初中數學動點
㈠ 初中數學動點問題( 要所有關於動點的)
動點問題一般都是運動中的圖形幾何問題,一定是多種結果的辨析,容易丟回分的地方是丟答解和缺少情況。
追問:
我平時就是不知道該從哪入手?很麻煩也不懂
回答:
動點就是將運動變成不同的情況,針對於一種情況,你要畫出相應的圖形,然後簡化圖形,注意觀察單獨一種情況的圖形,這樣會對你有一定的幫助!
追問:
我試試,那有關的定理是不是都是課本常用的?
回答:
全部都是書本上的
㈡ 初中數學題 動點
1很簡單,看下面的吧
2有點坑,我的思路大致是確定幾個關鍵點(因為絕對要用兩專個或以上的一次函數或屬者二次函數表示),我確定的點有1、AE重合(t=0,作答時要排除)時 2、CD重合(t=2.5,作答時要排除) 3、DF經過B(t=1.5,AB與EF交與G) 4、EF經過B(t=2),當t<=2時。觀察可以發現三角形GEA是頂角為120°的等腰三角形,過B作三角形CBA的高交AC於P,用等面積法可以求絕大多數數據……要開飯了,希望這個思路能幫到你,如果實在想不懂可以繼續討論。
吃完繼續:找到4個關鍵點後畫在一起觀察,發現在兩頭陰影面積分別是起點=3倍根號3 終點=(9倍根號3)/4,再觀察,發現t≤1.5的時候,陰影部分的面積=12倍根號3(BPA)-S梯形-S等腰三角形
S梯形=【(上底+下底)*高】/2=【(2t倍根號3)/3+2倍根號3】*(3-2t)/2=
(2根號3t^2)/3+3根號3-根號3t
S三角形=底*高/2=……(三角函數30°各邊易求)……=2t
㈢ 初中數學動點問題
問題問得太泛了。附初中數學公式大全 ,希望對你有用。
1 過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的餘角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內錯角相等,兩直線平行
11 同旁內角互補,兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內錯角相等
14 兩直線平行,同旁內角互補
15 定理 三角形兩邊的和大於第三邊
16 推論 三角形兩邊的差小於第三邊
17 三角形內角和定理 三角形三個內角的和等於180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21 全等三角形的對應邊、對應角相等
22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27 定理1 在角的平分線上的點到這個角的兩邊的距離相等
28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35 推論1 三個角都相等的三角形是等邊三角形
36 推論 2 有一個角等於60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38 直角三角形斜邊上的中線等於斜邊上的一半
39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42 定理1 關於某條直線對稱的兩個圖形是全等形
43 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形
48定理 四邊形的內角和等於360°
49四邊形的外角和等於360°
50多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51推論 任意多邊的外角和等於360°
52平行四邊形性質定理1 平行四邊形的對角相等
53平行四邊形性質定理2 平行四邊形的對邊相等
54推論 夾在兩條平行線間的平行線段相等
55平行四邊形性質定理3 平行四邊形的對角線互相平分
56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60矩形性質定理1 矩形的四個角都是直角
61矩形性質定理2 矩形的對角線相等
62矩形判定定理1 有三個角是直角的四邊形是矩形
63矩形判定定理2 對角線相等的平行四邊形是矩形
64菱形性質定理1 菱形的四條邊都相等
65菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66菱形面積=對角線乘積的一半,即S=(a×b)÷2
67菱形判定定理1 四邊都相等的四邊形是菱形
68菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71定理1 關於中心對稱的兩個圖形是全等的
72定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一
點平分,那麼這兩個圖形關於這一點對稱
74等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75等腰梯形的兩條對角線相等
76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形
77對角線相等的梯形是等腰梯形
78平行線等分線段定理 如果一組平行線在一條直線上截得的線段
相等,那麼在其他直線上截得的線段也相等
79 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第
三邊
81 三角形中位線定理 三角形的中位線平行於第三邊,並且等於它
的一半
82 梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的
一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性質 如果a:b=c:d,那麼ad=bc
如果ad=bc,那麼a:b=c:d
84 (2)合比性質 如果a/b=c/d,那麼(a±b)/b=(c±d)/d
85 (3)等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼
(a+c+…+m)/(b+d+…+n)=a/b
86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應
線段成比例
87 推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89 平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例
90 定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91 相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94 判定定理3 三邊對應成比例,兩三角形相似(SSS)
95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三
角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96 性質定理1 相似三角形對應高的比,對應中線的比與對應角平
分線的比都等於相似比
97 性質定理2 相似三角形周長的比等於相似比
98 性質定理3 相似三角形面積的比等於相似比的平方
99 任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等
於它的餘角的正弦值
100任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等
於它的餘角的正切值
101圓是定點的距離等於定長的點的集合
102圓的內部可以看作是圓心的距離小於半徑的點的集合
103圓的外部可以看作是圓心的距離大於半徑的點的集合
104同圓或等圓的半徑相等
105到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半
徑的圓
106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直
平分線
107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距
離相等的一條直線
109定理 不在同一直線上的三點確定一個圓。
110垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111推論1 ①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112推論2 圓的兩條平行弦所夾的弧相等
113圓是以圓心為對稱中心的中心對稱圖形
114定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦
相等,所對的弦的弦心距相等
115推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩
弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
116定理 一條弧所對的圓周角等於它所對的圓心角的一半
117推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所
對的弦是直徑
119推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它
的內對角
121①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
122切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
123切線的性質定理 圓的切線垂直於經過切點的半徑
124推論1 經過圓心且垂直於切線的直線必經過切點
125推論2 經過切點且垂直於切線的直線必經過圓心
126切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等,
圓心和這一點的連線平分兩條切線的夾角
127圓的外切四邊形的兩組對邊的和相等
128弦切角定理 弦切角等於它所夾的弧對的圓周角
129推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
130相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積
相等
131推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的
兩條線段的比例中項
132切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割
線與圓交點的兩條線段長的比例中項
133推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等
134如果兩個圓相切,那麼切點一定在連心線上
135①兩圓外離 d>R+r ②兩圓外切 d=R+r
③兩圓相交 R-r<d<R+r(R>r)
④兩圓內切 d=R-r(R>r) ⑤兩圓內含d<R-r(R>r)
136定理 相交兩圓的連心線垂直平分兩圓的公共弦
137定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139正n邊形的每個內角都等於(n-2)×180°/n
140定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
142正三角形面積√3a/4 a表示邊長
143如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為
360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144弧長計算公式:L=n兀R/180
145扇形面積公式:S扇形=n兀R^2/360=LR/2
146內公切線長= d-(R-r) 外公切線長= d-(R+r)
實用工具:常用數學公式
公式分類 公式表達式
乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根與系數的關系 X1+X2=-b/a X1*X2=c/a 註:韋達定理
判別式
b2-4ac=0 註:方程有兩個相等的實根
b2-4ac>0 註:方程有兩個不等的實根
b2-4ac<0 註:方程沒有實根,有共軛復數根
三角函數公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半形公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑
餘弦定理 b2=a2+c2-2accosB 註:角B是邊a和邊c的夾角
圓的標准方程 (x-a)2+(y-b)2=r2 註:(a,b)是圓心坐標
圓的一般方程 x2+y2+Dx+Ey+F=0 註:D2+E2-4F>0
拋物線標准方程 y2=2px y2=-2px x2=2py x2=-2py
直稜柱側面積 S=c*h 斜稜柱側面積 S=c'*h
正棱錐側面積 S=1/2c*h' 正稜台側面積 S=1/2(c+c')h'
圓台側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2
圓柱側面積 S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l
弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r
錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h
斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長
柱體體積公式 V=s*h 圓柱體 V=pi*r2h
㈣ 初中數學動點的解法
我估計你說的就是動點找最大最小什麼的。如果你說的是函數的話(就是y=ax平方+bx+c)你把這個圖像跟 系數 也就是abc 之間的關系記住,比如它的開口 它的范圍(范圍是重點)它的對稱性,中線,這些都搞明白就行了。
動點無非就是列出一個未知數然後列出方程 列出范圍 很多時候范圍的上限下限中含有未知數,反正列出來,然後根據圖像討論那什麼在哪個范圍中最值是什麼多少,再把幾個范圍一比較就o了。
其實這我說的都是高中二次函數了。初中我估計頂多也就是范圍這東西比較容易錯罷了…
㈤ 初中數學,動點問題很難,如何學好動點問題有什麼技巧嗎
動點問題一般是結合幾何的一些知識和函數的知識一起考的,所以你要把動點當作平常內的幾何定點問題容來做,抓住關系,列出函數關系式。一般求函數關系式的小題過後就會有一題,當某個數量等於幾的時候,怎麼樣怎麼樣,這種小題就直接代入關系式求值就行了。還有就是要多做一些題目。
最後說一下,有時需要列方程,所以不管是一元還是二元,一次還是二次,都要掌握好,認真計算。 相似三角形是非常好用的方法。
㈥ 初中數學中動點指什麼
是指題設圖形中存在一個或多個動點,它們在線段、射線或弧線上運動的一類開放性題目.解決這類問題的關鍵是動中求靜
數學思想:分類思想 函數思想 方程思想 數形結合思想 轉化思想
㈦ 初中數學動點題怎麼做
要提高的話,復動點需要制很強的想像力,結合平面幾何和解析幾何的圖像經驗。
把所有動點想像成一個函數,那麼所有的動點組成一個圖像或軌跡。這個動點的函數中的變數受題目的條件所限制,
找到所有變數的限制方法,函數值就確定了,你就能夠從動點的函數中把你需要的那個點確定下來了/。
不是太清楚
好像是有很多種動點題的,找到那個點的活動規律很重要,多畫圖
平時做題
即使會做
也多畫畫圖,這樣對曲線圖像才熟悉
㈧ 初中數學動點問題怎樣解
初中數學的動點問題大致可以分為兩種動點
1。運動的動點:
此類動點給出的回有運動方向答和運動速度,我們主要根據運動速度×時間=路程,來表示某些線段的長。根據動點的位置可以將線段分為走過的(根據速度×時間來進行表示)、剩下未走的(用動點要運動的總路程-走過的)。特別注意,當動點在折線上運動時,要把走過的線段去掉某些部分才能和所求線段對應;剩下未走的也由於動點移動到不同線段上而改變其終點位置進行表示
當所表示線段與動點運動方向不同時,一般採用相似知識,找出和某些可以計算長度且方向與所求線段方向一致的線段來尋求相似比
2。不定點:這類動點一般結合存在性問題出現,即是否存在點P使得題目滿足一些什麼結論或當某些結論存在時,求動點P的位置。此時解答可以把題目要求滿足的情況作為一個使用條件,使P恰在滿足要求的位置,然後結合幾何知識進行解答
例如當題目要求是否存在點P,使某個三角形面積為20。我們就要先用代數式表示三角形面積,然後令其值為20即可
總之,動點的題目類型較多,這里很難一下說明。在解答時多注意將代數式化簡和幾何知識結合,你就可以慢慢摸索的其中的一些規律
㈨ 初中數學題(關於動點)
這個題只要用初一的平行線的性質和三角形的外角的性質.
(1)過點P作AC的平行線,由平專行的傳遞性可得三條屬直線都平行,再用兩次兩直線平行內錯角相等就可以得證了;
(2)結論∠APB=∠PAC+∠PBD不成立,三個角的關系是:∠APB+∠PAC+∠PBD=360°,方法也是過點P作AC的平行線,兩直線平行同旁內角互補,可證.
(3)點P在AB的左側,有結論:∠PAC=∠APB+∠PBD;點P在AB的右側,有結論:∠PBD=∠PAC+∠APB
㈩ 初中數學關於動點的題
【05河北】如圖,在直角梯形ABCD中,AD‖BC,∠C=90°,BC=16,DC=12,AD=21。動點P從點D出發,沿射線DA的方向以每秒2兩個單位長的速度運動,動點Q從點C出發,在線段CB上以每秒1個單位長的速度向點B運動,點P,Q分別從點D,C同時出發,當點Q運動到點B時,點P隨之停止運動。設運動的時間為t(秒)。
(1)設△BPQ的面積為S,求S與t之間的函數關系式;
(2)當t為何值時,以B,P,Q三點為頂點的三角形是等腰三角形?
(3)當線段PQ與線段AB相交於點O,且2AO=OB時,求∠BQP的正切值;
(4)是否存在時刻t,使得PQ⊥BD?若存在,求出t的值;若不存在,請說明理由。
【解】(1)如圖3,過點P作PM⊥BC,垂足為M,則四邊形PDCM為矩形。∴PM=DC=12
∵QB==6-t,∴S=(1/2)×12×(16-t)=96-t
(2)由圖可知:CM=PD=2t,CQ=t。以B、P、Q三點為頂點的三角形是等腰三角形,可以分三種情況:
①若PQ=BQ。在Rt△PMQ中,PQ2=t2+122,由PQ2=BQ2得t2+122=(16-t)2,解得t=7/2;
②若BP=BQ。在Rt△PMB中,BP2=(16-t)2+122。由BP2=BQ2得:
(16-2t)2+122=(16-t)2即3t2-32t+144=0。
由於Δ=-704<0 ∴無解, ∴PB≠BQ
③若PB=PQ。由PB2=PQ2,得t2+122=(16-2t)2+122
整理,得3t2-64t+256=0。解得t1=16/3,t2=16(不合題意,捨去)
綜合上面的討論可知:當t=7/2秒 或 t=16/3秒時,以B、P、Q三點為頂點的三角形是等腰三角形。
(3)如圖4,由△OAP∽△OBQ,得AP/BQ=AO/OB=1/2
∵AP=2t-21,BQ=16-t,∴2(2t-21)=16-t。
∴t=58/5。
過點Q作QE⊥AD,垂足為E,
∵PD=2t,ED=QC=t,∴PE=t。
在RT△PEQ中,tan∠QPE=QE/PE=12/t=30/29
(4)設存在時刻t,使得PQ⊥BD。如圖5,過點Q作QE⊥ADS,垂足為E。由Rt△BDC∽Rt△QPE,得
DC/BC=PE/EQ,即12/16=t/12。解得t=9
所以,當t=9秒時,PQ⊥BD。
初中數學動點題一道,急 40分
回答:2 瀏覽:348 提問時間:2009-03-20 22:49
如圖,直線y=-(3分之根號3)x+1與x軸y軸分別交於B、A兩點,以AB為直角邊的等腰直角三角形ABC的頂點C在第一象限且∠ABC=90度
(1)求A、B點坐標 (這問不用做,答案是A(0,1)B(根號3,0))
(2)將△ABC以每秒1個單位長度的速度延x軸平行移動,移動時間為t(秒)平移後三角形記作△AtBtCt,設平移過程中△AtBtCt與四邊形AOBC重疊部分面積為S。試探究S與t的關系式並寫出自變數t的取值范圍(有三種情況)
圖在http://iask.sina.com.cn/b/14953578.html