當前位置:首頁 » 語數英語 » 數學做題技巧

數學做題技巧

發布時間: 2021-08-09 14:13:14

數學選擇題答題技巧

1.標准化試題的漏洞
除了用了知識點之外,用選擇題本身固有漏洞做題。大家記住一點,所有選擇題,題目或者答案必然存在做題暗示點。因為首先必須得承認,這題能做,只要題能做,必須要有暗示。
1)有選項。利用選項之間的關系,我們可以判斷答案是選或不選。如兩個選項意思完全相反,則必有正確答案。
2)答案只有一個。大家都有這個經驗,當時不明白什麼道理,但是看到答案就能明白。由此選項將產生暗示
3)題目暗示。選擇題的題目必須得說清楚。大家在審題過程中,是必須要用到有效的訊息的,題目本身就給出了暗示。
4)利用干擾選項做題。選擇題除了正確答案外,其他的都是干擾選項,除非是亂出的選項,否則都是可以利用選項的干擾性做題。一般出題者不會隨意出個選項,總是和正確答案有點關系,或者是可能出錯的結果,我們就可以藉助這個命題過程得出正確的結論。
5)選擇題只管結果,不管中間過程,因此在解題過程中可以大膽的簡化中間過程。
6)選擇題必須考察課本知識,做題過程中,可以判斷和課本哪個知識相關?那個選項與這個知識點無關的可立即排除。因此聯系課本知識點做題。
8)選擇題必須保證考生在有限時間內可以做出來的,因此當大家花很多時間想不對的時候,說明思路錯了。選擇題必須是由一個簡單的思路構成的。
2.選擇題解答方法和技巧
一、直接法:根據選擇題的題設條件,通過計算、推理或判斷,最後達到題目要求。這種直接根據已知條件進行計算、判斷或推理而得到的答案的解選擇題的方法稱之為直接法。
二、間接法:間接法又稱試驗法、排除法或篩選法,又可將間接法分為結論排除法、特殊值排除法、逐步排除法和邏輯排除法等方法。
1)結論排除法:把題目所給的四個結論逐一代回原題中進行驗證,把錯誤的排除掉,直至找到正確的答案,這一逐一驗證所給結論正確性的解答選擇題的方法稱之為結論排除法。
2)特殊值排除法:有些選擇題所涉及的數學命題與字母的取值范圍有關,在解決這類解答題,可以考慮從取值范圍內選取某幾個特殊的值,代入原命題進行驗證,然後排除錯誤的,保留正確的,這種解決答題的方法稱之為特殊值排除法。
3)逐步排除法:如果我們在計算或推導的過程中不是一步到位,而是逐步進行,即採用「走一走、瞧一瞧」的辦法,每走一步都與四個結論比較一次,排除掉不可能的,這樣也許走不到最後一步,三個錯誤的結論就被全排除掉了。
4)邏輯排除法:在選擇題的編制過程中,應該注意四個選擇答案之間的邏輯關系,盡量避免等價、包含、對抗等關系的出現,但實際上有些選擇題並沒有注意到這些原則,致使又產生了一種新的解答選擇題的方法。它是拋開題目的已知條件,利用四個選擇答案之間的邏輯關系進行取捨的一種方法,當然最後還有可能使用其他排除的方法才能得到正確的答案。
邏輯排除法使用的邏輯關系有以下幾條:
如果在四個結論中,有A=>B,則A可以被排除,若A、B是等價命題時,即A<=>B,那麼根據選擇題的命題結構,則A、B可同時被排除。
若A、B是對立的,即A<=>B,A、B中必有一真一假,則另兩個選擇答案C、D可以被排除。
對邏輯排除法要慎用,主要是因為初中階段所學的命題及邏輯知識有限,又由於是命題本身造成的,並且能用這種方法解決的題目很少。
總之,這幾種方法中,採用直接法、結論排除法的題型較多。
5)通過猜想、測量的方法,直接觀察或得出結果。這類方法在近年來的考題中常被運用於探索規律性的問題,此類題的主要解法是運用不完全歸納法,通過試驗、猜想、試誤驗證、總結、歸納等過程使問題得解。
三、數形結合法:就是把問題中的數量關系和空間圖形結合起來思考問題。數與型相互轉化,使問題化繁為簡,得以解決。
四、特殊值法:有些問題從理論上論證它的正確性比較困難,但是代入一些滿足題意的特殊值,驗證它是錯誤的比較容易,此時,我們就可以用這種方法來解決問題。
五、劃歸轉化法:運用某種方法把生疏問題轉化為熟悉問題,把復雜問題轉化為簡單問題,使問題得以解決。
六、方程法:通過設未知數,找等量關系,建方程,解方程,使問題得以解決的方法。
七、實踐操作法:近幾年出現了一些紙片折疊剪裁的題目,我們在考試中實際動手操作一下,就會很容易得出答案。
八、假設法:有些題目情況繁多,無從下手,這時候我們就可以先假設一種情況,然後從這個假設出發,排除不可能的情況,得出正確結論。
上面是一些做選擇題的常用方法,同學們要常思考,多總結。要善於抓住題目的特點,採取靈活多樣的方法,快捷准確的找到答案。此外,還有一些特殊題型可以用其他方法解答。如:
九、作圖法:有的選擇題可通過命題條件的函數關系或幾何意義,作出函數的圖象或幾何圖形,藉助於圖象或圖形的直觀性從中找出正確答案。這種應用「數形結合」來解數學選擇題的方法,我們稱之為「作圖法」。
十、驗證法:直接將各選擇支中的結論代人題設條件進行檢驗,從而選出符合題意的答案。
十一、定義法:運用相關的定義、概念、定理、公理等內容,作出正確選擇的一種方法。
十二、綜合法:為了對選擇題迅速、正確地作出判斷,有時需要綜合運用前面介紹的幾種方法。
解選擇題的原則是既要注意題目特點,充分應用供選擇的答案所提供的信息,又要有效地排除錯誤答案可能造成的於抗,須注意以下幾點:(1)要認真審題;(2)要大膽猜想;(3)要小心驗證;(4)先易後難,先簡後繁。

㈡ 怎樣學好數學方法技巧

首先數學公式一定要會,如果不會公式對於我我們做提示有一定困難的,所一你要講那些基本概念和基本公式熟記於心。學習數學主要還是在於解題方法的積累,不同的題型有不同的解題方法,只要你多多總結解題方法,相信你的數學成績會有很大的提高的。
你一定要記住「聰明出於勤奮,天才在於積累」。好好學習,加油!
數學是必考科目之一,故從初一開始就要認真地學習數學。那麼,怎樣才能學好數學呢?現介紹幾種方法以供參考:
一、課內重視聽講,課後及時復習。
新知識的接受,數學能力的培養主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學習,課後要及時復習不留疑點。首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不採用不清楚立即翻書之舉。認真獨立完成作業,勤於思考,從某種意義上講,應不造成不懂即問的學習作風,對於有些題目由於自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網路,納入自己的知識體系。
二、適當多做題,養成良好的解題習慣。
要想學好數學,多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為准,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規律。對於一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態,在考試中能運用自如。實踐證明:越到關鍵時候,你所表現的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養成良好的解題習慣是非常重要的。
三、調整心態,正確對待考試。
首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對於那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題後要總結歸納。調整好自己的心態,使自己在任何時候鎮靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。
在考試前要做好准備,練練常規題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對於一些容易的基礎題要有十二分把握拿全分;對於一些難題,也要盡量拿分,考試中要學會嘗試得分,使自己的水平正常甚至超常發揮。
學習上占第一,每個同學都可以做到。之所以你占不了第一,主要有兩個原因:第一、生活方式、學習方法不正確,第二、沒有堅強的毅力。在這裡面毅力是第一重要的,學習方法是第二重要的。在現實生活中,全中國仍有70%以上的占第一的學生雖然佔了第一,但他們並不是毅力最強的,或者說學習方法生活方式不是最好的。他們也許今天是第一,明天就不是了。也就是說,你如果按占第一的方法去學習、去鍛煉,一般都會超過現有的第一。

㈢ 數學做題如何步驟分解

數學的解題方法是隨著對數學對象的研究的深入而發展起來的。教師鑽研習題、精通解題方法,可以促進教師進一步熟練地掌握中學數學教材,練好解題的基本功,提高解題技巧,積累教學資料,提高業務水平和教學能力。

下面介紹的解題方法,都是初中數學中最常用的,有些方法也是中學教學大綱要求掌握的。

1、配方法

所謂配方,就是把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恆等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。

2、因式分解法

因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。

3、換元法

換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。

4、判別式法與韋達定理

一元二次方程ax2+bx+c=0(a、b、c屬於R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。

韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。

5、待定系數法

在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而後根據題設條件列出關於待定系數的等式,最後解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的方法之一。

㈣ 數學學習方法及答題技巧

數學是研究數量結構、變化、以及空間模型等概念的科學.它是物理化學學科的基礎,而且與我們的生活息息相關.所以說,學好數學對於我們每個同學來說都是非常重要的。初中階段,我們就逐漸開始接觸比較難的數學知識了,但是這個過程是循序漸進的,所以只要一步一步的學好每一階段的知識,學好數學是並不難的。
進入初中後,在數學課的平時學習中,要做到以下幾點,能夠保證將所學的知識掌握牢固。
1.課前認真預習.預習的目的是為了能更好得聽老師講課,通過預習,掌握度要達到百分之八十.帶著預習中不明白的問題去聽老師講課,來解答這類的問題.預習還可以使聽課的整體效率提高.具體的預習方法:將書上的題目做完,畫出知識點,整個過程大約持續15-20分鍾.在時間允許的情況下,還可以將練習冊做完。
2.讓數學課學與練結合.在數學課上,光聽是沒用的.當老師讓同學去黑板上演算時,自己也要在草稿紙上練.如果遇到不懂的難題,一定要提出來,不能不求甚解.否則考試遇到類似的題目就可能不會做.聽老師講課時一定要全神貫注,要注意細節問題,否則「千里之堤,毀於蟻穴」。
3.課後及時復習.寫完作業後對當天老師講的內容進行梳理,可以適當地做25分鍾左右的課外題.可以根據自己的需要選擇適合自己的課外書.其課外題內容大概就是今天上的課。
4.單元測驗是為了檢測近期的學習情況.其實分數代表的是你的過去,關鍵的是對於每次考試的總結和吸取教訓,是為了讓你在期中、期末考得更好.老師經常會在沒通知的情況下進行考試,所以要及時做到「課後復習」。
期中期末階段的學習中要將平時的單元檢測卷整理整齊,並且將錯題再做一遍.如果整張試卷考得都不好,那麼可以復印將試卷重做一遍.除試卷外,還可以將作業上的錯題、難題、易錯題重做一遍。
如果想得高分,在選擇、填空、計算題上是不能丟分的。在考數學的時候思想不能開小差,而且遇到難題時不能想「沒考好怎麼辦啊」等內容。在通常情況下,期末考試的難題都是不知道怎麼做,但有可能突然明白的那種。遇到這種題目要沉著冷靜,利用題目給你的一切條件進行分析。在期中、期末考試中有充足的時間,將自己的速度壓下來,不是越快越好,爭取一次做成功.大概留35分鍾的時間檢查。
多做題有一定作用,但上課聽講、認真答題及提高准確率、總結經驗才是最重要的。還要將所學的知識用到生活中去,做到學以致用。當你運用數學知識解決了生活中實際問題的時候,你就會感受到學習數學的快樂。

解題思路的獲得,一般要經歷三個步驟:
1.從理解題意中提取有用的信息,如數式特點,圖形結構特徵等;
2.從記憶儲存中提取相關的信息,如有關公式,定理,基本模式等;
3.將上述兩組信息進行有效重組,使之成為一個合乎邏輯的和諧結構。
數學的表達,有3種方式:
1.文字語言,即用漢字表達的內容;
2.圖形語言,如幾何的圖形,函數的圖象;
3.符號語言,即用數學符號表達的內容,比如AB∥CD。
在初中學段中,不僅要學好數學知識,同時也要注意數學思想方法的學習,掌握好思想和方法,對數學的學習將會起到事半功倍的良好效果。其中整體與分類、類比與聯想、轉化與化歸和數形結合等不僅僅是學好數學的重要思想,同時對您今後的生活也必將起重要的作用。
先來看轉化思想:
我們知道任何事物都在不斷的運動,也就是轉化和變化。在生活中,為了解決一個具體問題,不論它有多復雜,我們都會把它簡單化,熟悉化以後再去解決。體現在數學上也就是要把難的問題轉化為簡單的問題,把不熟悉的問題轉化為熟悉的問題,把未知的問題轉化為已知的問題。
如方程的學習中,一元一次方程是學習方程的基礎,那麼在學習二元一次方程組時,可以通過加減消元和代入消元這樣的手段把二元一次方程組轉化為一元一次方程來解決,轉化(加減和代入)是手段,消元是目的;在學習一元二次方程時,可以通過因式分解把一元二次方程轉化為兩個一元一次方程,在這里,轉化(分解因式)是手段,降次是目的。把未知轉化為已知,把復雜轉化為簡單。同樣,三元一次方程組可以通過加減和代入轉化為二元一次方程組,再轉化為一元一次方程。在幾何學習中,三角形是基礎,可能通過連對角線等作輔助線的方法把多邊形轉化為多個三角形進行問題的解決。
所以,在數學學習和生活中都要注意轉化思想的運用,解決問題,轉化是關鍵。

㈤ 數學考試有沒有什麼好的答題技巧

怎樣學好高中數學?首先要摘要答題技巧

現在數學這個科目也是必須學習的內容,但是現在還有很多孩子們都不喜歡這個科目,原因就是因為他們不會做這些題,導致這個科目拉他們的總分,該怎樣學好高中數學?對於數學題,他們都分為哪些類型?

高中數學試卷

怎樣學好高中數學這也是需要我們自己群摸索一些學習的技巧,找到自己適合的方法,這還是很關鍵的.

㈥ 小學數學考試答題技巧

問題的關鍵在於臨場發揮,其好與壞直接關繫到數學考試的成敗。所以說,臨場發揮的技巧是打勝這場仗必不可少的一項武器。

首先,拿到試卷之後應該粗略地瀏覽一遍,除了看是否有印刷問題、缺漏頁之外,更重要的是看試卷的題量、結構、難易程度,先對試卷有一個總體上的把握,做到心裡有底。

其次,開始答題。答題也是講究順序的,一般按照先易後難、先簡後繁的順序作答。一般來說,試卷上的考題也是按照這種順序排列的,但是也不排除有例外。所以,答題的時候要合理地運用時間,不要卡在某一道題目上面,那樣的話只會浪費時間又拿不到分,不僅這道題做不出,後面會做的題目也來不及做了。

遇到比較容易的題目,應該格外地當心,因為有的時候並不是險峻的高山擋住了我們的去路,而是腳下的不起眼的小石子將我們絆倒。所以,每當遇到比較簡單的題目時,你要提醒自己特別留心,留心題目中會不會設什麼陷阱,留心計算中會不會有什麼差錯,留心解題的步驟是否嚴密,以保證將這些題目的分數收入囊中。

遇到稍微有點難度的題目,最重要的是使自己冷靜下來,並且給自己打氣,告訴自己「我能行」,然後再進行思考。思考時,可以先用常規的方法嘗試解決,當這條路走不通時,不妨「知難而退」,換一種方式進行,改變思考問題的角度,也許就能簡單地解決束手無策的問題。無法答出問題時,還可預先列舉與問題有關的一切條件,再配合需要來確認問題,將這些條件以各種角度來進行檢查,也許能找到解題的「鑰匙」。

當然,稍微有點難度的題目對於有一定基礎和能力的同學來說,還是可以正確地解答出來的,但是,當我們遇到感覺上非常難的題目時,此時「放棄」應該是最好的選擇。這一決定並不妨礙我們在考試中取得高分,因為一般非常難的題目在一次考試中所佔的分數並有多。這樣的話,只要保證其他題目都能夠做對,在考試中得高分還是很輕松的。所以,遇到這種題目時,我們必須有「壯士斷腕」的決心,做到「棄卒保帥」。

一般來講,試卷做完還有5-10分鍾左右,這個5-10分鍾應該是比較難熬的一段時間,我認為可以利用這一段時間檢查一下選擇、填空題。在這里我想說的是,除非有確切的證據證明你自己一開始的答案是錯誤的,對於拿不準的題目最好還是堅持自己的第一印象,防止在最後幾分鍾內將答案改錯,徒增遺憾。

㈦ 初中數學做題技巧

掌握了中學數學這9種常用解題方法,中考數學考試就游刃有餘了。

1、配方法:就是把一個解析式利用恆等式變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恆等變形的方法,它的應用非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。

2、因式分解法:就是把一個多項式化成幾個整式乘積的形式。因式分解是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角函數等的解題中起著重要作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分租分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。

3、換元法:是數學種一個非常重要而且應用十分廣泛的解題方法。通常把未知數或變數成元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元法去代替原式子的一個部分或改造原來的式子,使它簡化,使問題易於解決。

4、判別式法與韋達定理:一元二次方程ax2+bx+c=0(a、b、c屬於R,a!=0)根的判別式不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至解析幾何、三角函數運算中都有非常廣泛的應用。韋達定理除了已知一元二次方程的一個根,求另一個根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。

5、待定系數法:在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而後根據題設條件列出關於待定系數的等式,最後解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的重要方法之一。

6、構造法:在解題時,常常會採用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利於問題的解決。

7、反證法:是一種間接證明法,先提出一個與命題的結論相反的假設,然後從這個假設出發,經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法與窮舉反證法。

8、等(面或體)積法:平面(立體)幾何中講的面積(體積)公式以及由面積(體積)公式推出的與面積(體積)計算有關的性質定理,不僅可用於計算面積(體積),而且用它來證明(計算)幾何題有時會收到事半功倍的效果。運用 面積(體積)關系來證明或計算幾何題的方法,稱為等(面或體)積法,它是幾何中的一種常用方法。用歸納法或分析法證明幾何題,其困難在添置輔助線。等(面或體)積法的特點是把已知和未知各量用面積(體積)公式聯系起來,通過運算達到求證的結果。所以用等(面或體)積法來解幾何題,幾何元素之間關系變成數量之間的關系,只需要計算,有時可以不添置輔助線,即使需要添置輔助線,也很容易考慮到。

9、幾何變換法:在數學問題的研究中,常常運用變換法,把復雜性問題轉化為簡單性問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數學中所涉及的變換主要是初等變換。有一些看來很難甚至於無法下手的習題,可以藉助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數學教學中。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利於對圖形本質的認識。幾何變換包括:平移;旋轉;對稱。

㈧ 求高中數學做題技巧

怎樣學好高中數學?首先要摘要答題技巧

現在數學這個科目也是必須學習的內容,但是現在還有很多孩子們都不喜歡這個科目,原因就是因為他們不會做這些題,導致這個科目拉他們的總分,該怎樣學好高中數學?對於數學題,他們都分為哪些類型?

高中數學試卷

怎樣學好高中數學這也是需要我們自己群摸索一些學習的技巧,找到自己適合的方法,這還是很關鍵的.

熱點內容
用什麼詞來形容班主任 發布:2025-07-04 00:41:46 瀏覽:849
吉婷老師 發布:2025-07-04 00:40:42 瀏覽:215
哪個銀行比較好 發布:2025-07-03 22:42:49 瀏覽:356
老師的苦是 發布:2025-07-03 22:41:31 瀏覽:714
四年級上冊語文期末卷 發布:2025-07-03 22:04:20 瀏覽:476
一個是班主任的體育老師 發布:2025-07-03 20:09:33 瀏覽:427
生物公司前景 發布:2025-07-03 19:58:55 瀏覽:709
幼兒園教師簡筆畫培訓 發布:2025-07-03 17:02:39 瀏覽:268
小學師德師風學習簡報 發布:2025-07-03 16:58:04 瀏覽:472
全國四級英語 發布:2025-07-03 15:51:20 瀏覽:88