數學一專業
數學專業的專業課程有:
一、數學分析
又稱高級微積分,分析學中最古老、最基本的分支。一般指以微積分學和無窮級數一般理論為主要內容,並包括它們的理論基礎(實數、函數和極限的基本理論)的一個較為完整的數學學科。它也是大學數學專業的一門基礎課程。
數學中的分析分支是專門研究實數與復數及其函數的數學分支。它的發展由微積分開始,並擴展到函數的連續性、可微分及可積分等各種特性。這些特性,有助我們應用在對物理世界的研究,研究及發現自然界的規律。
二、高等代數
初等代數從最簡單的一元一次方程開始,初等代數一方面進而討論二元及三元的一次方程組,另一方面研究二次以上及可以轉化為二次的方程組。沿著這兩個方向繼續發展,代數在討論任意多個未知數的一次方程組,也叫線性方程組的同時還研究次數更高的一元方程組。
發展到這個階段,就叫做高等代數。高等代數是代數學發展到高級階段的總稱,它包括許多分支。現在大學里開設的高等代數,一般包括兩部分:線性代數、多項式代數。
三、復變函數論
復變函數論是數學中一個基本的分支學科,它的研究對象是復變數的函數。復變函數論歷史悠久,內容豐富,理論十分完美。它在數學許多分支、力學以及工程技術科學中有著廣泛的應用。 復數起源於求代數方程的根。
復數的概念起源於求方程的根,在二次、三次代數方程的求根中就出現了負數開平方的情況。在很長時間里,人們對這類數不能理解。但隨著數學的發展,這類數的重要性就日益顯現出來。復數的一般形式是:a+bi,其中i是虛數單位。
四、抽象代數
抽象代數(Abstract algebra)又稱近世代數(Modern algebra),它產生於十九世紀。伽羅瓦〔1811-1832〕在1832年運用「群」的概念徹底解決了用根式求解代數方程的可能性問題。
他是第一個提出「群」的概念的數學家,一般稱他為近世代數創始人。他使代數學由作為解方程的科學轉變為研究代數運算結構的科學,即把代數學由初等代數時期推向抽象代數。
五、近世代數
近世代數即抽象代數。 代數是數學的其中一門分支,當中可大致分為初等代數學和抽象代數學兩部分。初等代數學是指19世紀上半葉以前發展的代數方程理論,主要研究某一代數方程(組)是否可解,如何求出代數方程所有的根〔包括近似根〕,以及代數方程的根有何性質等問題。
法國數學家伽羅瓦在1832年運用「群」的思想徹底解決了用根式求解多項式方程的可能性問題。他是第一個提出「群」的思想的數學家,一般稱他為近世代數創始人。他使代數學由作為解代數方程的科學轉變為研究代數運算結構的科學,即把代數學由初等代數時期推向抽象代數即近世代數時期。
參考資料來源:
網路—數學分析
網路—高等代數
網路—復變函數論
網路—抽象代數
網路—近世代數
Ⅱ 數一,數二,數三分別有哪些專業要考
分類如下:
一、須使用數學一的招生專業
1、工學門類中的力學、機械工程、光學工程、儀器科學與技術、冶金工程、動力工程及工程熱物理、電氣工程、電子科學與技術、信息與通信工程、控制科學與工程、網路工程等20個一級學科中所有的二級學科、專業。
2、授工學學位的管理科學與工程一級學科。
二、須使用數學二的招生專業
工學門類中的紡織科學與工程、輕工技術與工程、農業工程、林業工程、食品科學與工程等5個一級學科中所有的二級學科、專業。
三、須選用數學一或數學二的招生專業(由招生單位自定)
工學門類中的材料科學與工程、化學工程與技術、地質資源與地質工程、礦業工程、石油與天然氣工程、環境科學與工程等一級學科中對數學要求較高的二級學科、專業選用數學一,對數學要求較低的選用數學二。
四、須使用數學三的招生專業
1、經濟學門類的各一級學科。
2、管理學門類中的工商管理、農林經濟管理一級學科。
3、授管理學學位的管理科學與工程一級學科。
(2)數學一專業擴展閱讀:
數一,數二,數三的區別主要是考察的范圍和難度不同,具體介紹如下:
1、數學分為三類,最大的區別在於知識面的要求上:數學一最廣,數學三其次,數學二最低。這個差異體現在細節上,就成了數學一、二、三在考試內容和適用專業上的不同之處。
2、考研數學從卷種上來看分為數學一、數學二、數學三;從考試內容上來看,涵蓋了高等數學、線性代數、概率論與數理統計;試卷結構上來看,設有三種題型:選擇題(8道共32分)、填空題(6道共24分)、解答題(9道共94分)。
3、其中數一與數三在題目類型的分布上是一致的,1-4、9-12、15-19屬於高等數學的題目,5-6、13、20-21屬於線性代數的題目,7-8、14、22-23屬於概率論與數理統計的題目;而數學二不同,1-6、9-13、15-21均是高等數學的題目,7-8、14、22-23為線性代數的題目。
4、數學一是報考理工科的學生考,考試內容包括高等數學,線性代數和概率論與數理統計,考試的內容是最多的。
5、數學二是報考農學的學生考,考試內容只有高等數學和線性代數,但是高等數學中刪去的較多,是考試內容最少的。
6、數學三是報考經濟學的學生考,考試內容是高等數學,線性代數和概率統計。高數部分中,主要重視微積分的考察,概率統計中沒有假設檢驗和置信區間。
Ⅲ 數學類都有什麼專業謝謝
1、數學分析
數學分析又稱高級微積分,分析學中最古老、最基本的分支。一般指以微積分學和無窮級數一般理論為主要內容,並包括它們的理論基礎(實數、函數和極限的基本理論)的一個較為完整的數學學科。
它也是大學數學專業的一門基礎課程。數學中的分析分支是專門研究實數與復數及其函數的數學分支。
2、高等代數
初等代數從最簡單的一元一次方程開始,初等代數一方面進而討論二元及三元的一次方程組,另一方面研究二次以上及可以轉化為二次的方程組。沿著這兩個方向繼續發展,代數在討論任意多個未知數的一次方程組,也叫線性方程組的同時還研究次數更高的一元方程組。
發展到這個階段,就叫做高等代數。高等代數是代數學發展到高級階段的總稱,它包括許多分支。現在大學里開設的高等代數,一般包括兩部分:線性代數、多項式代數。
3、解析幾何
解析幾何指藉助笛卡爾坐標系,由笛卡爾、費馬等數學家創立並發展。它是利用解析式來研究幾何對象之間的關系和性質的一門幾何學分支,亦叫做坐標幾何。
嚴格地講,解析幾何利用的並不是代數方法,而是藉助解析式來研究幾何圖形。這裡面的解析式,既可以是代數的,也可以是超越的——例如三角函數、對數等。通常默認代數式只由有限步的四則運算及開方構成,超越運算一般不屬於代數學的研究范疇。
4、抽象代數
抽象代數(Abstract algebra)又稱近世代數(Modern algebra),它產生於十九世紀。伽羅瓦〔1811-1832〕在1832年運用「群」的概念徹底解決了用根式求解代數方程的可能性問題。
他是第一個提出「群」的概念的數學家,一般稱他為近世代數創始人。他使代數學由作為解方程的科學轉變為研究代數運算結構的科學,即把代數學由初等代數時期推向抽象代數。
5、實變函數論
實變函數論19世紀末20世紀初形成的數學分支。起源於古典分析,主要研究對象是自變數(包括多變數)取實數值的函數,研究的問題包括函數的連續性、可微性、可積性、收斂性等方面的基本理論,是微積分的深入和發展。
因為它不僅研究微積分中的函數,而且還研究更為一般的函數,並且得到了較微積分中相應理論更為深刻、更為一般從而應用更為廣泛的結論,所以實變函數論是現代分析數學各個分支的基礎。
Ⅳ 數學包括哪些專業 什麼專業好
數學類專業介紹
一、數學與應用數學
主幹學科:數學
主要課程:分析學、代數學、幾何學、概率論、物理學、數學模型、數學實驗、計算機基礎、數值方法、數學史等,以及根據應用方向選擇的基本課程。
主要實踐性教學環節:包括計算機實習、生產實習、科研訓練或畢業論文等,一般安排10~20周。
學年:4年
授予學位:理學學士
培養目標:本專業培養掌握數學科學的基本理論與基本方法,具備運用數學知識、使用計算機解決實際問題的能力,受到科學研究的初步訓練,能在科技、教育和經濟部門從事研究、教學工作或在生產經營及管理部門從事實際應用、開發研究和管理工作的高級專門人才。
培養要求:本專業學生主要學習數學和應用數學的基礎理論、基本方法,受到數學模型、計算機和數學軟體方面的基本訓練,具有較好的科學素養,初步具備科學研究、教學、解決實際問題及開發軟體等方面的基本能力。
畢業生能力:1.具有扎實的數學基礎,受到比較嚴格的科學思維訓練,初步掌握數學科學的思想方法;
2.具有應用數學知識去解決實際問題,特別是建立數學模型的初步能力,了解某一應用領域的基本知識;
3.能熟練使用計算機(包括常用語言、工具及一些數學軟體),具有編寫簡單應用程序的
能力;
4.了解國家科學技術等有關政策和法規;
5.了解數學科學的某些新發展和應用前景;
6.有較強的語言表達能力,掌握資料查詢、文獻檢索及運用現代信息技術獲取相關信息的基本方法,具有一定的科學研究和教學能力。
二、信息與計算科學
主幹學科:數學、計算機科學與技術
主要課程:數學基礎課(分析、代數、幾何)、概率統計、數學模型、物理學、計算機基礎(計算概論、演算法與數據結構、軟體系統基礎)、信息科學基礎、理論計算機科學基礎、數值計算方法、計算機圖形學、運籌與優化等。
主要實踐性教學環節:包括生產實習,科研訓練,畢業論文(畢業設計)等,一般安排10~20周。
學年:4年
授予學位:理學學士
培養目標:本專業培養具有良好的數學素養,掌握信息科學和計算科學的基本理論和方法,受到科學研究的初步訓練,能運用所學知識和熟練的計算機技能解決實際問題,能在科技、教育和經濟部門從事研究、教學和應用開發和管理工作的高級專門人才。
培養要求:本專業學生主要學習信息科學和計算科學的基本理論、基本知識和基本方法,打好數學基礎,受到較扎實的計算機訓練,初步具備在信息科學與計算科學領域從事科學研究、解決實際問題及設計開發有關軟體的能力。
畢業生能力:1.具有扎實的數學基礎,掌握信息科學和或計算科學的基本理論和基本知識;
2.能熟練使用計算機(包括常用語言、工具及一些專用軟體),具有基本的演算法分析、設計能力和較強的編程能力;
3.了解某個應用領域,能運用所學的理論、方法和技能解決某些科研或生產中的實際課題;
4.對信息科學與計算科學理論、技術及應用的新發展有所了解;
5.掌握文獻檢索、資料查詢的基本方法,具有一定的科學研究和軟體開發能力。
三、數理基礎科學
培養目標:培養能從事數學、物理等基礎科學教學和科研的有發展潛力的優秀人才,尤其是在數學、物理上具有創新的能力的人才,同時也為對數理基礎要求高的其它學科培養有良好的數理基礎的新型人才。
主要課程:數學分析、高等代數、解析幾何、力學、熱學、常微分方程、電磁學、理論力學、光學、實變函數、普通物理實驗、數理統計、量子力學、數學物理方法、概率論、原子物理學等。
就業方向:可從事物理學、數學領域、信息與計算科學、計算機信息處理、經濟、金融等部門從事研究、教學、應用軟體開發或者是管理部門從事一些實際應用、技術開發、研究或者管理工作。
Ⅳ 數學專業包括什麼
1、數學分析
數學分析又稱高級微積分,分析學中最古老、最基本的分支。一般指以微積分學和無窮級數一般理論為主要內容,並包括它們的理論基礎(實數、函數和極限的基本理論)的一個較為完整的數學學科。
它也是大學數學專業的一門基礎課程。數學中的分析分支是專門研究實數與復數及其函數的數學分支。
2、高等代數
初等代數從最簡單的一元一次方程開始,初等代數一方面進而討論二元及三元的一次方程組,另一方面研究二次以上及可以轉化為二次的方程組。沿著這兩個方向繼續發展,代數在討論任意多個未知數的一次方程組,也叫線性方程組的同時還研究次數更高的一元方程組。
發展到這個階段,就叫做高等代數。高等代數是代數學發展到高級階段的總稱,它包括許多分支。現在大學里開設的高等代數,一般包括兩部分:線性代數、多項式代數。
3、解析幾何
解析幾何指藉助笛卡爾坐標系,由笛卡爾、費馬等數學家創立並發展。它是利用解析式來研究幾何對象之間的關系和性質的一門幾何學分支,亦叫做坐標幾何。
嚴格地講,解析幾何利用的並不是代數方法,而是藉助解析式來研究幾何圖形。這裡面的解析式,既可以是代數的,也可以是超越的——例如三角函數、對數等。通常默認代數式只由有限步的四則運算及開方構成,超越運算一般不屬於代數學的研究范疇。
4、抽象代數
抽象代數(Abstract algebra)
又稱近世代數(Modern algebra),它產生於十九世紀。伽羅瓦〔1811-1832〕在1832年運用「群」的概念徹底解決了用根式求解代數方程的可能性問題。
他是第一個提出「群」的概念的數學家,一般稱他為近世代數創始人。他使代數學由作為解方程的科學轉變為研究代數運算結構的科學,即把代數學由初等代數時期推向抽象代數。
5、實變函數論
實變函數論19世紀末20世紀初形成的數學分支。起源於古典分析,主要研究對象是自變數(包括多變數)取實數值的函數,研究的問題包括函數的連續性、可微性、可積性、收斂性等方面的基本理論,是微積分的深入和發展。
因為它不僅研究微積分中的函數,而且還研究更為一般的函數,並且得到了較微積分中相應理論更為深刻、更為一般從而應用更為廣泛的結論,所以實變函數論是現代分析數學各個分支的基礎。
Ⅵ 數學一適用於哪些專業
適用專業:a.工學門類的力學,機械工程,光學工程,儀器學與技術,冶金工程,動力學工程及工程物理,電氣工程,電子科學與技術,信息與通信工程,控制科學與工程,計算機科學與技術,土木工程,水利工程,測繪科學與技術,交通運輸工程,船舶與海洋工程,航空宇航科學與技術,兵器科學與技術,核科學與技術,生物醫學工程等一級學科中所有的二級學科,專業。工學門類的材料與工程,化學工程與技術,地質資源與地質工程,礦業工程,石油與天然氣工程,環境科學與工程等一級學科中對數學要求較高的二級學科,專業。b.管理學門類中的管理科學與工程一級學科
Ⅶ 數學相關專業有哪些。
數學與應用數學師范專業是以數學也基礎,在大三時再進步學習教育學心理學方面知識,為培養數學教師打下一定的教師素養。當然數學與應用數學專業不一定非要考本專業的。只要你有興趣有毅力,當然可以跨專業報考。數學專業可以報考金融學、工程管理、國際經濟貿易等研究生。金融學需要高等概率知識,對數學要求比較高,中央財經大學的金融學值得考慮。工程管理也是不錯的選擇,譬如中國礦業大學工程管理是考數一的,對學數學專業的很有利。國際經濟貿易推薦人大。其實數學本專業的也可以考應用數學研究生,因為有很多學校應用數學專業有金融方向密碼學等方向,能學好數學就能前程似錦。
Ⅷ 大學數學系有哪些專業
包括:數學與應復用數學、信制息與計算科學、數理基礎科學3個專業。
拓展資料:
數學與應用數學專業簡介:
本專業主要培養掌握數學科學的基本理論與基本方法,需要學生具備基礎運用數學知識、使用計算機解決現實中實際問題的能力,受科學研究方向的具體初步訓練,可在科技、教育和經濟部門一般性從事研究、教學工作。或在生產經營,管理部門進行實際應用、開發研究和管理工作的高級專門人才。
信息與計算科學專業簡介:
本專業的課程體系和知識結構體現了在扎實的數學基礎之上,合理架構信息科學與計算機科學的專業基礎理論。通過資訊理論、科學計算、運籌學等方面的基礎知識教育和建立數學模型、數學實踐課、專業實習各環節的訓練,著重培養學生解決科學計算、軟體開發和設計、信息處理與編碼等實際問題的能力,培養能勝任信息處理、科學與工程計算部門工作的高級專門人才。
數理基礎科學專業簡介:
該專業主要培養能從事數學、物理等基礎科學教學和科研的有發展潛力的優秀人才,尤其是在數學、物理上具有創新的能力的人才,同時也為對數理基礎要求高的其它學科培養有良好的數理基礎的新型人才。
Ⅸ 數學專業有哪些課程
你現在是高中生吧,那麼我先推薦你看兩本書
1.《數學分析》
這是數學系的基礎課程回答,非常重要.有的學校叫做《微積分》或《高等數學》,相對《數學分析》來說比較簡單.難的一般都叫做《數學分析》.
有很多版本了,隨便挑一本看看就可以了.當然如果想學好的話,還是要看名校用的教材,如
《數學分析教程》-高等教育出版社(分上下冊)
2.《線形代數》
這也是數學系的基礎課程,非常重要.有的學校叫做《高等代數》也是相對《線性代數》來說比較簡單,一般叫《線形代數>的比較難一些.
如
《線形代數》-李尚志 編著-高等教育出版社
此外,還有一些課程,有
《初等數論>,《解析幾何》(這兩門課程也可以看一看)
(以下不推薦提前看)
《實變函數》(很難),《復變函數》,《近世代數》(很難),《微分幾何》,《常微分方程》, 《偏微分方程》,《拓撲學》,《概率論》,《數理統計》,《運籌學》,《數值分析》,《數值代數》等等眾多課程