近代數學奠基者之一,在歷史上影響之大, 可以和阿基米德、牛頓、歐拉並列,有「數學王子」之稱。