數學圓的知識點
Ⅰ 小學五年級數學關於圓的知識點
、圓:平面上到定點的距離等於定長的所有點組成的圖形叫做圓。
2、圓心:圓任意兩條對稱軸的交點為圓心。 註:圓心一般符號O表示
3、直徑:通過圓心,並且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。
4、半徑:連接圓心和圓上任意一點的線段,叫做圓的半徑。半徑一般用字母r表示。
5、圓的直徑和半徑都有無數條。圓是軸對稱圖形,每條直徑所在的直線是圓的對稱軸
6、在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一.d=2r或r=d/2。
7、圓的半徑或直徑決定圓的大小,圓心決定圓的位置。
8、圓的周長:圍成圓的曲線的長度叫做圓的周長,用字母C表示。
9、圓周率:圓的周長與直徑的比值叫做圓周率。
10、圓的周長除以直徑的商是一個固定的數,把它叫做圓周率,它是一個無限不循環小數(無理數),用字母π表示。計算時,通常取它的近似值,π≈3.14。
11、直徑所對的圓周角是直角。90°的圓周角所對的弦是直徑。
12、圓的面積公式:圓所佔平面的大小叫做圓的面積。πr^2;,用字母S表示。
13、在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距也相等。
14、在同圓或等圓中,如果兩條弧相等,那麼他們所對的圓心角相等,所對的弦相等,所對的弦心距也相等。
二、周長計算公式
(1)已知直徑:C=πd
(2)已知半徑:C=2πr
(3)已知周長:D=c/π
(4)圓周長的一半:1/2周長(曲線)
(5)半圓的周長:1/2周長+直徑(π÷2+1)
三、面積計算公式:
(1)已知半徑:S=πr2
(2)已知直徑:S=π(d/2)2
(3)已知周長:S=π[c÷(2π)]2
Ⅱ 六年級數學圓的知識歸納
1、圓:圓是由一條曲線圍成的平面圖形。
(長方形、梯形等都是由幾條線段圍成的平回面圖形)
2、半徑:答一端在圓心,一端在圓上的線段叫半徑。在同一圓里,半徑有無數條,條條都相等。
3、直徑:通過圓心,兩端都在圓上的線段叫直徑。在同一圓里,直徑有無數條,條條都相等。
在同一圓里,直徑長是半徑長的2倍。(d=2r, r=d÷2)
4、圓是軸對稱圖形,有無數條對稱軸,對稱軸就是直徑。
5、圓心決定圓的位置,半徑決定圓的大小。
6、正方形里最大的圓。兩者聯系:邊長=直徑
7、長方形里最大的圓。兩者聯系:寬=直徑
8、直徑是圓里最長的線段
11、半圓的周長等於圓周長的一半加一條直徑。
14、半圓的面積是圓面積的一半。S半=πX r的平方÷2
15、大小兩個圓比較,半徑的倍數=直徑的倍數=周長的倍數,面積的倍數=半徑的倍數2倍
16、周長相等的平面圖形中,圓的面積最大;面積相等的平面圖形中,圓的周長最短。
17、三個頂點都在圓上,且有一條邊是直徑的三角形一定是直角三角形。
應用這條規律可以找出圓的直徑和圓心。
(1)以圓上的一個點為頂點畫一個直角
(2)連接角的兩邊與圓的兩個交點,這條就是直徑
Ⅲ 初三數學圓知識點
1、 圓的有關概念:(1)、確定一個圓的要素是圓心和半徑。(2)連結圓上任意兩點的線段叫做弦。經過圓心的弦叫做直徑。圓上任意兩點間的部分叫做圓弧,簡稱弧。小於半圓周的圓弧叫做劣弧。大於半圓周的圓弧叫做優弧。在同圓或等圓中,能夠互相重合的弧叫做等弧。頂點在圓上,並且兩邊和圓相交的角叫圓周角。經過三角形三個頂點可以畫一個圓,並且只能畫一個,經過三角形三個頂點的圓叫做三角形的外接圓,三角形外接圓的圓心叫做這個三角形的外心,這個三角形叫做這個圓的內接三角形,外心是三角形各邊中垂線的交點;直角三角形外接圓半徑等於斜邊的一半。與三角形各邊都相切的圓叫做三角形的內切圓,三角形的內切圓的圓心叫做三角形的內心,這個三角形叫做圓外切三角形,三角形的內心就是三角形三條內角平分線的交點。直角三角形內切圓半徑 滿足: 。
2、 圓的有關性質(1)定理在同圓或等圓中,如果圓心角相等,那麼它所對的弧相等,所對的弦相等,所對的弦的弦心距相等。推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那麼它們所對的其餘各組量都分別相等。(2)垂徑定理:垂直於弦的直徑平分這條弦,並且平分弦所對的兩條弧。推論1(ⅰ)平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧。(ⅱ)弦的垂直平分線經過圓心,並且平分弦所對的兩條弧。(ⅲ)平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧。推論2圓的兩條平行弦所夾的弧相等。(3)圓周角定理:一條弧所對的圓周角等於該弧所對的圓心角的一半。推論1在同圓或等圓中,同弧或等弧所對的圓周角相等,相等的圓周角所對的弧也相等。推論2半圓或直徑所對的圓周角都相等,都等於90 。90 的圓周角所對的弦是圓的直徑。推論3如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形。(4)切線的判定與性質:判定定理:經過半徑的外端且垂直與這條半徑的直線是圓的切線。性質定理:圓的切線垂直於經過切點的半徑;經過圓心且垂直於切線的直線必經過切點;經過切點切垂直於切線的直線必經過圓心。(5)定理:不在同一條直線上的三個點確定一個圓。(6)圓的切線上某一點與切點之間的線段的長叫做這點到圓的切線長;切線長定理:從圓外一點可以引圓的兩條切線,它們的切線長相等,這一點和圓心的連線平分這兩條切線的夾角。(7)圓內接四邊形對角互補,一個外角等於內對角;圓外切四邊形對邊和相等;(8)弦切角定理:弦切角等於它所它所夾弧對的圓周角。(9)和圓有關的比例線段:相交弦定理:圓內的兩條相交弦,被交點分成的兩條線段長的積相等。如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項。切割線定理:從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項。從圓外一點引圓的兩條割線,這一點到每條割線與圓交點的兩條線段長的積相等。(10)兩圓相切,連心線過切點;兩圓相交,連心線垂直平分公共弦。
Ⅳ 初三數學圓的知識點
1.圓的定義
圓的定義有兩個:
其一:平面上到定點 的距離等於定長的所有點所組成的圖形叫圓。
其二:平面上一條線段,繞它固定的一個端點O旋轉360°,它的另一端留下的軌跡叫圓。
2.圓的其他相關量
①圓心與半徑:(如定義)固定的端點O即為圓心,用字母 來表示,記作⊙O;定義中的定長即為半徑,用字母r表示;
②弦與直徑:連接圓上任意兩點的線段叫做弦,經過圓心的弦叫直徑。圓中最長的弦為直徑;
③圓弧:圓上任意兩點間的部分叫做圓弧,簡稱弧。大於半圓的弧稱為優弧,小於半圓的弧稱為劣弧;
④圓心角和圓周角:頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;
⑤等圓:能夠重合的兩個圓叫做等圓。
3.垂徑定理及其推論
①定理
如果圓的一條直徑垂直於一條弦,那麼這條直徑平分這條弦,並且平分這條弦所對的兩條弧。
②推論(四條)
推論一:平分弦(不是直徑)的直徑垂直於這條弦,並且平分這條弦所對的兩條弧;
推論二:弦的垂直平分線經過圓心,並且平分這條弦所對的兩條弧;
推論三:平分弦所對的一條弧的直徑垂直平分這條弦,並且平分這條弦所對的另一條弧
推論四:在同圓或者等圓中,兩條平行弦所夾的弧相等。
4.圓心角與圓周角
(1)定義
①圓心角:頂點在圓心的角叫做圓心角;
②圓周角:頂點在圓上,且兩邊都與圓相交的角叫做圓周角。
(2)定理及推論
①圓心角
定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等。
推論一:在同圓或等圓中,如果兩條弧相等,那麼它們所對的圓心角相等,所對的弦也相等;
推論二:在同圓或等圓中,如果兩條弦相等,那麼它們所對的圓心角相等,所對的弧也相等。
②圓周角
定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等於這條弧所對的圓心角的一半。
推論一:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑;
推論二:在同圓或等圓中,如果兩個圓周角相等,它們所對的弧一定相等;
推論三:圓內接四邊形的對角互補。
5.點與圓的位置關系
(1)點和圓的位置關系
點和圓的位置關系相對較為簡單,可分為三種情況:圓內、圓上和圓外。
一般情況下,判斷點和圓的位置關系,以點到圓心的距離和圓半徑之間的大小為依據,假設⊙O的半徑為r,點P到圓心O的距離為d,則點P與⊙O的位置關系可表示如下:
點P 在⊙O 外 等價於d >r
點P 在⊙O 上 等價於d =r
點P 在⊙O 內 等價於d <r
(2)不在同一直線上的三個點確定一個圓
不在同一直線上的三個點確定一個圓。根據這一定理,我們可以經過任意三角形的三個頂點做一個圓,這個圓就叫做三角形的外接圓,外接圓的圓心是三角形三條邊垂直平分線的交點,叫做該三角形的外心。
(3)反證法
不是直接從命題的已知得出結論,而是假設命題的結論不成立,由此經過推理得出矛盾,由矛盾斷定所作假設不正確,從而得到原命題成立。這種證明方法就叫做反證法。
6.直線與圓的位置關系
直線與圓的位置關系可分為三種:相交、相切和相離,詳述如下:
(1)相交
直線和圓有兩個公共點,則直線與圓相交,這條直線叫做圓的割線。
(2)相切
直線和圓只有一個公共點,則直線與圓相切,該直線叫做圓的切線,該公共點叫做切點。
(3)相離
即直線和圓沒有公共點。
假設⊙O 的半徑為r ,直線l 到圓心O 的距離為d ,根據上述定義,可以得到:
直線l 和⊙O 相交 等價於d <r
直線l 和⊙O 相切 等價於d =r
直線l 和⊙O 相離 等價於d >r
7.關於切線的定理
(1)切線的定義
如果一條直線和圓只有一個公共點,那麼這條直線和圓相切,直線就叫做圓的切線,公共點即為切點。
(2)切線判定定理
經過半徑的外端並且垂直於這條半徑的直線是圓的切線。
(3)切線性質定理
圓的切線垂直於過切點的半徑。
(4)切線長
經過圓外一點做圓的切線,這點和切點之間的線段的長,叫做這點到圓的切線長。
(5)切線長定理
從圓外一點可以引圓的兩條切線,它們的切線長相等,這一點和圓心的連線平分兩條切線的夾角。
8.三角形內切圓
與三角形各邊都相切的圓叫做三角形的內切圓,內切圓的圓心是三角形三條角平分線的交點,叫做三角形的內心。另外還需知道一點,即三角形的內心到三角形三邊的距離相等,也就是三角形內切圓半徑。
9.圓與圓的位置關系
圓與圓的位置關系主要可分為三種:相離、相切和相交,分述如下:
(1)相離
如果兩個圓沒有公共點,那麼就說這兩個圓相離;相離又分為外離和內含,兩圓內含有一種特殊情況即兩圓同心。
(2)相切
如果兩個圓只有一個公共點,那麼就說這兩個圓相切;相切又可分為外切和內切。
(3)相交
兩圓相交較為簡單,即如果兩個圓有兩個公共點,那麼就說這兩個圓相交。
10.正多邊形和圓
我們先來溫習一下什麼是正多邊形——各邊相等、各角也相等的多邊形,我們稱之為正多邊形。
正多邊形和圓的關系非常密切,只要把一個圓分成相等的一些弧,就可以作出這個圓的內接正多邊形,這個圓就是這個正多邊形的外接圓。
一個正多邊形的外接圓的圓心叫做這個正多邊形的中心,外接圓的半徑叫做正多邊形的半徑,正多邊形每一邊所對的圓心角叫做正多邊形的中心角,中心到正多邊形的一邊的距離叫做正多邊形的邊心距。
Ⅳ 求初中數學圓的知識點(最好帶圖)
1、圓是定點的距離等於定長的點的集合
2、圓的內部可以看作是圓心的距離小於半徑的點的集合
3、圓的外部可以看作是圓心的距離大於半徑的點的集合
4、同圓或等圓的半徑相等
5、到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
6、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
7、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
8、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
9、定理不在同一直線上的三點確定一個圓。
10、垂徑定理垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
11、推論1:
①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
12、推論2:圓的兩條平行弦所夾的弧相等
13、圓是以圓心為對稱中心的中心對稱圖形
14、定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
15、推論:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
16、定理:一條弧所對的圓周角等於它所對的圓心角的一半
17、推論:1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
18、推論:2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
19、推論:3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
20、定理: 圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角
21、①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
22、切線的判定定理經過半徑的外端並且垂直於這條半徑的直線是圓的切線
23、切線的性質定理圓的切線垂直於經過切點的半徑
24、推論1 經過圓心且垂直於切線的直線必經過切點
25、推論2 經過切點且垂直於切線的直線必經過圓心
26、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角
27、圓的外切四邊形的兩組對邊的和相等
28、弦切角定理:弦切角等於它所夾的弧對的圓周角
29、推論:如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
30、相交弦定理:圓內的兩條相交弦,被交點分成的兩條線段長的積相等
31、推論:如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項
32、切割線定理:從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
33、推論:從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等
34、如果兩個圓相切,那麼切點一定在連心線上
35、①兩圓外離 d>R+r
②兩圓外切 d=R+r
③兩圓相交 R-r<d<R+r(R>r)
④兩圓內切 d=R-r(R>r)
⑤兩圓內含 d<R-r(R>r)
36、定理:相交兩圓的連心線垂直平分兩圓的公共弦
37、定理:把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
38、定理: 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
39、正n邊形的每個內角都等於(n-2)×180°/n
40、定理:正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
41、正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
42、正三角形面積√3a/4 a表示邊長
43、如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,
因此k (n-2)180°/n=360°化為(n-2)(k-2)=4
44、弧長計算公式:L=n兀R/180
45、扇形面積公式:S扇形=n兀R^2/360=LR/2
46、內公切線長= d-(R-r) 外公切線長= d-(R+r)
Ⅵ 小學數學圓的知識點
數學圓也是一個很重要的知識點,今天就來總結一下小學階段圓的一些知識版點~
π是一個無限權不循環小數,范圍在3.1415926~3.1415927之間,一般計算取3.14。圓還有一些易錯的知識點,要將概念記憶清楚,比如:任意倆條半徑都能組成一條直徑,這說法是錯誤的。通過圓心並且兩端都在圓上的線段叫做直徑。