關於數學的由來
數學的由來
古希臘人在數學中引進了名稱,概念和自我思考,他們很早就開始猜測數學是如何產生的。雖然他們的猜測僅是匆匆記下,但他們幾乎先佔有了猜想這一思考領域。古希臘人隨意記下的東西在19世紀變成了大堆文章,而在20世紀卻變成了令人討厭的陳辭濫調。 在現存的資料中,希羅多德(Herodotus,公元前484--425年)是第一個開始猜想的人。他只談論了幾何學,他對一般的數學概念也許不熟悉,但對土地測量的准確意思很敏感。作為一個人類學家和一個社會歷史學家,希羅多德指出,古希臘的幾何來自古埃及,在古埃及,由於一年一度的洪水淹沒土地,為了租稅的目的,人們經常需要重新丈量土地;他還說:希臘人從巴比倫人那裡學會了日晷儀的使用,以及將一天分成12個時辰。希羅多德的這一發現,受到了肯定和贊揚。認為普通幾何學有一個輝煌開端的推測是膚淺的。
柏拉圖關心數學的各個方面,在他那充滿奇妙幻想的神話故事《費德洛斯篇》中,他說:
故事發生在古埃及的洛克拉丁(區域),在那裡住著一位老神仙,他的名字叫賽斯(Theuth),對於賽斯來說,朱鷺是神鳥,他在朱鷺的幫助下發明了數,計算、幾何學和天文學,還有棋類游戲等。
柏拉圖常常充滿了奇怪的幻想,原因是他不知道自己是否正亞里士多德最後終於用完全概念化的語言談論數學了,即談論統一的、有著自己發展目的的數學。在他的《形而上學》(Meta-physics)第1卷第1章中,亞里士多德說:數學科學或數學藝術源於古埃及,因為在古埃及有一批祭司有空閑自覺地致力於數學研究。亞里士多德所說的是否是事實還值得懷疑,但這並不影響亞里士多德聰慧和敏銳的觀察力。在亞里士多德的書中,提到古埃及僅僅只是為了解決關於以下問題的爭論:1.存在為知識服務的知識,純數學就是一個最佳的例子:2.知識的發展不是由於消費者購物和奢華的需要而產生的。亞里士多德這種「天真」的觀點也許會遭到反對;但卻駁不倒它,因為沒有更令人信服的觀點.
就整體來說,古希臘人企圖創造兩種「科學」的方法論,一種是實體論,而另一種是他們的數學。亞里士多德的邏輯方法大約是介於二者之間的,而亞里士多德自己認為,在一般的意義上講他的方法無論如何只能是一種輔助方法。古希臘的實體論帶有明顯的巴門尼德的「存在」特徵,也受到赫拉克利特「理性」的輕微影響,實體論的特徵僅在以後的斯多葛派和其它希臘作品的翻譯中才表現出來。數學作為一種有效的方法論遠遠地超越了實體論,但不知什麼原因,數學的名字本身並不如「存在」和「理性」那樣響亮和受到肯定。然而,數學名稱的產生和出現,卻反映了古希臘人某些富於創造的特性。下面我們將說明數學這一名詞的來源。
「數學」一詞是來自希臘語,它意味著某種『已學會或被理解的東西』或「已獲得的知識」,甚至意味著「可獲的東西」, 「可學會的東西」,即「通過學習可獲得的知識」,數學名稱的這些意思似乎和梵文中的同根詞意思相同。甚至偉大的辭典編輯人利特雷(E.Littre 也是當時傑出的古典學者),在他編輯的法語字典(1877年)中也收入了「數學」一詞。牛津英語字典沒有參照梵文。公元10世紀的拜占庭希臘字典「Suidas」中,引出了「物理學」、「幾何學」和「算術」的詞條,但沒有直接列出「數學」—詞。
「數學」一詞從表示一般的知識到專門表示數學專業,經歷一個較長的過程,僅在亞里士多德時代,而不是在柏拉圖時代,這一過程才完成。數學名稱的專有化不僅在於其意義深遠,而在於當時古希臘只有「詩歌」一詞的專有化才能與數學名稱的專有化相媲美。「詩歌」原來的意思是「已經製造或完成的某些東西」,「詩歌」一詞的專有化在柏拉圖時代就完成了。而不知是什麼原因辭典編輯或涉及名詞專有化的知識問題從來沒有提到詩歌,也沒有提到詩歌與數學名稱專有化之間奇特的相似性。但數學名稱的專有化確實受到人們的注意。
首先,亞里士多德提出, 「數學」一詞的專門化使用是源於畢達哥拉斯的想法,但沒有任何資料表明對於起源於愛奧尼亞的自然哲學有類似的思考。其次在愛奧尼亞人中,只有泰勒斯(公元前640?--546年)在「純」數學方面的成就是可信的,因為除了第歐根尼·拉爾修(Diogenes Laertius)簡短提到外,這一可信性還有一個較遲的而直接的數學來源,即來源於普羅克洛斯(Proclus)對歐幾里得的評註:但這一可信性不是來源於亞里士多德,盡管他知道泰勒斯是一個「自然哲學家」;也不是來源於早期的希羅多德,盡管他知道塞利斯是一個政治、軍事戰術方面的「愛好者」,甚至還能預報日蝕。以上這些可能有助於解釋為什麼在柏拉圖的體系中,幾乎沒有愛奧尼亞的成份。赫拉克利特(公元前500--?年)有一段名言:「萬物都在運動中,物無常往」, 「人們不可能兩次落進同一條河裡」。這段名言使柏拉圖迷惑了,但赫拉克賴脫卻沒受到柏拉圖給予巴門尼德那樣的尊敬。巴門尼德的實體論,從方法論的角度講,比起赫拉克賴脫的變化論,更是畢達哥拉斯數學的強有力的競爭對手。
對於畢達哥拉斯學派來說,數學是一種「生活的方式」。事實上,從公元2世紀的拉丁作家格利烏斯(Gellius)和公元3世紀的希臘哲學家波菲利(Porphyry)以及公元4世紀的希臘哲學家揚布利科斯(Iamblichus)的某些證詞中看出,似乎畢達哥拉斯學派對於成年人有一個「一般的學位課程」,其中有正式登記者和臨時登記者。臨時成員稱為「旁聽者」,正式成員稱為「數學家」。
這里「數學家」僅僅表示一類成員,而並不是他們精通數學。畢達哥拉斯學派的精神經久不衰。對於那些被阿基米德神奇的發明所深深吸引的人來說,阿基米德是唯一的獨特的數學家,從理論的地位講,牛頓是一個數學家,盡管他也是半個物理學家,一般公眾和新聞記者寧願把愛因斯坦看作數學家,盡管他完全是物理學家。當羅吉爾·培根(Roger Bacon,1214--1292年)通過提倡接近科學的「實體論」,向他所在世紀提出挑戰時,他正將科學放進了一個數學的大框架,盡管他在數學上的造詣是有限的,當笛卡兒(Descartes,1596--1650年)還很年輕時就決心有所創新,於是他確定了「數學萬能論」的名稱和概念。然後萊布尼茨引用了非常類似的概念,並將其變成了以後產生的「符號」邏輯的基礎,而20世紀的「符號」邏輯變成了熱門的數理邏輯。
在18世紀,數學史的先驅作家蒙托克萊(Montucla)說,他已聽說了關於古希臘人首先稱數學為「一般知識」,這一事實有兩種解釋:一種解釋是,數學本身優於其它知識領域;而另一種解釋是,作為一般知識性的學科,數學在修辭學,辯證法,語法和倫理學等等之前就結構完整了。蒙托克萊接受了第二種解釋。他不同意第一種解釋,因為在普羅克洛斯關於歐幾里得的評注中,或在任何古代資料中,都沒有發現適合這種解釋的確證。然而19世紀的語源學家卻傾向於第一種解釋,而20世紀的古典學者卻又偏向第二種解釋。但我們發現這兩種解釋並不矛盾,即很早就有了數學且數學的優越性是無與倫比的。
2. 數學的來歷
數學與其他科學分支一樣,是在一定的社會條件下,通過人類的社會實踐和生產活動發展起來的一種智力積累.其主要內容反映了現實世界的數量關系和空間形式,以及它們之間的關系和結構.這可以從數學的起源得到印證. 古代非洲的尼羅河、西亞的底格里斯河和幼發拉底河、中南亞的印度河和恆河以及東亞的黃河和長江,是數學的發源地.這些地區的先民由於從事農業生產的需要,從控制洪水和灌溉,測量田地的面積、計算倉庫的容積、推算適合農業生產的歷法以及相關的財富計算、產品交換等等長期實踐活動中積累了豐富的經驗,並逐漸形成了相應的技術知識和有關的數學知識. 數學的起源與發展 摘要: 數學是研究現實世界空間形式和數量關系的一門科學。它包括算術、代數、幾何、三角、解析幾何、微積分等等。小學數學是指算術和簡易代數及幾何初步知識。 數學科學伴隨著人類社會的發展,也有它自身發展的歷程。前蘇聯科學院院士A·H·柯爾莫戈洛夫曾把數學發展史劃分為四個階段:第一個階段的前期產生自然數概念、計算方法和簡單的幾何圖形,後期出現數的寫法、數的算術運算、某些幾何圖形的運用,解答簡單的代數題目;第二個階段逐漸形成了初等數學的分支,即算術、代數、幾何、三角;第三個階段建立了解析幾何、微積分、概率論等學科;第四個階段出現計算機學科,以及應用數學的眾多分支、純數學的若干問題的重大突破等。 我國數學在世界數學發展史上,有它卓越的貢獻。早在遠古時代,人們就用繩結表示事物的多少,在彩陶中繪有大量的直線、三角、圓、方、菱形、五邊形、六邊形等對稱圖案,在房屋遺址的基地上,亦發現幾何圖形,表明遠古的人們在一定程度上已經具有數和形的概念。 在新石器時期的彩陶缽上,有多種刻畫符號,其中丨、、、×、+等,很可能是我國最早的記數符號。產生文字之後,在殷商的甲骨文中出現了記數的專用文字和十進制記數法,並且運用規和矩作為簡單的繪圖和測量工具。《前漢書·律歷志》記載了用竹棍表示數和計算的方法,稱為算籌和籌算。在春秋早期乘法口訣被稱為「九九」歌,已經成為很普通的知識。 春秋戰國時期,學術繁榮,產生了相當精彩和可貴的數學思想;公元前6世紀,已經有了關於簡單體積和比例分配問題的演算法,在《考工記》中記載了分數和角度的資料;到秦始皇時,統一了度量衡,並且基本上採用了十進制的度量單位,在《墨經》中提出了幾何名詞的定義和幾何命題等。《杜忠算術》和《許商算術》是最早的數學專著,但這兩部書都失傳了。至今仍保留的古代數學專著是《算數書》,全書共有60多個小標題、90多個題目,書中內容涉及了整數和分數的四則運算、比例問題、面積和體積問題等、並且含有「合分」、「少廣」等數學思想。 大約公元前1世紀完成了《周髀算經》(書中大部分內容於公元前7到6世紀完成),書中記述了矩的用途、勾股定理及其在測量上的應用,相似直角三角形對應邊成比例的定理、開平方問題、等差級數問題,應用古「四分歷」計算相當復雜的分數運算等,此書為重要的寶貴文獻。 古代數學的著名著作是《九章算術》,大約成書於公元1世紀東漢初年,全書列舉了246個數學問題及解決問題的方法。共有九章:第一章「方田」介紹土地面積的計算、含有正方形、矩形、三角形、梯形、圓、環等面積公式,弓形面積和球形表面積的近似公式,還有分數四則運演算法則、約分、通分、求最大公約數等方法;第二章「粟米」介紹了各種糧食折算的比例問題,及解比例的方法,稱為「今有術」;第三章「衰(Cuǐ)分」介紹了按等級分配物資或按一定標准攤派稅收的比例分配問題、等差數列和等比數列問題等;第四章「少廣」介紹了已知正方形面積或正方體體積,求邊長或棱長的開平方或開立方的方法,已知球的體積求直徑的問題等;第五章「商功」介紹了立體體積計算,包括長方體、稜柱、棱錐、稜台、圓柱、圓錐、圓台、楔形體等體積的計算公式;第六章「均輸」介紹了計算按人口多少、物價高低、路程遠近等條件,合理攤派稅收、民工的正比、反比、復比例、等差級數等問題;第七章「盈不足」介紹了盈虧類問題的演算法;第八章「方程」介紹了一次聯立方程問題,引入了負數的概念,及正負數的加減法則;第九章「勾股」介紹了勾股定理的應用和簡單的測量問題,其後,歷史上著名數學家劉徽、祖沖之、李淳風、賈憲等,都曾經深入研究和注釋過《九章算術》並且提出許多新的概念和新的方法。在諸如勾股定理的證明、重差術、割圓術、圓周率近似值、球的體積公式、二次和三次方程的解法。同餘式和不定方程的解法等方面做出了重要的新貢獻。 我國古代數學專著有《勾股圓方圖注》、《九章算術注》、《孫子算經》、《五經算術》、《綴術》等。特別應該指出的是,劉徽在《九章算術注》中對《九章算術》的大部分數學方法作了嚴密的論證,對於一些數學概念提出了明確的解釋,為中國數學發展奠定了堅實的理論基礎。祖沖之在《綴術》中得出了比劉徽所提出的值更精密的圓周率,成為舉世公認的重大成就。賈憲在《黃帝九章演算法細草》中提出的「開方作法本源」圖和增乘開方法,以及《孫子算經》中的「孫子問題」,《張邱建算經》中的「百雞問題」、珠算盤和珠算術等等,均在世界數學發展史上有深遠影響。
3. 數學的由來
數學,起源於人類早期生產活動,為中國古代六藝之一,亦被古希臘學者視為哲學之起點。其版演進可以權看成是抽象化的持續發展,或是題材的延展。第一個被抽象化的概念大概是數字,其對兩個蘋果及兩個橘子之間有某樣相同事物的認知是人類思想的一大突破。 除了如何去數實際物質的數量,人類亦了解了如何去數抽象物質的數量,如年份。算術也自然而然地產生了。
4. 關於數學的來歷100字
數學(漢語拼音:shù xué;希臘語:μαθηματικ;英語:Mathematics或Maths),其英語源自於古希臘語的μθημα(máthēma),有學習、學問、科學之意。古希臘學者視其為哲學之起點,「學問的基礎」。
還有個較狹隘且技術性的意義——「數學研究」。即使在其語源內,其形容詞意義凡與學習有關的,亦被用來指數學。
數學起源於人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,並能應用實際問題.從數學本身看,他們的數學知識也只是觀察和經驗所得,沒有綜合結論和證明,但也要充分肯定他們對數學所做出的貢獻。
(4)關於數學的由來擴展閱讀
基礎數學的知識與運用是個人與團體生活中不可或缺的一部分。其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見.從那時開始,其發展便持續不斷地有小幅度的進展.但當時的代數學和幾何學長久以來仍處於獨立的狀態。
在中國古代,數學叫作算術,又稱算學,最後才改為數學.中國古代的算術是六藝之一(六藝中稱為「數」)。
直到16世紀的文藝復興時期,笛卡爾創立了解析幾何,將當時完全分開的代數和幾何學聯繫到了一起.從那以後,我們終於可以用計算證明幾何學的定理;同時也可以用圖形來形象的表示抽象的代數方程.而其後更發展出更加精微的微積分。
現時數學已包括多個分支.創立於二十世紀三十年代的法國的布爾巴基學派則認為:數學,至少純數學,是研究抽象結構的理論.結構,就是以初始概念和公理出發的演繹系統.他們認為,數學有三種基本的母結構:代數結構、序結構、拓撲結構(鄰域,極限,連通性,維數……)。
5. 數學的由來
學的起源和早期發展:
數學與其他科學分支一樣,是在一定的社會條件下,通過人類的社會實踐和生產活動發展起來的一種智力積累.其主要內容反映了現實世界的數量關系和空間形式,以及它們之間的關系和結構.這可以從數學的起源得到印證.
古代非洲的尼羅河、西亞的底格里斯河和幼發拉底河、中南亞的印度河和恆河以及東亞的黃河和長江,是數學的發源地.這些地區的先民由於從事農業生產的需要,從控制洪水和灌溉,測量田地的面積、計算倉庫的容積、推算適合農業生產的歷法以及相關的財富計算、產品交換等等長期實踐活動中積累了豐富的經驗,並逐漸形成了相應的技術知識和有關的數學知識.
數學的起源與發展
摘要:
數學是研究現實世界空間形式和數量關系的一門科學。它包括算術、代數、幾何、三角、解析幾何、微積分等等。小學數學是指算術和簡易代數及幾何初步知識。
數學科學伴隨著人類社會的發展,也有它自身發展的歷程。前蘇聯科學院院士A·H·柯爾莫戈洛夫曾把數學發展史劃分為四個階段:第一個階段的前期產生自然數概念、計算方法和簡單的幾何圖形,後期出現數的寫法、數的算術運算、某些幾何圖形的運用,解答簡單的代數題目;第二個階段逐漸形成了初等數學的分支,即算術、代數、幾何、三角;第三個階段建立了解析幾何、微積分、概率論等學科;第四個階段出現計算機學科,以及應用數學的眾多分支、純數學的若干問題的重大突破等。
我國數學在世界數學發展史上,有它卓越的貢獻。早在遠古時代,人們就用繩結表示事物的多少,在彩陶中繪有大量的直線、三角、圓、方、菱形、五邊形、六邊形等對稱圖案,在房屋遺址的基地上,亦發現幾何圖形,表明遠古的人們在一定程度上已經具有數和形的概念。
在新石器時期的彩陶缽上,有多種刻畫符號,其中丨、、、×、+等,很可能是我國最早的記數符號。產生文字之後,在殷商的甲骨文中出現了記數的專用文字和十進制記數法,並且運用規和矩作為簡單的繪圖和測量工具。《前漢書·律歷志》記載了用竹棍表示數和計算的方法,稱為算籌和籌算。在春秋早期乘法口訣被稱為「九九」歌,已經成為很普通的知識。
春秋戰國時期,學術繁榮,產生了相當精彩和可貴的數學思想;公元前6世紀,已經有了關於簡單體積和比例分配問題的演算法,在《考工記》中記載了分數和角度的資料;到秦始皇時,統一了度量衡,並且基本上採用了十進制的度量單位,在《墨經》中提出了幾何名詞的定義和幾何命題等。《杜忠算術》和《許商算術》是最早的數學專著,但這兩部書都失傳了。至今仍保留的古代數學專著是《算數書》,全書共有60多個小標題、90多個題目,書中內容涉及了整數和分數的四則運算、比例問題、面積和體積問題等、並且含有「合分」、「少廣」等數學思想。
大約公元前1世紀完成了《周髀算經》(書中大部分內容於公元前7到6世紀完成),書中記述了矩的用途、勾股定理及其在測量上的應用,相似直角三角形對應邊成比例的定理、開平方問題、等差級數問題,應用古「四分歷」計算相當復雜的分數運算等,此書為重要的寶貴文獻。
古代數學的著名著作是《九章算術》,大約成書於公元1世紀東漢初年,全書列舉了246個數學問題及解決問題的方法。共有九章:第一章「方田」介紹土地面積的計算、含有正方形、矩形、三角形、梯形、圓、環等面積公式,弓形面積和球形表面積的近似公式,還有分數四則運演算法則、約分、通分、求最大公約數等方法;第二章「粟米」介紹了各種糧食折算的比例問題,及解比例的方法,稱為「今有術」;第三章「衰(Cuǐ)分」介紹了按等級分配物資或按一定標准攤派稅收的比例分配問題、等差數列和等比數列問題等;第四章「少廣」介紹了已知正方形面積或正方體體積,求邊長或棱長的開平方或開立方的方法,已知球的體積求直徑的問題等;第五章「商功」介紹了立體體積計算,包括長方體、稜柱、棱錐、稜台、圓柱、圓錐、圓台、楔形體等體積的計算公式;第六章「均輸」介紹了計算按人口多少、物價高低、路程遠近等條件,合理攤派稅收、民工的正比、反比、復比例、等差級數等問題;第七章「盈不足」介紹了盈虧類問題的演算法;第八章「方程」介紹了一次聯立方程問題,引入了負數的概念,及正負數的加減法則;第九章「勾股」介紹了勾股定理的應用和簡單的測量問題,其後,歷史上著名數學家劉徽、祖沖之、李淳風、賈憲等,都曾經深入研究和注釋過《九章算術》並且提出許多新的概念和新的方法。在諸如勾股定理的證明、重差術、割圓術、圓周率近似值、球的體積公式、二次和三次方程的解法。同餘式和不定方程的解法等方面做出了重要的新貢獻。
我國古代數學專著有《勾股圓方圖注》、《九章算術注》、《孫子算經》、《五經算術》、《綴術》等。特別應該指出的是,劉徽在《九章算術注》中對《九章算術》的大部分數學方法作了嚴密的論證,對於一些數學概念提出了明確的解釋,為中國數學發展奠定了堅實的理論基礎。祖沖之在《綴術》中得出了比劉徽所提出的值更精密的圓周率,成為舉世公認的重大成就。賈憲在《黃帝九章演算法細草》中提出的「開方作法本源」圖和增乘開方法,以及《孫子算經》中的「孫子問題」,《張邱建算經》中的「百雞問題」、珠算盤和珠算術等等,均在世界數學發展史上有深遠影響。
6. 數學的來歷~-~
數學」的由來
古希臘人在數學中引進了名稱,概念和自我思考,他們很早就開始猜測數學是如何產生的。雖然他們的猜測僅是匆匆記下,但他們幾乎先佔有了猜想這一思考領域。古希臘人隨意記下的東西在19世紀變成了大堆文章,而在20世紀卻變成了令人討厭的陳辭濫調。 在現存的資料中,希羅多德(Herodotus,公元前484--425年)是第一個開始猜想的人。他只談論了幾何學,他對一般的數學概念也許不熟悉,但對土地測量的准確意思很敏感。作為一個人類學家和一個社會歷史學家,希羅多德指出,古希臘的幾何來自古埃及,在古埃及,由於一年一度的洪水淹沒土地,為了租稅的目的,人們經常需要重新丈量土地;他還說:希臘人從巴比倫人那裡學會了日晷儀的使用,以及將一天分成12個時辰。希羅多德的這一發現,受到了肯定和贊揚。認為普通幾何學有一個輝煌開端的推測是膚淺的。
柏拉圖關心數學的各個方面,在他那充滿奇妙幻想的神話故事《費德洛斯篇》中,他說:
故事發生在古埃及的洛克拉丁(區域),在那裡住著一位老神仙,他的名字叫賽斯(Theuth),對於賽斯來說,朱鷺是神鳥,他在朱鷺的幫助下發明了數,計算、幾何學和天文學,還有棋類游戲等。
柏拉圖常常充滿了奇怪的幻想,原因是他不知道自己是否正亞里士多德最後終於用完全概念化的語言談論數學了,即談論統一的、有著自己發展目的的數學。在他的《形而上學》(Meta-physics)第1卷第1章中,亞里士多德說:數學科學或數學藝術源於古埃及,因為在古埃及有一批祭司有空閑自覺地致力於數學研究。亞里士多德所說的是否是事實還值得懷疑,但這並不影響亞里士多德聰慧和敏銳的觀察力。在亞里士多德的書中,提到古埃及僅僅只是為了解決關於以下問題的爭論:1.存在為知識服務的知識,純數學就是一個最佳的例子:2.知識的發展不是由於消費者購物和奢華的需要而產生的。亞里士多德這種「天真」的觀點也許會遭到反對;但卻駁不倒它,因為沒有更令人信服的觀點.
就整體來說,古希臘人企圖創造兩種「科學」的方法論,一種是實體論,而另一種是他們的數學。亞里士多德的邏輯方法大約是介於二者之間的,而亞里士多德自己認為,在一般的意義上講他的方法無論如何只能是一種輔助方法。古希臘的實體論帶有明顯的巴門尼德的「存在」特徵,也受到赫拉克利特「理性」的輕微影響,實體論的特徵僅在以後的斯多葛派和其它希臘作品的翻譯中才表現出來。數學作為一種有效的方法論遠遠地超越了實體論,但不知什麼原因,數學的名字本身並不如「存在」和「理性」那樣響亮和受到肯定。然而,數學名稱的產生和出現,卻反映了古希臘人某些富於創造的特性。下面我們將說明數學這一名詞的來源。
「數學」一詞是來自希臘語,它意味著某種『已學會或被理解的東西』或「已獲得的知識」,甚至意味著「可獲的東西」, 「可學會的東西」,即「通過學習可獲得的知識」,數學名稱的這些意思似乎和梵文中的同根詞意思相同。甚至偉大的辭典編輯人利特雷(E.Littre 也是當時傑出的古典學者),在他編輯的法語字典(1877年)中也收入了「數學」一詞。牛津英語字典沒有參照梵文。公元10世紀的拜占庭希臘字典「Suidas」中,引出了「物理學」、「幾何學」和「算術」的詞條,但沒有直接列出「數學」—詞。
「數學」一詞從表示一般的知識到專門表示數學專業,經歷一個較長的過程,僅在亞里士多德時代,而不是在柏拉圖時代,這一過程才完成。數學名稱的專有化不僅在於其意義深遠,而在於當時古希臘只有「詩歌」一詞的專有化才能與數學名稱的專有化相媲美。「詩歌」原來的意思是「已經製造或完成的某些東西」,「詩歌」一詞的專有化在柏拉圖時代就完成了。而不知是什麼原因辭典編輯或涉及名詞專有化的知識問題從來沒有提到詩歌,也沒有提到詩歌與數學名稱專有化之間奇特的相似性。但數學名稱的專有化確實受到人們的注意。
首先,亞里士多德提出, 「數學」一詞的專門化使用是源於畢達哥拉斯的想法,但沒有任何資料表明對於起源於愛奧尼亞的自然哲學有類似的思考。其次在愛奧尼亞人中,只有泰勒斯(公元前640?--546年)在「純」數學方面的成就是可信的,因為除了第歐根尼·拉爾修(Diogenes Laertius)簡短提到外,這一可信性還有一個較遲的而直接的數學來源,即來源於普羅克洛斯(Proclus)對歐幾里得的評註:但這一可信性不是來源於亞里士多德,盡管他知道泰勒斯是一個「自然哲學家」;也不是來源於早期的希羅多德,盡管他知道塞利斯是一個政治、軍事戰術方面的「愛好者」,甚至還能預報日蝕。以上這些可能有助於解釋為什麼在柏拉圖的體系中,幾乎沒有愛奧尼亞的成份。赫拉克利特(公元前500--?年)有一段名言:「萬物都在運動中,物無常往」, 「人們不可能兩次落進同一條河裡」。這段名言使柏拉圖迷惑了,但赫拉克賴脫卻沒受到柏拉圖給予巴門尼德那樣的尊敬。巴門尼德的實體論,從方法論的角度講,比起赫拉克賴脫的變化論,更是畢達哥拉斯數學的強有力的競爭對手。
對於畢達哥拉斯學派來說,數學是一種「生活的方式」。事實上,從公元2世紀的拉丁作家格利烏斯(Gellius)和公元3世紀的希臘哲學家波菲利(Porphyry)以及公元4世紀的希臘哲學家揚布利科斯(Iamblichus)的某些證詞中看出,似乎畢達哥拉斯學派對於成年人有一個「一般的學位課程」,其中有正式登記者和臨時登記者。臨時成員稱為「旁聽者」,正式成員稱為「數學家」。
這里「數學家」僅僅表示一類成員,而並不是他們精通數學。畢達哥拉斯學派的精神經久不衰。對於那些被阿基米德神奇的發明所深深吸引的人來說,阿基米德是唯一的獨特的數學家,從理論的地位講,牛頓是一個數學家,盡管他也是半個物理學家,一般公眾和新聞記者寧願把愛因斯坦看作數學家,盡管他完全是物理學家。當羅吉爾·培根(Roger Bacon,1214--1292年)通過提倡接近科學的「實體論」,向他所在世紀提出挑戰時,他正將科學放進了一個數學的大框架,盡管他在數學上的造詣是有限的,當笛卡兒(Descartes,1596--1650年)還很年輕時就決心有所創新,於是他確定了「數學萬能論」的名稱和概念。然後萊布尼茨引用了非常類似的概念,並將其變成了以後產生的「符號」邏輯的基礎,而20世紀的「符號」邏輯變成了熱門的數理邏輯。
在18世紀,數學史的先驅作家蒙托克萊(Montucla)說,他已聽說了關於古希臘人首先稱數學為「一般知識」,這一事實有兩種解釋:一種解釋是,數學本身優於其它知識領域;而另一種解釋是,作為一般知識性的學科,數學在修辭學,辯證法,語法和倫理學等等之前就結構完整了。蒙托克萊接受了第二種解釋。他不同意第一種解釋,因為在普羅克洛斯關於歐幾里得的評注中,或在任何古代資料中,都沒有發現適合這種解釋的確證。然而19世紀的語源學家卻傾向於第一種解釋,而20世紀的古典學者卻又偏向第二種解釋。但我們發現這兩種解釋並不矛盾,即很早就有了數學且數學的優越性是無與倫比的。
7. 有關數學的來歷的資料
原始公社末期,私有制和貨物交換產生以後,數與形的概念有了進一步的發展,仰韶文化時期出土的陶器,上面已刻有表示1234的符號。到原始公社末期,已開始用文字元號取代結繩記事了。
西安半坡出土的陶器有用1~8個圓點組成的等邊三角形和分正方形為100個小正方形的圖案,半坡遺址的房屋基址都是圓形和方形。為了畫圓作方,確定平直,人們還創造了規、矩、准、繩等作圖與測量工具。據《史記·夏本紀》記載,夏禹治水時已使用了這些工具。
商代中期,在甲骨文中已產生一套十進制數字和記數法,其中最大的數字為三萬;與此同時,殷人用十個天乾和十二個地支組成甲子、乙丑、丙寅、丁卯等60個名稱來記60天的日期;在周代,又把以前用陰、陽符號構成的八卦表示八種事物發展為六十四卦,表示64種事物。
公元前一世紀的《周髀算經》提到西周初期用矩測量高、深、廣、遠的方法,並舉出勾股形的勾三、股四、弦五以及環矩可以為圓等例子。《禮記·內則》篇提到西周貴族子弟從九歲開始便要學習數目和記數方法,他們要受禮、樂、射、馭、書、數的訓練,作為「六藝」之一的數已經開始成為專門的課程。
春秋戰國之際,籌算已得到普遍的應用,籌算記數法已使用十進位值制,這種記數法對世界數學的發展是有劃時代意義的。這個時期的測量數學在生產上有了廣泛應用,在數學上亦有相應的提高。
戰國時期的百家爭鳴也促進了數學的發展,尤其是對於正名和一些命題的爭論直接與數學有關。名家認為經過抽象以後的名詞概念與它們原來的實體不同,他們提出「矩不方,規不可以為圓」,把「大一」(無窮大)定義為「至大無外」,「小一」(無窮小)定義為「至小無內」。還提出了「一尺之棰,日取其半,萬世不竭」等命題。
而墨家則認為名來源於物,名可以從不同方面和不同深度反映物。墨家給出一些數學定義。例如圓、方、平、直、次(相切)、端(點)等等。
墨家不同意「一尺之棰」的命題,提出一個「非半」的命題來進行反駁:將一線段按一半一半地無限分割下去,就必將出現一個不能再分割的「非半」,這個「非半」就是點。
名家的命題論述了有限長度可分割成一個無窮序列,墨家的命題則指出了這種無限分割的變化和結果。名家和墨家的數學定義和數學命題的討論,對中國古代數學理論的發展是很有意義的。
中國古代數學體系的形成
秦漢是封建社會的上升時期,經濟和文化均得到迅速發展。中國古代數學體系正是形成於這個時期,它的主要標志是算術已成為一個專門的學科,以及以《九章算術》為代表的數學著作的出現。
《九章算術》是戰國、秦、漢封建社會創立並鞏固時期數學發展的總結,就其數學成就來說,堪稱是世界數學名著。例如分數四則運算、今有術(西方稱三率法)、開平方與開立方(包括二次方程數值解法)、盈不足術(西方稱雙設法)、各種面積和體積公式、線性方程組解法、正負數運算的加減法則、勾股形解法(特別是勾股定理和求勾股數的方法)等,水平都是很高的。其中方程組解法和正負數加減法則在世界數學發展上是遙遙領先的。就其特點來說,它形成了一個以籌算為中心、與古希臘數學完全不同的獨立體系。
《九章算術》有幾個顯著的特點:採用按類分章的數學問題集的形式;算式都是從籌算記數法發展起來的;以算術、代數為主,很少涉及圖形性質;重視應用,缺乏理論闡述等。
這些特點是同當時社會條件與學術思想密切相關的。秦漢時期,一切科學技術都要為當時確立和鞏固封建制度,以及發展社會生產服務,強調數學的應用性。最後成書於東漢初年的《九章算術》,排除了戰國時期在百家爭鳴中出現的名家和墨家重視名詞定義與邏輯的討論,偏重於與當時生產、生活密切相結合的數學問題及其解法,這與當時社會的發展情況是完全一致的。
《九章算術》在隋唐時期曾傳到朝鮮、日本,並成為這些國家當時的數學教科書。它的一些成就如十進位值制、今有術、盈不足術等還傳到印度和阿拉伯,並通過印度、阿拉伯傳到歐洲,促進了世界數學的發展。
8. 數學的來歷 50字
數學」一詞是來自希臘語,字面意思有學習、科學之意。它起源於人類早期的生產活動,其基本概念的精煉早在古埃及、美索不達米亞及古印度就已經出現。
人類歷史發展和社會生活中,數學也發揮著不可替代的作用,也是學習和研究現代科學技術必不可少的基本工具。
基礎數學的知識與運用是個人與團體生活中不可或缺的一部分.其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見.從那時開始,其發展便持續不斷地有小幅度的進展.但當時的代數學和幾何學長久以來仍處於獨立的狀態。
代數學可以說是最為人們廣泛接受的「數學」.可以說每一個人從小時候開始學數數起,最先接觸到的數學就是代數學.而數學作為一個研究「數」的學科,代數學也是數學最重要的組成部分之一.幾何學則是最早開始被人們研究的數學分支。
(8)關於數學的由來擴展閱讀:
許多如數、函數、幾何等的數學對象反應出了定義在其中連續運算或關系的內部結構.數學就研究這些結構的性質,例如:數論研究整數在算數運算下如何表示。
此外,不同結構卻有著相似的性質的事情時常發生,這使得通過進一步的抽象,然後通過對一類結構用公理描述他們的狀態變得可能,需要研究的就是在所有的結構里找出滿足這些公理的結構.因此,我們可以學習群、環、域和其他的抽象系統。
把這些研究(通過由代數運算定義的結構)可以組成抽象代數的領域.由於抽象代數具有極大的通用性,它時常可以被應用於一些似乎不相關的問題,例如一些古老的尺規作圖的問題終於使用了伽羅瓦理論解決了,它涉及到域論和群論。
代數理論的另外一個例子是線性代數,它對其元素具有數量和方向性的向量空間做出了一般性的研究.這些現象表明了原來被認為不相關的幾何和代數實際上具有強力的相關性.組合數學研究列舉滿足給定結構的數對象的方法。
9. 數學的由來(50字)
數學抄起源於人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,並能應用實際問題.從數學本身看,他們的數學知識也只是觀察和經驗所得,沒有綜合結論和證明,但也要充分肯定他們對數學所做出的貢獻。
數學(漢語拼音:shù xué;希臘語:μαθηματικ;英語:Mathematics或Maths),源自於古希臘語的μθημα(máthēma),其有學習、學問、科學之意。古希臘學者視其為哲學之起點,「學問的基礎」。
(9)關於數學的由來擴展閱讀:
數學的結構:
許多如數、函數、幾何等的數學對象反應出了定義在其中連續運算或關系的內部結構.數學就研究這些結構的性質,例如:數論研究整數在算數運算下如何表示.此外,不同結構卻有著相似的性質的事情時常發生,這使得通過進一步的抽象,然後通過對一類結構用公理描述他們的狀態變得可能,需要研究的就是在所有的結構里找出滿足這些公理的結構。
代數理論的另外一個例子是線性代數,它對其元素具有數量和方向性的向量空間做出了一般性的研究.這些現象表明了原來被認為不相關的幾何和代數實際上具有強力的相關性.組合數學研究列舉滿足給定結構的數對象的方法.
參考資料來源:網路-數學