數學八年級上冊公式
1. 初二上學期數學的所有公式.
首先是全等三角形的
S=邊
A=角
有SSS,SAS,AAS,ASA,HL(兩個直角三角形的一條直角邊與斜邊對應相等)
全等三角形的對應邊相等,對應角相等。
整式的乘除哈~
a^m×a^n=a^(m+n)
(a^m)^n=a^mn
(ab)^n=a^n×b^n
m(a+b+c)=ma+mb+mc(就是用M分別乘,最後加起來)
(a+b)(m+n)=am+an+bm+bn(用A乘m+n,然後用B成m+n,最後全部相加)
(a+b)(a-b)=a^2-b^2
(a+b)^2=a^2+2ab+b^2
(a-b)^2=a^2-2ab+b^2
a^0=1
(a≠0)
初二因式分解的公式
提公因式法ma+mb+mc=m(a+b+c)
平方差公式a^2-b^2=(a+b)(a-b)
完全平方和公式a^2+2ab+b^2=(a+b)^2
完全平方差公式a^2-2ab+b^2=(a-b)^2
類似十字相乘法x^2+(p+q)x+pq=(x+p)(x-q)
立方和公式(a-b)(a^2+ab+b^2)=a^3-b^3
立方差公式(a+b)(a^2-ab+b^2)=a^3+b^3
先來幾個,慢慢增加哈,我正好初二!~
2. 求八年級上冊數學計算公式大全
我來回答
上節課我們講過,兩個三角形有一組或兩組對應相等的元素(邊或角)
,那麼這兩個三角形不一定全等;如
果兩個三角形有三組元素對應相等,那麼這兩個三角形全等的可能性極大,但也有不全等的情況。本節課開始,
我們將探究在什麼情況下三角形一定全等。如果兩個三角形有
3
組對應相等的元素,那麼含有以下的四種情況:
兩邊一角、兩角一邊、三角、三邊.
我們將對這四種情況分別進行討論.
如果兩個三角形有兩條邊和一個角分別對應相等,
這兩個三角形一定全等嗎?如圖所示,
此時應該有兩種情
況:一種是角夾在兩條邊的中間,形成兩邊夾一角;另一種情況是角不夾在兩邊的中間,形成兩邊一對角
3. 初二上冊數學公式
1.直稜柱中,面數+頂點數-棱數=2
2.算術平均數:X拔=(1/個數)*(X個數的合)(符號不會打,見涼)
3.方差=(1/個數)*(每個數與算術平均數的差的平方)
如果數據為整數,方差=(1/個數)*(各個數的平方相加-個數*算術平均數的平方)
例如:方差=(1/3)*(1方+2方+3方-3*2)=(1/3)*(1+4+9-6)=8/3
4.標准差=方差的算術平均根
主要就這些把
4. 初二上學期的數學公式有哪些
~~~僅供參考
新課標·人教版·數學·八年級·上
幾 何
一.全等三角形的判定
1.SSS:三條邊對應相等
2.SAS:兩邊和它們的夾角對應相等
3.ASA:兩角和它們的夾邊對應相等
4.AAS:兩角和其中一個角的對邊對應相等
5.直角三角形:HL:斜邊和一條直角邊對應相等
二.角平分線的性質
1.如果OP平分∠AOB,PC⊥OA,PD⊥OB;那麼PC=PD
2.如果PC=PD,PC⊥OA,PD⊥OB,那麼OP平分∠AOB
3.三角形的三個角的角平分線交與一點(內心),這一點到三角形的三條邊的距離相等
三.垂直平分線的性質
1.如果PO垂直平分AB,C在PO上,那麼CA=CB
2.如果CA=CB,那麼C在AB的垂直平分線上
3.三角形的三條邊的垂直平分線交與一點(外心),這一點到三角形的三個頂點的距離相等
四.軸對稱
1.點(x,y)關於x軸對稱點(x,-y),關於x軸對稱點(-x,y)
2.點(x,y)關於直線x=m的對稱點(2m-x,y),關於直線y=n的對稱點(x,2n-y)
五.等腰三角形
1.等邊對等角,等角對等邊
2.在△ABC中,如果AB=AC,AD⊥BC,那麼AD平分∠BAC,AD垂直平分BC(三線合一)
3.等邊三角形的三個內角相等,都是60度
4.三個角都相等的三角形是等邊三角形
5.有一個角是60度的等腰三角形是等邊三角形
6.在Rt△ABC中,∠C=90度,∠A=30度,那麼AB=2BC
代 數
一.整式的乘法
1.同底數冪的乘法:a^m·a^n=a^(m+n)
2.冪的乘方:(a^m)^n=a^mn
3.積的乘方:(ab)^m=a^m·b^m
二.乘法公式
1.平方差公式:(a+b)(a-b)=a^2-b^2
2.完全平方公式:(a±b)^2=a^2±2ab+b^2
3.(x+p)(x+q)=x^2+(p+q)x+pq
三.整式的除法
1.同底數冪的除法:a^m÷a^n=a^(m-n)
四.簡單根式
1.對於√a,當a≥0時,它有意義
2.對於√(a^2),當a≥0時,√(a^2)=a
當a≤0時,√(a^2)=-a
3.對於任意非負數a,(√a)^2=a
4.3次√-a=-3次√a
五.簡單分式
1.(a/b)^n=a^n/b^n
2.當b≠0時,分式a/b有意義
3.對於a/b (b≠0,b為整式)
a/b=ac/bc=(a÷c)/(b÷c) (c≠0)
六.函數解析式
1.正比例函數:y=kx(k為常數,k≠0)
2.一次函數:y=kx+b(k、b為常數,k≠0)
5. 初一到初二上的數學公式
1、正n邊形的每個內角都等於(n-2)×180°/n
2、弧長計算公式:L=n兀R/180
3、扇形面積公式:S扇形=n兀R^2/360=LR/2
5、內公切線長=d-(R-r)外公切線長=d-(R+r)
6、①兩圓外離d>R+r②兩圓外切d=R+r③兩圓相交R-r<d<R+r(R>r)④兩圓內切d=R-r(R>r)⑤兩圓內含d<R-r(R>r)
7、定理相交兩圓的連心線垂直平分兩圓的公共弦
8、定理把圓分成n(n≥3):⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
9、定理任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
10、如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
11、公式:a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)
12、平方差公式:a平方-b平方=(a+b)(a-b)
13、完全平方和公式: (a+b)平方=a平方+2ab+b平方
14、完全平方差公式: (a-b)平方=a平方-2ab+b平方
15、兩根式: ax^2+bx+c=a[x-(-b+√(b^2-4ac))/2a][x-(-b-√(b^2-4ac))/2a]兩根式
15、立方和公式: a^3+b^3=(a+b)(a^2-ab+b^2)
16、立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2)
17、完全立方公式: a^3±3a^2b+3ab^2±b^3=(a±b)^3一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
18、根與系數的關系 X1+X2=-b/a X1*X2=c/a 註:韋達定理
19、判別式b2-4ac=0 註:方程有兩個相等的實根b2-4ac>0 註:方程有兩個不等的實根b2-4ac<0 註:方程沒有實根,有共軛復數根
20、|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|
21、某些數列前n項和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2
22、2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
23、兩角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA
24、兩角和公式 cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB
24、兩角和公式 tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanAtanB)/(1+tanAtanB)
25、ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
26、倍角公式tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
27、半形公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
28、半形公式 cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
29、半形公式 tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))
30、ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))
31、和差化積2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)
31、2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)
32、sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
33、tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcos
34、ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB
6. 八年級上冊數學公式
數學定理
三角形三條邊的關系
定理:三角形兩邊的和大於第三邊
推論:三角形兩邊的差小於第三邊
三角形內角和
三角形內角和定理 三角形三個內角的和等於180°
推論1 直角三角形的兩個銳角互余
推論2 三角形的一個外角等於和它不相鄰的兩個內角和
推論3 三角形的一個外角大雨任何一個和它不相鄰的內角
角的平分線
性質定理 在角的平分線上的點到這個角的兩邊的距離相等
幾何語言:
∵OC是∠AOB的角平分線(或者∠AOC=∠BOC)
PE⊥OA,PF⊥OB
點P在OC上
∴PE=PF(角平分線性質定理)
判定定理 到一個角的兩邊的距離相等的點,在這個角的平分線上
幾何語言:
∵PE⊥OA,PF⊥OB
PE=PF
∴點P在∠AOB的角平分線上(角平分線判定定理)
等腰三角形的性質
等腰三角形的性質定理 等腰三角形的兩底角相等
幾何語言:
∵AB=AC
∴∠B=∠C(等邊對等角)
推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
幾何語言:
(1)∵AB=AC,BD=DC
∴∠1=∠2,AD⊥BC(等腰三角形頂角的平分線垂直平分底邊)
(2)∵AB=AC,∠1=∠2
∴AD⊥BC,BD=DC(等腰三角形頂角的平分線垂直平分底邊)
(3)∵AB=AC,AD⊥BC
∴∠1=∠2,BD=DC(等腰三角形頂角的平分線垂直平分底邊)
推論2 等邊三角形的各角都相等,並且每一個角等於60°
幾何語言:
∵AB=AC=BC
∴∠A=∠B=∠C=60°(等邊三角形的各角都相等,並且每一個角都等於60°)
等腰三角形的判定
判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等
幾何語言:
∵∠B=∠C
∴AB=AC(等角對等邊)
推論1 三個角都相等的三角形是等邊三角形
幾何語言:
∵∠A=∠B=∠C
∴AB=AC=BC(三個角都相等的三角形是等邊三角形)
推論2 有一個角等於60°的等腰三角形是等邊三角形
幾何語言:
∵AB=AC,∠A=60°(∠B=60°或者∠C=60°)
∴AB=AC=BC(有一個角等於60°的等腰三角形是等邊三角形)
推論3 在直角三角形中,如果一個銳角等於30°,那麼它所對的直角邊等於斜邊的一半
幾何語言:
∵∠C=90°,∠B=30°
∴BC= AB或者AB=2BC(在直角三角形中,如果一個銳角等於30°,那麼它所對的直角邊等於斜邊的一半)
線段的垂直平分線
定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
幾何語言:
∵MN⊥AB於C,AB=BC,(MN垂直平分AB)
點P為MN上任一點
∴PA=PB(線段垂直平分線性質)
逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
幾何語言:
∵PA=PB
∴點P在線段AB的垂直平分線上(線段垂直平分線判定)
軸對稱和軸對稱圖形
定理1 關於某條之間對稱的兩個圖形是全等形
定理2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
定理3 兩個圖形關於某直線對稱,若它們的對應線段或延長線相交,那麼交點在對稱軸上
逆定理 若兩個圖形的對應點連線被同一條直線垂直平分,那這兩個圖形關於這條直線對稱
勾股定理
勾股定理 直角三角形兩直角邊a、b的平方和,等於斜邊c的平方,即
a2 + b2 = c2
勾股定理的逆定理
勾股定理的逆定理 如果三角形的三邊長a、b、c有關系,那麼這個三角形是直角三角形
四邊形
定理 任意四邊形的內角和等於360°
多邊形內角和
定理 多邊形內角和定理n邊形的內角的和等於(n - 2)·180°
推論 任意多邊形的外角和等於360°
平行四邊形及其性質
性質定理1 平行四邊形的對角相等
性質定理2 平行四邊形的對邊相等
推論 夾在兩條平行線間的平行線段相等
性質定理3 平行四邊形的對角線互相平分
幾何語言:
∵四邊形ABCD是平行四邊形
∴AD‖BC,AB‖CD(平行四邊形的對角相等)
∠A=∠C,∠B=∠D(平行四邊形的對邊相等)
AO=CO,BO=DO(平行四邊形的對角線互相平分)
平行四邊形的判定
判定定理1 兩組對邊分別平行的四邊形是平行四邊形
幾何語言:
∵AD‖BC,AB‖CD
∴四邊形ABCD是平行四邊形
(兩組對邊分別平行的四邊形是平行四邊形)
判定定理2 兩組對角分別相等的四邊形是平行四邊形
幾何語言:
∵∠A=∠C,∠B=∠D
∴四邊形ABCD是平行四邊形
(兩組對角分別相等的四邊形是平行四邊形)
判定定理3 兩組對邊分別相等的四邊形是平行四邊形
幾何語言:
∵AD=BC,AB=CD
∴四邊形ABCD是平行四邊形
(兩組對邊分別相等的四邊形是平行四邊形)
判定定理4 對角線互相平分的四邊形是平行四邊形
幾何語言:
∵AO=CO,BO=DO
∴四邊形ABCD是平行四邊形
(對角線互相平分的四邊形是平行四邊形)
判定定理5 一組對邊平行且相等的四邊形是平行四邊形
幾何語言:
∵AD‖BC,AD=BC
∴四邊形ABCD是平行四邊形
(一組對邊平行且相等的四邊形是平行四邊形)
矩形
性質定理1 矩形的四個角都是直角
性質定理2 矩形的對角線相等
幾何語言:
∵四邊形ABCD是矩形
∴AC=BD(矩形的對角線相等)
∠A=∠B=∠C=∠D=90°(矩形的四個角都是直角)
推論 直角三角形斜邊上的中線等於斜邊的一半
幾何語言:
∵△ABC為直角三角形,AO=OC
∴BO= AC(直角三角形斜邊上的中線等於斜邊的一半)
判定定理1 有三個角是直角的四邊形是矩形
幾何語言:
∵∠A=∠B=∠C=90°
∴四邊形ABCD是矩形(有三個角是直角的四邊形是矩形)
判定定理2 對角線相等的平行四邊形是矩形
幾何語言:
∵AC=BD
∴四邊形ABCD是矩形(對角線相等的平行四邊形是矩形)
菱形
性質定理1 菱形的四條邊都相等
性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
幾何語言:
∵四邊形ABCD是菱形
∴AB=BC=CD=AD(菱形的四條邊都相等)
AC⊥BD,AC平分∠DAB和∠DCB,BD平分∠ABC和∠ADC
(菱形的對角線互相垂直,並且每一條對角線平分一組對角)
判定定理1 四邊都相等的四邊形是菱形
幾何語言:
∵AB=BC=CD=AD
∴四邊形ABCD是菱形(四邊都相等的四邊形是菱形)
判定定理2 對角線互相垂直的平行四邊形是菱形
幾何語言:
∵AC⊥BD,AO=CO,BO=DO
∴四邊形ABCD是菱形(對角線互相垂直的平行四邊形是菱形)
正方形
性質定理1 正方形的四個角都是直角,四條邊都相等
性質定理2 正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
中心對稱和中心對稱圖形
定理1 關於中心對稱的兩個圖形是全等形
定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱
梯形
等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
幾何語言:
∵四邊形ABCD是等腰梯形
∴∠A=∠B,∠C=∠D(等腰梯形在同一底上的兩個角相等)
等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形
幾何語言:
∵∠A=∠B,∠C=∠D
∴四邊形ABCD是等腰梯形(在同一底上的兩個角相等的梯形是等腰梯形)
三角形、梯形中位線
三角形中位線定理 三角形的中位線平行與第三邊,並且等於它的一半
幾何語言:
∵EF是三角形的中位線
∴EF= AB(三角形中位線定理)
梯形中位線定理 梯形的中位線平行與兩底,並且等於兩底和的一半
幾何語言:
∵EF是梯形的中位線
∴EF= (AB+CD)(梯形中位線定理)
比例線段
1、 比例的基本性質
如果a∶b=c∶d,那麼ad=bc
2、 合比性質
3、 等比性質
平行線分線段成比例定理
平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例
幾何語言:
∵l‖p‖a
(三條平行線截兩條直線,所得的對應線段成比例)
推論 平行與三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行與三角形的第三邊
垂直於弦的直徑
垂徑定理 垂直於弦的直徑平分這條弦,並且平分弦所對的兩條弧
幾何語言:
∵OC⊥AB,OC過圓心
(垂徑定理)
推論1
(1) 平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
幾何語言:
∵OC⊥AB,AC=BC,AB不是直徑
(平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧)
(2) 弦的垂直平分線過圓心,並且平分弦所對的兩條弧
幾何語言:
∵AC=BC,OC過圓心
(弦的垂直平分線過圓心,並且平分弦所對的兩條弧)
(3) 平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
幾何語言:
(平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧)
推論2 圓的兩條平分弦所夾的弧相等
幾何語言:∵AB‖CD
圓心角、弧、弦、弦心距之間的關系
定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距也相等
推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那麼它們所對應的其餘各組量都分別相等
圓周角
定理 一條弧所對的圓周角等於它所對的圓心角的一半
推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直角
推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
圓的內接四邊形
定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角
幾何語言:
∵四邊形ABCD是⊙O的內接四邊形
∴∠A+∠C=180°,∠B+∠ADB=180°,∠B=∠ADE
切線的判定和性質
切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
幾何語言:∵l ⊥OA,點A在⊙O上
∴直線l是⊙O的切線(切線判定定理)
切線的性質定理 圓的切線垂直於經過切點半徑
幾何語言:∵OA是⊙O的半徑,直線l切⊙O於點A
∴l ⊥OA(切線性質定理)
推論1 經過圓心且垂直於切線的直徑必經過切點
推論2 經過切點且垂直於切線的直線必經過圓心
切線長定理
定理 從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
幾何語言:∵弦PB、PD切⊙O於A、C兩點
∴PA=PC,∠APO=∠CPO(切線長定理)
弦切角
弦切角定理 弦切角等於它所夾的弧對的圓周角
幾何語言:∵∠BCN所夾的是 ,∠A所對的是
∴∠BCN=∠A
推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
幾何語言:∵∠BCN所夾的是 ,∠ACM所對的是 , =
∴∠BCN=∠ACM
和圓有關的比例線段
相交弦定理:圓內的兩條相交弦,被焦點分成的兩條線段長的積相等
幾何語言:∵弦AB、CD交於點P
∴PA·PB=PC·PD(相交弦定理)
推論:如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項
幾何語言:∵AB是直徑,CD⊥AB於點P
∴PC2=PA·PB(相交弦定理推論)
切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割線與圓焦點的兩條線段長的比例中項
幾何語言:∵PT切⊙O於點T,PBA是⊙O的割線
∴PT2=PA·PB(切割線定理)
推論 從圓外一點因圓的兩條割線,這一點到每條割線與圓的焦點的兩條線段長的積相等
幾何語言:∵PBA、PDC是⊙O的割線
∴PT2=PA·PB(切割線定理推論)
7. 初二數學上冊公式
完全平方公式:a²+2ab+b²=(a+b)²
a²-2ab+b²=(a-b)²
平方差公式:a²-b²=(a+b)(a-b)
十字相乘法;x²+(a+b)x+ab=(x+a)(x+b)
希望對你有幫助O(∩_∩)O~
8. 初二上學期數學公式大全
(一)運用公式法
我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。於是有:
a2-b2=(a+b)(a-b)
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。
(二)平方差公式
1.平方差公式
(1)式子: a2-b2=(a+b)(a-b)
(2)語言:兩個數的平方差,等於這兩個數的和與這兩個數的差的積。這個公式就是平方差公式。
(三)因式分解
1.因式分解時,各項如果有公因式應先提公因式,再進一步分解。
2.因式分解,必須進行到每一個多項式因式不能再分解為止。
(四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2 和 (a-b)2=a2-2ab+b2反過來,就可以得到:
a2+2ab+b2 =(a+b)2
a2-2ab+b2 =(a-b)2
這就是說,兩個數的平方和,加上(或者減去)這兩個數的積的2倍,等於這兩個數的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。
上面兩個公式叫完全平方公式。
(2)完全平方式的形式和特點
①項數:三項
②有兩項是兩個數的的平方和,這兩項的符號相同。
③有一項是這兩個數的積的兩倍。
(3)當多項式中有公因式時,應該先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。
(5)分解因式,必須分解到每一個多項式因式都不能再分解為止。
(五)分組分解法
我們看多項式am+ an+ bm+ bn,這四項中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.
如果我們把它分成兩組(am+ an)和(bm+ bn),這兩組能分別用提取公因式的方法分別分解因式.
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m +n)
做到這一步不叫把多項式分解因式,因為它不符合因式分解的意義.但不難看出這兩項還有公因式(m+n),因此還能繼續分解,所以
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m+ n)
=(m +n)•(a +b).
這種利用分組來分解因式的方法叫做分組分解法.從上面的例子可以看出,如果把一個多項式的項分組並提取公因式後它們的另一個因式正好相同,那麼這個多項式就可以用分組分解法來分解因式.
(六)提公因式法
1.在運用提取公因式法把一個多項式因式分解時,首先觀察多項式的結構特點,確定多項式的公因式.當多項式各項的公因式是一個多項式時,可以用設輔助元的方法把它轉化為單項式,也可以把這個多項式因式看作一個整體,直接提取公因式;當多項式各項的公因式是隱含的時候,要把多項式進行適當的變形,或改變符號,直到可確定多項式的公因式.
2. 運用公式x2 +(p+q)x+pq=(x+q)(x+p)進行因式分解要注意:
1.必須先將常數項分解成兩個因數的積,且這兩個因數的代數和等於
一次項的系數.
2.將常數項分解成滿足要求的兩個因數積的多次嘗試,一般步驟:
① 列出常數項分解成兩個因數的積各種可能情況;
②嘗試其中的哪兩個因數的和恰好等於一次項系數.
3.將原多項式分解成(x+q)(x+p)的形式.
(七)分式的乘除法
1.把一個分式的分子與分母的公因式約去,叫做分式的約分.
2.分式進行約分的目的是要把這個分式化為最簡分式.
3.如果分式的分子或分母是多項式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項式不能分解因式,此時就不能把分子、分母中的某些項單獨約分.
4.分式約分中注意正確運用乘方的符號法則,如x-y=-(y-x),(x-y)2=(y-x)2,
(x-y)3=-(y-x)3.
5.分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個分式的符號,然後再按-1的偶次方為正、奇次方為負來處理.當然,簡單的分式之分子分母可直接乘方.
6.注意混合運算中應先算括弧,再算乘方,然後乘除,最後算加減.
(八)分數的加減法
1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形.約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統一起來.
2.通分和約分都是依據分式的基本性質進行變形,其共同點是保持分式的值不變.
3.一般地,通分結果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進一步運算作準備.
4.通分的依據:分式的基本性質.
5.通分的關鍵:確定幾個分式的公分母.
通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡公分母.
6.類比分數的通分得到分式的通分:
把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.
7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。
同分母的分式加減運算,分母不變,把分子相加減,這就是把分式的運算轉化為整式運算。
8.異分母的分式加減法法則:異分母的分式相加減,先通分,變為同分母的分式,然後再加減.
9.同分母分式相加減,分母不變,只須將分子作加減運算,但注意每個分子是個整體,要適時添上括弧.
10.對於整式和分式之間的加減運算,則把整式看成一個整體,即看成是分母為1的分式,以便通分.
11.異分母分式的加減運算,首先觀察每個公式是否最簡分式,能約分的先約分,使分式簡化,然後再通分,這樣可使運算簡化.
12.作為最後結果,如果是分式則應該是最簡分式.
(九)含有字母系數的一元一次方程
1.含有字母系數的一元一次方程
引例:一數的a倍(a≠0)等於b,求這個數。用x表示這個數,根據題意,可得方程 ax=b(a≠0)
在這個方程中,x是未知數,a和b是用字母表示的已知數。對x來說,字母a是x的系數,b是常數項。這個方程就是一個含有字母系數的一元一次方程。
含有字母系數的方程的解法與以前學過的只含有數字系數的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個式子的值不能等於零。 選我吧