小學數學奧數題及答案
㈠ 小學數學奧數題(最好是簡單一些喲!)
1.兒子10歲,5年前母親的年齡是他的6倍.問母親今年好多歲?
2.小麗今年8歲,她爸爸今年43歲.多少年後,爸爸是小麗的3倍?
3.小明今年11歲,他媽媽今年43歲.幾年後媽媽是小明的三倍?
4.父子年齡和是46歲,2年後父親是兒子的4倍,問父子各幾歲?
5.小明今年13,小剛今年9歲,問他兩歲數的和是40時各幾歲?
6.今年爸爸46歲,兒子16歲.幾年後爸爸的年齡的2倍是兒子的5倍?
7.今年祖父的年齡是小明年齡的6倍,幾年後是他的5倍,再幾年後是他的4倍
問祖父和小明的年齡各幾歲?
8.重陽節,25老人來品茶,25老人的年齡是連續數,也是自然數,兩年這後25位老人年齡和是2000,問25位老人最大的一位是多大?
9.小華的年齡是12歲,小華的年齡和姐姐小麗的年齡和是3倍等於81,問小麗的年齡?
10.小胖的年齡和爸爸的和是64歲,比是1:3,問5年後爸爸和小明的比?
㈡ 小學五六年級奧數題30道帶答案!!
過橋問題(1)
1. 一列火車經過南京長江大橋,大橋長6700米,這列火車長140米,火車每分鍾行400米,這列火車通過長江大橋需要多少分鍾?
分析:這道題求的是通過時間.根據數量關系式,我們知道要想求通過時間,就要知道路程和速度.路程是用橋長加上車長.火車的速度是已知條件.
總路程: (米)
通過時間: (分鍾)
答:這列火車通過長江大橋需要17.1分鍾.
2. 一列火車長200米,全車通過長700米的橋需要30秒鍾,這列火車每秒行多少米?
分析與這是一道求車速的過橋問題.我們知道,要想求車速,我們就要知道路程和通過時間這兩個條件.可以用已知條件橋長和車長求出路程,通過時間也是已知條件,所以車速可以很方便求出.
總路程: (米)
火車速度: (米)
答:這列火車每秒行30米.
3. 一列火車長240米,這列火車每秒行15米,從車頭進山洞到全車出山洞共用20秒,山洞長多少米?
分析與火車過山洞和火車過橋的思路是一樣的.火車頭進山洞就相當於火車頭上橋;全車出洞就相當於車尾下橋.這道題求山洞的長度也就相當於求橋長,我們就必須知道總路程和車長,車長是已知條件,那麼我們就要利用題中所給的車速和通過時間求出總路程.
總路程:
山洞長: (米)
答:這個山洞長60米.
和倍問題
1. 秦奮和媽媽的年齡加在一起是40歲,媽媽的年齡是秦奮年齡的4倍,問秦奮和媽媽各是多少歲?
我們把秦奮的年齡作為1倍,「媽媽的年齡是秦奮的4倍」,這樣秦奮和媽媽年齡的和就相當於秦奮年齡的5倍是40歲,也就是(4+1)倍,也可以理解為5份是40歲,那麼求1倍是多少,接著再求4倍是多少?
(1)秦奮和媽媽年齡倍數和是:4+1=5(倍)
(2)秦奮的年齡:40÷5=8歲
(3)媽媽的年齡:8×4=32歲
綜合:40÷(4+1)=8歲 8×4=32歲
為了保證此題的正確,驗證
(1)8+32=40歲 (2)32÷8=4(倍)
計算結果符合條件,所以解題正確.
2. 甲乙兩架飛機同時從機場向相反方向飛行,3小時共飛行3600千米,甲的速度是乙的2倍,求它們的速度各是多少?
已知兩架飛機3小時共飛行3600千米,就可以求出兩架飛機每小時飛行的航程,也就是兩架飛機的速度和.看圖可知,這個速度和相當於乙飛機速度的3倍,這樣就可以求出乙飛機的速度,再根據乙飛機的速度求出甲飛機的速度.
甲乙飛機的速度分別每小時行800千米、400千米.
3. 弟弟有課外書20本,哥哥有課外書25本,哥哥給弟弟多少本後,弟弟的課外書是哥哥的2倍?
思考:(1)哥哥在給弟弟課外書前後,題目中不變的數量是什麼?
(2)要想求哥哥給弟弟多少本課外書,需要知道什麼條件?
(3)如果把哥哥剩下的課外書看作1倍,那麼這時(哥哥給弟弟課外書後)弟弟的課外書可看作是哥哥剩下的課外書的幾倍?
思考以上幾個問題的基礎上,再求哥哥應該給弟弟多少本課外書.根據條件需要先求出哥哥剩下多少本課外書.如果我們把哥哥剩下的課外書看作1倍,那麼這時弟弟的課外書可看作是哥哥剩下的課外書的2倍,也就是兄弟倆共有的倍數相當於哥哥剩下的課外書的3倍,而兄弟倆人課外書的總數始終是不變的數量.
(1)兄弟倆共有課外書的數量是20+25=45.
(2)哥哥給弟弟若干本課外書後,兄弟倆共有的倍數是2+1=3.
(3)哥哥剩下的課外書的本數是45÷3=15.
(4)哥哥給弟弟課外書的本數是25-15=10.
試著列出綜合算式:
4. 甲乙兩個糧庫原來共存糧170噸,後來從甲庫運出30噸,給乙庫運進10噸,這時甲庫存糧是乙庫存糧的2倍,兩個糧庫原來各存糧多少噸?
根據甲乙兩個糧庫原來共存糧170噸,後來從甲庫運出30噸,給乙庫運進10噸,可求出這時甲、乙兩庫共存糧多少噸.根據「這時甲庫存糧是乙庫存糧的2倍」,如果這時把乙庫存糧作為1倍,那麼甲、乙庫所存糧就相當於乙存糧的3倍.於是求出這時乙庫存糧多少噸,進而可求出乙庫原來存糧多少噸.最後就可求出甲庫原來存糧多少噸.
甲庫原存糧130噸,乙庫原存糧40噸.
列方程組解應用題(一)
1. 用白鐵皮做罐頭盒,每張鐵皮可制盒身16個,或制盒底43個,一個盒身和兩個盒底配成一個罐頭盒,現有150張鐵皮,用多少張制盒身,多少張制盒底,才能使盒身與盒底正好配套?
依據題意可知這個題有兩個未知量,一個是制盒身的鐵皮張數,一個是制盒底的鐵皮張數,這樣就可以用兩個未知數表示,要求出這兩個未知數,就要從題目中找出兩個等量關系,列出兩個方程,組在一起,就是方程組.
兩個等量關系是:A做盒身張數+做盒底的張數=鐵皮總張數
B制出的盒身數×2=制出的盒底數
用86張白鐵皮做盒身,64張白鐵皮做盒底.
奇數與偶數(一)
其實,在日常生活中同學們就已經接觸了很多的奇數、偶數.
凡是能被2整除的數叫偶數,大於零的偶數又叫雙數;凡是不能被2整除的數叫奇數,大於零的奇數又叫單數.
因為偶數是2的倍數,所以通常用 這個式子來表示偶數(這里 是整數).因為任何奇數除以2其餘數都是1,所以通常用式子 來表示奇數(這里 是整數).
奇數和偶數有許多性質,常用的有:
性質1 兩個偶數的和或者差仍然是偶數.
例如:8+4=12,8-4=4等.
兩個奇數的和或差也是偶數.
例如:9+3=12,9-3=6等.
奇數與偶數的和或差是奇數.
例如:9+4=13,9-4=5等.
單數個奇數的和是奇,雙數個奇數的和是偶數,幾個偶數的和仍是偶數.
性質2 奇數與奇數的積是奇數.
偶數與整數的積是偶數.
性質3 任何一個奇數一定不等於任何一個偶數.
1. 有5張撲克牌,畫面向上.小明每次翻轉其中的4張,那麼,他能在翻動若干次後,使5張牌的畫面都向下嗎?
同學們可以試驗一下,只有將一張牌翻動奇數次,才能使它的畫面由向上變為向下.要想使5張牌的畫面都向下,那麼每張牌都要翻動奇數次.
5個奇數的和是奇數,所以翻動的總張數為奇數時才能使5張牌的牌面都向下.而小明每次翻動4張,不管翻多少次,翻動的總張數都是偶數.
所以無論他翻動多少次,都不能使5張牌畫面都向下.
2. 甲盒中放有180個白色圍棋子和181個黑色圍棋子,乙盒中放有181個白色圍棋子,李平每次任意從甲盒中摸出兩個棋子,如果兩個棋子同色,他就從乙盒中拿出一個白子放入甲盒;如果兩個棋子不同色,他就把黑子放回甲盒.那麼他拿多少後,甲盒中只剩下一個棋子,這個棋子是什麼顏色的?
不論李平從甲盒中拿出兩個什麼樣的棋子,他總會把一個棋子放入甲盒.所以他每拿一次,甲盒子中的棋子數就減少一個,所以他拿180+181-1=360次後,甲盒裡只剩下一個棋子.
如果他拿出的是兩個黑子,那麼甲盒中的黑子數就減少兩個.否則甲盒子中的黑子數不變.也就是說,李平每次從甲盒子拿出的黑子數都是偶數.由於181是奇數,奇數減偶數等於奇數.所以,甲盒中剩下的黑子數應是奇數,而不大於1的奇數只有1,所以甲盒裡剩下的一個棋子應該是黑子.
奧賽專題 -- 稱球問題
例1 有4堆外表上一樣的球,每堆4個.已知其中三堆是正品、一堆是次品,正品球每個重10克,次品球每個重11克,請你用天平只稱一次,把是次品的那堆找出來.
解 :依次從第一、二、三、四堆球中,各取1、2、3、4個球,這10個球一起放到天平上去稱,總重量比100克多幾克,第幾堆就是次品球.
2 有27個外表上一樣的球,其中只有一個是次品,重量比正品輕,請你用天平只稱三次(不用砝碼),把次品球找出來.
解 :第一次:把27個球分為三堆,每堆9個,取其中兩堆分別放在天平的兩個盤上.若天平不平衡,可找到較輕的一堆;若天平平衡,則剩下來稱的一堆必定較輕,次品必在較輕的一堆中.
第二次:把第一次判定為較輕的一堆又分成三堆,每堆3個球,按上法稱其中兩堆,又可找出次品在其中較輕的那一堆.
第三次:從第二次找出的較輕的一堆3個球中取出2個稱一次,若天平不平衡,則較輕的就是次品,若天平平衡,則剩下一個未稱的就是次品.
例3 把10個外表上一樣的球,其中只有一個是次品,請你用天平只稱三次,把次品找出來.
把10個球分成3個、3個、3個、1個四組,將四組球及其重量分別用A、B、C、D表示.把A、B兩組分別放在天平的兩個盤上去稱,則
(1)若A=B,則A、B中都是正品,再稱B、C.如B=C,顯然D中的那個球是次品;如B>C,則次品在C中且次品比正品輕,再在C中取出2個球來稱,便可得出結論.如B<C,仿照B>C的情況也可得出結論.
(2)若A>B,則C、D中都是正品,再稱B、C,則有B=C,或B<C(B>C不可能,為什麼?)如B=C,則次品在A中且次品比正品重,再在A中取出2個球來稱,便可得出結論;如B<C,仿前也可得出結論.
(3)若A<B,類似於A>B的情況,可分析得出結論.
奧賽專題 -- 抽屜原理
【例1】一個小組共有13名同學,其中至少有2名同學同一個月過生日.為什麼?
【分析】每年裡共有12個月,任何一個人的生日,一定在其中的某一個月.如果把這12個月看成12個「抽屜」,把13名同學的生日看成13隻「蘋果」,把13隻蘋果放進12個抽屜里,一定有一個抽屜里至少放2個蘋果,也就是說,至少有2名同學在同一個月過生日.
【例 2】任意4個自然數,其中至少有兩個數的差是3的倍數.這是為什麼?
【分析與解】首先我們要弄清這樣一條規律:如果兩個自然數除以3的余數相同,那麼這兩個自然數的差是3的倍數.而任何一個自然數被3除的余數,或者是0,或者是1,或者是2,根據這三種情況,可以把自然數分成3類,這3種類型就是我們要製造的3個「抽屜」.我們把4個數看作「蘋果」,根據抽屜原理,必定有一個抽屜里至少有2個數.換句話說,4個自然數分成3類,至少有兩個是同一類.既然是同一類,那麼這兩個數被3除的余數就一定相同.所以,任意4個自然數,至少有2個自然數的差是3的倍數.
【例3】有規格尺寸相同的5種顏色的襪子各15隻混裝在箱內,試問不論如何取,從箱中至少取出多少只就能保證有3雙襪子(襪子無左、右之分)?
【分析與解】試想一下,從箱中取出6隻、9隻襪子,能配成3雙襪子嗎?回答是否定的.
按5種顏色製作5個抽屜,根據抽屜原理1,只要取出6隻襪子就總有一隻抽屜里裝2隻,這2隻就可配成一雙.拿走這一雙,尚剩4隻,如果再補進2隻又成6隻,再根據抽屜原理1,又可配成一雙拿走.如果再補進2隻,又可取得第3雙.所以,至少要取6+2+2=10隻襪子,就一定會配成3雙.
思考:1.能用抽屜原理2,直接得到結果嗎?
2.把題中的要求改為3雙不同色襪子,至少應取出多少只?
3.把題中的要求改為3雙同色襪子,又如何?
【例4】一個布袋中有35個同樣大小的木球,其中白、黃、紅三種顏色球各有10個,另外還有3個藍色球、2個綠色球,試問一次至少取出多少個球,才能保證取出的球中至少有4個是同一顏色的球?
【分析與解】從最「不利」的取出情況入手.
最不利的情況是首先取出的5個球中,有3個是藍色球、2個綠色球.
接下來,把白、黃、紅三色看作三個抽屜,由於這三種顏色球相等均超過4個,所以,根據抽屜原理2,只要取出的球數多於(4-1)×3=9個,即至少應取出10個球,就可以保證取出的球至少有4個是同一抽屜(同一顏色)里的球.
故總共至少應取出10+5=15個球,才能符合要求.
思考:把題中要求改為4個不同色,或者是兩兩同色,情形又如何?
當我們遇到「判別具有某種事物的性質有沒有,至少有幾個」這樣的問題時,想到它——抽屜原理,這是你的一條「決勝」之路.
奧賽專題 -- 還原問題
【例1】某人去銀行取款,第一次取了存款的一半多50元,第二次取了餘下的一半多100元.這時他的存摺上還剩1250元.他原有存款多少元?
【分析】從上面那個「重新包裝」的事例中,我們應受到啟發:要想還原,就得反過來做(倒推).由「第二次取餘下的一半多100元」可知,「餘下的一半少100元」是1250元,從而「餘下的一半」是 1250+100=1350(元)
餘下的錢(餘下一半錢的2倍)是: 1350×2=2700(元)
用同樣道理可算出「存款的一半」和「原有存款」.綜合算式是:
[(1250+100)×2+50]×2=5500(元)
還原問題的一般特點是:已知對某個數按照一定的順序施行四則運算的結果,或把一定數量的物品增加或減少的結果,要求最初(運算前或增減變化前)的數量.解還原問題,通常應當按照與運算或增減變化相反的順序,進行相應的逆運算.
【例2】有26塊磚,兄弟2人爭著去挑,弟弟搶在前面,剛擺好磚,哥哥趕來了.哥哥看弟弟挑得太多,就拿來一半給自己.弟弟覺得自己能行,又
從哥哥那裡拿來一半.哥哥不讓,弟弟只好給哥哥5塊,這樣哥哥比弟弟多挑2塊.問最初弟弟准備挑多少塊?
【分析】我們得先算出最後哥哥、弟弟各挑多少塊.只要解一個「和差問題」就知道:哥哥挑「(26+2)÷2=14」塊,弟弟挑「26-14=12」塊.
提示:解還原問題所作的相應的「逆運算」是指:加法用減法還原,減法用加法還原,乘法用除法還原,除法用乘法還原,並且原來是加(減)幾,還原時應為減(加)幾,原來是乘(除)以幾,還原時應為除(乘)以幾.
對於一些比較復雜的還原問題,要學會列表,藉助表格倒推,既能理清數量關系,又便於驗算.
奧賽專題 -- 雞兔同籠問題
例1 雞兔同籠,頭共46,足共128,雞兔各幾只?
[分析] :如果 46隻都是兔,一共應有 4×46=184隻腳,這和已知的128隻腳相比多了184-128=56隻腳.如果用一隻雞來置換一隻兔,就要減少4-2=2(只)腳.那麼,46隻兔里應該換進幾只雞才能使56隻腳的差數就沒有了呢?顯然,56÷2=28,只要用28隻雞去置換28隻兔就行了.所以,雞的只數就是28,兔的只數是46-28=18.
①雞有多少只?
(4×6-128)÷(4-2)
=(184-128)÷2
=56÷2
=28(只)
②免有多少只?
46-28=18(只)
答:雞有28隻,免有18隻.
例2 雞與兔共有100隻,雞的腳比兔的腳多80隻,問雞與兔各多少只?
[分析]: 這個例題與前面例題是有區別的,沒有給出它們腳數的總和,而是給出了它們腳數的差.這又如何解答呢?
假設100隻全是雞,那麼腳的總數是2×100=200(只)這時兔的腳數為0,雞腳比兔腳多200隻,而實際上雞腳比兔腳多80隻.因此,雞腳與兔腳的差數比已知多了(200-80)=120(只),這是因為把其中的兔換成了雞.每把一隻兔換成雞,雞的腳數將增加2隻,兔的腳數減少4隻.那麼,雞腳與兔腳的差數增加(2+4)=6(只),所以換成雞的兔子有120÷6=20(只).有雞(100-20)=80(只).
(2×100-80)÷(2+4)=20(只).
100-20=80(只).
答:雞與兔分別有80隻和20隻.
例3 紅英小學三年級有3個班共135人,二班比一班多5人,三班比二班少7人,三個班各有多少人?
[分析1] 我們設想,如果條件中三個班人數同樣多,那麼,要求每班有多少人就很容易了.由此得到啟示,是否可以通過假設三個班人數同樣多來分析求解.
結合下圖可以想,假設二班、三班人數和一班人數相同,以一班為標准,則二班人數要比實際人數少5人.三班人數要比實際人數多7-5=2(人).那麼,請你算一算,假設二班、三班人數和一班人數同樣多,三個班總人數應該是多少?
解法1:
一班:[135-5+(7-5)]÷3=132÷3
=44(人)
二班:44+5=49(人)
三班:49-7=42(人)
答:三年級一班、 二班、三班分別有44人、 49人和 42人.
[分析2] 假設一、三班人數和二班人數同樣多,那麼,一班人數比實際要多5人,而三班要比實際人數多7人.這時的總人數又該是多少?
解法2:(135+ 5+ 7)÷3 = 147÷3 = 49(人)
49-5=44(人),49-7=42(人)
答:三年級一班、二班、三班分別有44人、49人和42人.
例4 劉老師帶了41名同學去北海公園劃船,共租了10條船.每條大船坐6人,每條小船坐4人,問大船、小船各租幾條?
[分析] 我們分步來考慮:
①假設租的 10條船都是大船,那麼船上應該坐 6×10= 60(人).
②假設後的總人數比實際人數多了 60-(41+1)=18(人),多的原因是把小船坐的4人都假設成坐6人.
③一條小船當成大船多出2人,多出的18人是把18÷2=9(條)小船當成大船.
[6×10-(41+1)÷(6-4)
= 18÷2=9(條) 10-9=1(條)
答:有9條小船,1條大船.
例5 有蜘蛛、蜻蜓、蟬三種動物共18隻,共有腿118條,翅膀20對(蜘蛛8條腿;蜻蜓6條腿,兩對翅膀;蟬6條腿,一對翅膀),求蜻蜓有多少只?
[分析] 這是在雞兔同籠基礎上發展變化的問題.觀察數字特點,蜻蜓、蟬都是6條腿,只有蜘蛛8條腿.因此,可先從腿數入手,求出蜘蛛的只數.我們假設三種動物都是6條腿,則總腿數為 6×18=108(條),所差 118-108=10(條),必然是由於少算了蜘蛛的腿數而造成的.所以,應有(118-108)÷(8-6)=5(只)蜘蛛.這樣剩下的18-5=13(只)便是蜻蜓和蟬的只數.再從翅膀數入手,假設13隻都是蟬,則總翅膀數1×13=13(對),比實際數少 20-13=7(對),這是由於蜻蜓有兩對翅膀,而我們只按一對翅膀計算所差,這樣蜻蜓只數可求7÷(2-1)=7(只).
①假設蜘蛛也是6條腿,三種動物共有多少條腿?
6×18=108(條)
②有蜘蛛多少只?
(118-108)÷(8-6)=5(只)
③蜻蜒、蟬共有多少只?
18-5=13(只)
④假設蜻蜒也是一對翅膀,共有多少對翅膀?1×13=13(對)
⑤蜻蜒多少只?
(20-13)÷ 2-1)= 7(只)
答:蜻蜒有7隻.
㈢ 小學數學奧數題及答案
一批商品,按期望獲得50%的利潤來定價,結果只銷掉70%的商品,為盡早銷掉剩下商品,商店決定按定價打折出售,這樣所獲的全部利潤是原來期望利潤的82%。問打了多少折扣?
1)由按期望獲得50%的利潤來定價,結果只銷掉70%的商品可知:所獲的利潤是35%,30%的商品所獲的利潤是15%
(2)由為盡早銷掉剩下商品,商店決定按定價打折出售,這樣所獲的全部利潤是原來期望利潤的82%可知:所獲的利潤是41%。
(3)可知剩下商品是30%所獲的利潤為原來期望利潤的41%-35%=6%。
(4)1*(30%+6%)/1*(30%+15%)=80%
(5)打了八折
1、小力在玩游戲時 把一個底面直徑為1.2分米 高15分米的鉛錘放入一個裝有水且底面直徑為2.2分米的圓柱型的玻璃杯中 水沒有溢出 當取出鉛錘後 杯里的水下降了幾厘米? 保留2位小數
2、在一個高3分米底面半徑2分米的圓錐形容器里裝滿沙子,再將這些沙子全部倒入一個圓柱形容器內,剛好裝了圓柱形容器的7分之2,這個容器容積是多少立方分米?
3、圓柱的底面半徑6厘米,高7厘米,側面積、表面積、體積各是多少
4、一個圓錐和一個圓柱的底面積相等,已知圓錐與圓柱的體積比是1:6,圓錐的高為4.8厘米,圓柱的高是多少cm 5、小紅用5.50元錢可買2支相同的鉛筆和一個筆記本。當文具價格上漲10%後,5.50元恰好能買一隻同樣的鉛筆和一個筆記本,若價格又上漲10%後,這5.50元錢還夠不夠買一個筆記本? 二、按規律填數。
1)64,48,40,36,34,( )
2)8,15,10,13,12,11,( )
3)1、4、5、8、9、( )、13、( )、( )
4)2、4、5、10、11、( )、( )
5)5,9,13,17,21,( ),( )
三、等差數列
1.在等差數列3,12,21,30,39,48,…中912是第幾個數?
2.求1至100內所有不能被5或9整除的整數和
3.把210拆成7個自然數的和,使這7個數從小到大排成一行後,相鄰兩個數的差都是5,那麼,第1個數與第6個數分別是多少?
4.把從1開始的所有奇數進行分組,其中每組的第一個數都等於此組中所有數的個數,如(1),(3、5、7),(9、11、13、15、17、19、21、23、25),(27、29、……79),(81、……),求第5組中所有數的和
5.將自然數如下排列,
1 2 6 7 15 16 …
3 5 8 14 17 …
4 9 13 18 …
10 12 …
11 …
…
在這樣的排列下,數字排在第2行第1列,13排在第3行第3列,問:1993排在第幾行第幾列?
6.一條路長100米,從頭到尾每隔10米栽1棵梧桐樹,共栽多少棵樹?
路分成100÷10=10段,共栽樹10+1=11棵。
12棵柳樹排成一排,在每兩棵柳樹中間種3棵桃樹,共種多少棵桃樹?
3×(12-1)=33棵。
一根200厘米長的木條,要鋸成10厘米長的小段,需要鋸幾次?
200÷10=20段,20-1=19次。
7.螞蟻爬樹枝,每上一節需要10秒鍾,從第一節爬到第13節需要多少分鍾?
從第一節到第13節需10×(13-1)=120秒,120÷60=2分。
8.在花圃的周圍方式菊花,每隔1米放1盆花。花圃周圍共20米長。需放多少盆菊花?
20÷1×1=20盆
9.從發電廠到鬧市區一共有250根電線桿,每相鄰兩根電線桿之間是30米。從發電廠到鬧市區有多遠?
30×(250-1)=7470米。
10.王老師把月收入的一半又20元留做生活費,又把剩餘錢的一半又50元儲蓄起來,這時還剩40元給孩子交學費書本費。他這個月收入多少元?
[(40+50) ×2+20] ×2=400(元)答:他這個月收入400元。
11.一個人沿著大提走了全長的一半後,又走了剩下的一半,還剩下1千米,問:大提全長多少千米?
1×2×2=4千米
12.甲在加工一批零件,第一天加工了這堆零件的一半又10個,第二天又加工了剩下的一半又10個,還剩下25個沒有加工。問:這批零件有多少個?
(25+10)×2=70個,(70+10)×2=160個。綜合算式:【(25+10)×2+10】×2=160個
13.一條毛毛蟲由幼蟲長到成蟲,每天長一倍,16天能長到16厘米。問它幾天可以長到4厘米?
16÷2÷2=4(厘米),16-1-1=14(天)
14.一桶水,第一次倒出一半,然後倒回桶里30千克,第二次倒出桶中剩下水的一半,第三次倒出180千克,桶中還剩下80千克。桶里原來有水多少千克?
180+80=260(千克),260×2-30=490(千克),490×2=980(千克)。
15.甲、乙兩書架共有圖書200本,甲書架的圖書數比乙書架的3倍少16本。甲、乙兩書架上各有圖書多少本?
答案:乙:(200+16)÷(3+1)=54(本);甲:54×3-16=146(本)。
16.小燕買一套衣服用去185元,問上衣和褲子各多少元?
褲子:(185-5)÷(2+1)=60(元);
上衣:60×2+5=125(元)。
17甲、乙、丙三人年齡之和是94歲,且甲的2倍比丙多5歲,乙2倍比丙多19歲,問:甲、乙、丙三人各多大?
如果每個人的年齡都擴大到2倍,那麼三人年齡的和是94×2=188。如果甲再減少5歲,乙再減少19歲,那麼三人的年齡的和是188-5-19=164(歲),這時甲的年齡是丙的一半,即丙的年齡是甲的兩倍。同樣,這時丙的年齡也是乙兩倍。所以這時甲、乙的年齡都是164÷(1+1+2)=41(歲),即原來丙的年齡是41歲。甲原來的年齡是(41+5)÷2=23(歲),乙原來的年齡是(41+19)÷2=30(歲)。
18.小明、小華捉完魚。小明說:「如果你把你捉的魚給我1條,我的魚就是你的2倍。如果我給你1條,咱們就一樣多了。「請算出兩個各捉了多少條魚。
小明比小華多1×2=2(條)。如果小華給小明1條魚,那麼小明比小華多2+1×2=4(條),這時小華有魚4÷(2-1)=4(條)。原來小華有魚4+1=5(條),原來小明有魚5+2=7(條)。
19.小芳去文具店買了13本語文書,8本算術書,共用去10元。已知6本語文本的價錢與4本算術本的價錢相等。問:1本語文本、1本算術本各多少錢?
8÷4×6=12,即8本算術本與12本語文體價錢相等。所以1本語文本值10×100÷(13+12)=40(分),1本算術本值40×6÷4=60(分),即1本語文本4角,1本算術本6角。
20.找規律,在括弧內填入適當的數. 75,3,74,3,73,3,(),()。
答案:72,3。
21找規律,在括弧內填入適當的數. 1,4,5,4,9,4,(),()。
奇數項構成數列1,5,9……,每一項比前一項多4;偶數項都是4,所以應填13,4
22.找規律,在括弧內填入適當的數. 3,2,6,2,12,2,(),()。
24,2。
23.找規律,在括弧內填入適當的數. 76,2,75,3,74,4,(),()。
答案:將原數列拆分成兩列,應填:73,5。
24.找規律,在括弧內填入適當的數. 2,3,4,5,8,7,(),()。
答案:將原數列拆分成兩列,應填:16,9。
2.5找規律,在括弧內填入適當的數. 3,6,8,16,18,(),()。
答案:6=3×2,16=8×2,即偶數項是它前面的奇數項的2倍;又8=6+2,18=16+2,即從第三項起,奇數項比它前面的偶數項多2.所以應填:36,38。
26.找規律,在括弧內填入適當的數. 1,6,7,12,13,18,19,(),()。
答案:將原數列拆分成兩列,應填:24,25。
27.找規律,在括弧內填入適當的數. 1,4,3,8,5,12,7,()。
答案:奇數項構成數列1,3,5,7,…,每一項比前一項多2;偶數項構成數列4,8,12,…,每一項比前一項多4,所以應填:16。
28找規律,在括弧內填入適當的數. 0,1,3,8,21,55,(),()。
答案:144,377。
29.A、B、C、D四人在一場比賽中得了前4名。已知D的名次不是最高,但它比B、C都高,而C的名次也不比B高。問:他們各是第幾名?
答案:D名次不是最高,但比B、C高,所以它是第2名,A是第1名。C的名次不比B高,所以B是第3名,C是第4名。
30.一頭象的重量等於4頭牛的重量,一頭牛的重量等於3匹小馬的重量,一匹小馬的重量等於3頭小豬的重量。問:一頭象的重量等於幾頭小豬的重量?
答案:4×3×3=36,所以一頭象的重量等於36頭小豬的重量。
31.甲、乙、丙三人,一個人喜歡看足球,一個人喜歡看拳擊,一個人喜歡看籃球。已知甲不愛看籃球,丙既不喜歡看籃球又不喜歡看足球。現有足球、拳擊、籃球比賽的入場券各一張。請根據他們的愛好,把票分給他們。
答案:丙不喜歡看籃球與足球,應將拳擊入場券給丙。甲不喜歡看籃球,應將足球入場券給甲。最後,應將籃球入場券給乙。
32.有一堆鐵塊和銅塊,每塊鐵塊重量完全一樣,每塊銅塊的重量也完全一樣。3塊鐵快和5塊銅塊共重210克。4塊鐵塊和10塊銅塊共重380克。問:每一塊鐵塊、每一塊銅塊各重多少?
答案:4塊鐵塊和10塊銅塊共重380克,所以2塊鐵塊和5塊銅塊共重380÷2=190(克)。而3塊鐵塊和5塊銅塊共重210克,所以1塊鐵塊重210-190=20(克)。1銅塊重(190-20×2)÷5=30(克)。
33.甲、乙、丙三人中有一人做了一件好事。他們各自都說了一句話,而其中只有一句是真的。甲說:「是乙做的。」 乙說:「不是我做的。」 丙說:「也不是我做的。」 問:到底是誰做的好事?
答案:如果是甲做的好事,那麼乙、丙的話都是真的,與只有一句是真的矛盾。如果是乙做的好事,那麼甲、丙的話都是真的,也產生矛盾。好事是丙做的,這時甲、丙的話都是錯的,只有乙的話是真的,所以好事是丙做的。
34.一張長8分米、寬3分米的長方形紙板,在四個角落上各截去一個邊長為2分米的正方形,所剩下的部分的周長是多少?
答:(8+3)×2=22(分米)
35.計算 :18+19+20+21+22+23
原式=(18+23)×6÷2=123
36.計算 :100+102+104+106+108+110+112+114
原式=(100+114) ×8÷2=856
37.995+996+997+998+999
原式=(995+999) ×5÷2=4985
38/.:(1999+1997+1995+…+13+11)-(12+14+16+…+1996+1998)
第一個括弧內的項數為(1999-11)÷2+1=995,所以原式=(1999-1998)+(1997-1996)+…+(13-12)+11=1×994+11=1005 三。
1.某列車通過250米長的隧道用25秒,通過210米長的隧道用23秒,若該列車與另一列長150米。時速為72千米的列車相遇,錯車而過需要幾秒鍾?
2.一條隧道長360米,某列火車從車頭入洞到全車進洞用了8秒鍾,從車頭入洞到全車出洞共用了20秒鍾。這列火車長多少米?
3.鐵路旁的一條與鐵路平行的小路上,有一行人與騎車人同時向南行進,行人速度為3.6千米/時,騎車人速度為10.8千米/時,這時有一列火車從他們背後開過來,火車通過行人用22秒,通過騎車人用26秒,這列火車的車身總長是多少?
4.有兩列火車,一列長102米,每秒行20米;一列長120米,每秒行17米。兩車同向而行,從第一列車追及第二列車到兩車離開需要幾秒?
5.某人步行的速度為每秒2米。一列火車從後面開來,超過他用了10秒。已知火車長90米。求火車的速度。
6.現有兩列火車同時同方向齊頭行進,行12秒後快車超過慢車.快車每秒行18米,慢車每秒行10米。如果這兩列火車車尾相齊同時同方向行進,則9秒後快車超過慢車,求兩列火車的車身長。
7.一列火車通過440米的橋需要40秒,以同樣的速度穿過310米的隧道需要30秒。這列火車的速度和車身長各是多少?
8.小英和小敏為了測量飛駛而過的火車速度和車身長,他們拿了兩塊跑表。小英用一塊表記下了火車從她面前通過所花的時間是15秒;小敏用另一塊表記下了從車頭過第一根電線桿到車尾過第二根電線桿所花的時間是20秒。已知兩電線桿之間的距離是100米。你能幫助小英和小敏算出火車的全長和時速嗎?
9.一列火車通過530米的橋需要40秒,以同樣的速度穿過380米的山洞需要30秒。求這列火車的速度與車身長各是多少米。
10.兩人沿著鐵路線邊的小道,從兩地出發,以相同的速度相對而行。一列火車開來,全列車從甲身邊開過用了10秒.3分後,乙遇到火車,全列火車從乙身邊開過只用了9秒。火車離開乙多少時間後兩人相遇?
11.兩列火車,一列長120米,每秒行20米;另一列長160米,每秒行15米,兩車相向而行,從車頭相遇到車尾離開需要幾秒鍾?
12.某人步行的速度為每秒鍾2米。一列火車從後面開來,越過他用了10秒鍾。已知火車的長為90米,求列車的速度。
13.甲、乙二人沿鐵路相向而行,速度相同,一列火車從甲身邊開過用了8秒鍾,離甲後5分鍾又遇乙,從乙身邊開過,只用了7秒鍾,問從乙與火車相遇開始再過幾分鍾甲乙二人相遇?
14.快車長182米,每秒行20米,慢車長1034米,每秒行18米。兩車同向並行,當快車車尾接慢車車尾時,求快車穿過慢車的時間?
15.快車長182米,每秒行20米,慢車長1034米,每秒行18米。兩車同向並行,當兩車車頭齊時,快車幾秒可越過慢車?
16.一人以每分鍾120米的速度沿鐵路邊跑步。一列長288米的火車從對面開來,從他身邊通過用了8秒鍾,求列車的速度。
17.一列火車長600米,它以每秒10米的速度穿過長200米的隧道,從車頭進入隧道到車尾離開隧道共需多少時間?
18.一列火車長200米,它以每秒10米的速度穿過200米長的隧道,從車頭進入隧道到車尾離開隧道共需要_______時間。
19.某人沿著鐵路邊的便道步行,一列客車從身後開來,在身旁通過的時間是15秒,客車長105米,每小時速度為28.8千米,求步行人每小時行______千米?
20.一人以每分鍾60米的速度沿鐵路步行,一列長144米的客車對面開來,從他身邊通過用了8秒鍾,列車的速度是______米/秒。
沒做的自己做,不知道的問我
力頂,
㈣ 小學奧數題及答案
如圖,原正方形切下的四個角可拼成正方形ABCD,
它的邊長就是正八邊形的邊長BC=4,它的面積是16
所以正八邊形的面積=84.6-16=68.6平方厘米.
㈤ 小學五年級奧數題,及答案
1、某班有40名學生,其中有15人參加數學小組,18人參加航模小組,有10人兩個小組都參加。那麼有多少人兩個小組都不參加?
2、某班45個學生參加期末考試,成績公布後,數學得滿分的有10人,數學及語文成績均得滿分的有3人,這兩科都沒有得滿分的有29人。那麼語文成績得滿分的有多少人?
3、50名同學面向老師站成一行。老師先讓大家從左至右按1,2,3,……,49,50依次報數;再讓報數是4的倍數的同學向後轉,接著又讓報數是6的倍數的同學向後轉。問:現在面向老師的同學還有多少名?
4、在游藝會上,有100名同學抽到了標簽分別為1至100的獎券。按獎券標簽號發放獎品的規則如下:(1)標簽號為2的倍數,獎2支鉛筆;(2)標簽號為3的倍數,獎3支鉛筆;(3)標簽號既是2的倍數,又是3的倍數可重復領獎;(4)其他標簽號均獎1支鉛筆。那麼游藝會為該項活動准備的獎品鉛筆共有多少支?
5、有一根長為180厘米的繩子,從一端開始每隔3厘米作一記號,每隔4厘米也作一記號,然後將標有記號的地方剪斷。問繩子共被剪成了多少段?
五年級試題三答案
1,因為10人2組都參加,所以只參加數學的5人,只參加航模的8人,加上那10人就是23人,40-23=17,2個小組都不參加的17人
2,同理,數學滿分10人,2科都滿分的3人,於是只是數學滿分的7人,45-7-29=9,這個就是語文滿分的人(如果說只是語文滿分的則需要減去3)
3,50÷4取整12,50÷6取整8,但是要注意,報4倍數的同時可能是6的倍數,所以還要算出4和6的公倍數,有50÷12(4和6的最小公倍數)=4(取整),所以,應該是50-12-8+4=34
4,100÷2=50,100÷3=33(取整),還是算出2和3的公倍數100÷6=16(取整),然後找出即沒不被2整除,也不被3整除的數的個數100-50-33+16=28,所以,准備鉛筆為50X2+33X3+28=227
5,180÷3=60,180÷4=45,但是可能2個劃線劃在一起,也就是要算出他們的公倍數,180÷3÷4=15,所以應該為60+45-15=90
㈥ 要30道5年級數學奧數題,帶答案。
已知一張桌子的價錢是一把椅子的10倍,又知一張桌子比一把椅子多288元,一張桌子和一把椅子各多少元?
2、3箱蘋果重45千克。一箱梨比一箱蘋果多5千克,3箱梨重多少千克?
3.甲乙二人從兩地同時相對而行,經過4小時,在距離中點4千米處相遇。甲比乙速度快,甲每小時比乙快多少千米?
4.李軍和張強付同樣多的錢買了同一種鉛筆,李軍要了13支,張強要了7支,李軍又給張強0.6元錢。每支鉛筆多少錢?
5.甲乙兩輛客車上午8時同時從兩個車站出發,相向而行,經過一段時間,兩車同時到達一條河 的兩岸。由於河上的橋正在維修,車輛禁止通行,兩車需交換乘客,然後按原路返回各自出發的車站,到站時已是下午2點。甲車每小時行40千米,乙車每小時行 45千米,兩地相距多少千米?(交換乘客的時間略去不計)
6.學校組織兩個課外興趣小組去郊外活動。第一小組每小時走4.5千米,第二小組每小時行3.5千米。兩組同時出發1小時後,第一小組停下來參觀一個果園,用了1小時,再去追第二小組。多長時間能追上第二小組?
7.有甲乙兩個倉庫,每個倉庫平均儲存糧食32.5噸。甲倉的存糧噸數比乙倉的4倍少5噸,甲、乙兩倉各儲存糧食多少噸?
8.甲、乙兩隊共同修一條長400米的公路,甲隊從東往西修4天,乙隊從西往東修5天,正好修完,甲隊比乙隊每天多修10米。甲、乙兩隊每天共修多少米?
9.學校買來6張桌子和5把椅子共付455元,已知每張桌子比每把椅子貴30元,桌子和椅子的單價各是多少元?
10.一列火車和一列慢車,同時分別從甲乙兩地相對開出。快車每小時行75千米,慢車每小時行65千米,相遇時快車比慢車多行了40千米,甲乙兩地相距多少千米?
11.某玻璃廠托運玻璃250箱,合同規定每箱運費20元,如果損壞一箱,不但不付運費還要賠償100元。運後結算時,共付運費4400元。托運中損壞了多少箱玻璃?
12.五年級一中隊和二中隊要到距學校20千米的地方去春遊。第一中隊步行每小時行4千米,第二中隊騎自行車,每小時行12千米。第一中隊先出發2小時後,第二中隊再出發,第二中隊出發後幾小時才能追上一中隊?
13.某廠運來一堆煤,如果每天燒1500千克,比計劃提前一天燒完,如果每天燒1000千克,將比計劃多燒一天。這堆煤有多少千克?
14.媽媽讓小紅去商店買5支鉛筆和8個練習本,按價錢給小紅3.8元錢。結果小紅卻買了8支鉛筆和5本練習本,找回0.45元。求一支鉛筆多少元?
15.學校組織外出參觀,參加的師生一共360人。一輛大客車比一輛卡車多載10人,6輛大客車和8輛卡車載的人數相等。都乘卡車需要幾輛?都乘大客車需要幾輛?
16.某築路隊承擔了修一條公路的任務。原計劃每天修720米,實際每天比原計劃多修80米,這樣實際修的差1200米就能提前3天完成。這條公路全長多少米?
17.某鞋廠生產1800雙鞋,把這些鞋分別裝入12個紙箱和4個木箱。如果3個紙箱加2個木箱裝的鞋同樣多。每個紙箱和每個木箱各裝鞋多少雙?
18.某工地運進一批沙子和水泥,運進沙子袋數是水泥的2倍。每天用去30袋水泥,40袋沙子,幾天以後,水泥全部用完,而沙子還剩120袋,這批沙子和水泥各多少袋?
19.學校里買來了5個保溫瓶和10個茶杯,共用了90元錢。每個保溫瓶是每個茶杯價錢的4倍,每個保溫瓶和每個茶杯各多少元?
20.兩個數的和是572,其中一個加數個位上是0,去掉0後,就與第二個加數相同。這兩個數分別是多少?
21.一桶油連桶重16千克,用去一半後,連桶重9千克,桶重多少千米?
22.一桶油連桶重10千克,倒出一半後,連桶還重5.5千克,原來有油多少千克?
23.用一隻水桶裝水,把水加到原來的2倍,連桶重10千克,如果把水加到原來的5倍,連桶重22千克。桶里原有水多少千克?
24.小紅和小華共有故事書36本。如果小紅給小華5本,兩人故事書的本數就相等,原來小紅和小華各有多少本?
25.有5桶油重量相等,如果從每隻桶里取出15千克,則5隻桶里所剩下油的重量正好等於原來2桶油的重量。原來每桶油重多少千克?
26.把一根木料鋸成3段需要9分鍾,那麼用同樣的速度把這根木料鋸成5段,需要多少分?
27.一個車間,女工比男工少35人,男、女工各調出17人後,男工人數是女工人數的2倍。原有男工多少人?女工多少人?
28.李強騎自行車從甲地到乙地,每小時行12千米,5小時到達,從乙地返回甲地時因逆風多用1小時,返回時平均每小時行多少千米?
29.甲、乙二人同時從相距18千米的兩地相對而行,甲每小時行走5千米,乙每小時走4千米。如果甲帶了一隻狗與甲同時出發,狗以每小時8千米的速度向乙跑去,遇到乙立即回頭向甲跑去,遇到甲又回頭向飛跑去,這樣二人相遇時,狗跑了多少千米?
30.有紅、黃、白三種顏色的球,紅球和黃球一共有21個,黃球和白球一共有20個,紅球和白球一共有19個。三種球各有多少個?
31.在一根粗鋼管上接細鋼管。如果接2根細鋼管共長18米,如果接5根細鋼管共長33米。一根粗鋼管和一根細鋼管各長多少米?
32.水泥廠原計劃12天完成一項任務,由於每天多生產水泥4.8噸,結果10天就完成了任務,原計劃每天生產水泥多少噸?
33.學校舉辦歌舞晚會,共有80人參加了表演。其中唱歌的有70人,跳舞的有30人,既唱歌又跳舞的有多少人?
34.學校舉辦語文、數學雙科競賽,三年級一班有59人,參加語文競賽的有36人,參加數學競賽的有38人,一科也沒參加的有5人。雙科都參加的有多少人?
35.學校買了4張桌子和6把椅子,共用640元。2張桌子和5把椅子的價錢相等,桌子和椅子的單價各是多少元?
36.父親今年45歲,5年前父親的年齡是兒子的4倍,今年兒子多少歲?
37.有兩桶油,甲桶油重是乙桶油重的4倍,如果從甲桶倒入乙桶18千克,兩桶油就一樣重,原來每桶各有多少千克油?
38.光明小學舉辦數學知識競賽,一共20題。答對一題得5分,答錯一題扣3分,不答得0分。小麗得了79分,她答對幾道,答錯幾道,有幾題沒答?
39.甲列火車長240米,每秒行20米;乙列火車長264米,每秒行16米,兩車相向而行,從兩車頭相遇到兩車尾相離需要幾秒?
40.一列火車長600米,通過一條長1150米的隧道,已知火車的速度是每分700米,問火車通過隧道需要幾分?
41.小明從家裡到學校,如果每分走50米,則正好到上課時間;如果每分走60米,則離上課時間還有2分。問小明從家裡到學校有多遠?
42.有一周長600米的環形跑道,甲、乙二人同時、同地、同向而行,甲每分鍾跑300米,乙每分鍾跑400米,經過幾分鍾二人第一次相遇?
43.有一個長方形紙板,如果只把長增加2厘米,面積就增加8平方米;如果只把寬增加2厘米,面積就增加12平方厘米。這個長方形紙板原來的面積是多少?
44.媽媽買蘋果和梨各3千克,付出20元找回7.4元。每千克蘋果2.4元,每千克梨多少元?
45.甲乙兩人同時從相距135千米的兩地相對而行,經過3小時相遇。甲的速度是乙的2倍,甲乙兩人每小時各行多少千米?
46.盒子里有同樣數目的黑球和白球。每次取出8個黑球和5個白球,取出幾次以後,黑球沒有了,白球還剩12個。一共取了幾次?盒子里共有多少個球?
47.上午6時從汽車站同時發出1路和2路公共汽車,1路車每隔12分鍾發一次,2路車每隔18分鍾發一次,求下次同時發車時間。
48.父親今年45歲,兒子今年15歲,多少年前父親的年齡是兒子年齡的11倍?
49.王老師有一盒鉛筆,如平均分給2名同學餘1支,平均分給3名同學餘2支,平均分給4名同學餘3支,平均分給5名同學餘4支。問這盒鉛筆最少有多少支?
50.一塊平行四邊形地,如果只把底增加8米,或只把高增加5米,它的面積都增加40平方米。求這塊平行四邊形地原來的面積?
50道奧數題解答參考
1、想:由已知條件可知,一張桌子比一把椅子多的288元,正好是一把椅子價錢的(10-1)倍,由此可求得一把椅子的價錢。再根據椅子的價錢,就可求得一張桌子的價錢。
解:一把椅子的價錢:
288÷(10-1)=32(元)
一張桌子的價錢:
32×10=320(元)
答:一張桌子320元,一把椅子32元。
2、想:可先求出3箱梨比3箱蘋果多的重量,再加上3箱蘋果的重量,就是3箱梨的重量。
解:45+5×3
=45+15
=60(千克)
答:3箱梨重60千克。
3、想:根據在距離中點4千米處相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知經過4小時相遇。即可求甲比乙每小時快多少千米。
解:4×2÷4
=8÷4
=2(千米)
答:甲每小時比乙快2千米。
4、想:根據兩人付同樣多的錢買同一種鉛筆和李軍要了13支,張強要了7支,可知每人應該得(13+7)÷2支,而李軍要了13支比應得的多了3支,因此又給張強0.6元錢,即可求每支鉛筆的價錢。
解:0.6÷[13-(13+7)÷2]
=0.6÷[13-20÷2]
=0.6÷3
=0.2(元)
答:每支鉛筆0.2元。
5、想:根據已知兩車上午8時從兩站出發,下午2點返回原車站,可求出兩車所行駛的時間。根據兩車的速度和行駛的時間可求兩車行駛的總路程。
解:下午2點是14時。
往返用的時間:14-8=6(時)
兩地間路程:(40+45)×6÷2
=85×6÷2
=255(千米)
答:兩地相距255千米。
6、想:第一小組停下來參觀果園時間,第二小組多行了[3.5-(4.5-3.5)] 千米,也就是第一組要追趕的路程。又知第一組每小時比第二組快( 4.5-3.5)千米,由此便可求出追趕的時間。
解:第一組追趕第二組的路程:
3.5-(4.5- 3.5)=3.5-1=2.5(千米)
第一組追趕第二組所用時間:
2.5÷(4.5-3.5)=2.5÷1=2.5(小時)
答:第一組2.5小時能追上第二小組。
7、想:根據甲倉的存糧噸數比乙倉的4倍少5噸,可知甲倉的存糧如果增加5噸,它的存糧噸數就是乙倉的4倍,那樣總存糧數也要增加5噸。若把乙倉存糧噸數看作1倍,總存糧噸數就是(4+1)倍,由此便可求出甲、乙兩倉存糧噸數。
解:乙倉存糧:
(32.5×2+5)÷(4+1)
=(65+5)÷5
=70÷5
=14(噸)
甲倉存糧:
14×4-5
=56-5
=51(噸)
答:甲倉存糧51噸,乙倉存糧14噸。
8、想:根據甲隊每天比乙隊多修10米,可以這樣考慮:如果把甲隊修的4天看作和乙隊4天修的同樣多,那麼總長度就減少4個10米,這時的長度相當於乙(4+5)天修的。由此可求出乙隊每天修的米數,進而再求兩隊每天共修的米數。
解:乙每天修的米數:
(400-10×4)÷(4+5)
=(400-40)÷9
=360÷9
=40(米)
甲乙兩隊每天共修的米數:
40×2+10=80+10=90(米)
答:兩隊每天修90米。
9、想:已知每張桌子比每把椅子貴30元,如果桌子的單價與椅子同樣多,那麼總價就應減少30×6元,這時的總價相當於(6+5)把椅子的價錢,由此可求每把椅子的單價,再求每張桌子的單價。
解:每把椅子的價錢:
(455-30×6)÷(6+5)
=(455- 180)÷11
=275÷11
=25(元)
每張桌子的價錢:
25+30=55(元)
答:每張桌子55元,每把椅子25元。
10、想:根據已知的兩車的速度可求速度差,根據兩車的速度差及快車比慢車多行的路程,可求出兩車行駛的時間,進而求出甲乙兩地的路程。
解:(7+65)×[40÷(75- 65)]
=140×[40÷10]
=140×4
=560(千米)
答:甲乙兩地相距 560千米。
11、想:根據已知托運玻璃250箱,每箱運費20元,可求出應付運費總錢數。根據每損壞一箱,不但不付運費還要賠償100元的條件可知,應付的錢數和實際付的錢數的差里有幾個(100+20)元,就是損壞幾箱。
解:(20×250-4400)÷(10+20)
=600÷120
=5(箱)
答:損壞了5箱。
12、想:因第一中隊早出發2小時比第二中隊先行4×2千米,而每小時第二中隊比第一中隊多行(12-4)千米,由此即可求第二中隊追上第一中隊的時間。
解:4×2÷(12-4)
=4×2÷8
=1(時)
答:第二中隊1小時能追上第一中隊。
13、想:由已知條件可知道,前後燒煤總數量相差(1500+1000)千克,是由每天相差(1500-1000)千克造成的,由此可求出原計劃燒的天數,進而再求出這堆煤的數量。
解:原計劃燒煤天數:
(1500+1000)÷(1500-1000)
=2500÷500
=5(天)
這堆煤的重量:
1500×(5-1)
=1500×4
=6000(千克)
答:這堆煤有6000千克。
14、想:小紅打算買的鉛筆和本子總數與實際買的鉛筆和本子總數量是相等的,找回0.45 元,說明(8-5)支鉛筆當作(8-5)本練習本計算,相差0.45元。由此可求練習本的單價比鉛筆貴的錢數。從總錢數里去掉8個練習本比8支鉛筆貴的錢 數,剩餘的則是(5+8)支鉛筆的錢數。進而可求出每支鉛筆的價錢。
解:每本練習本比每支鉛筆貴的錢數:
0.45÷(8-5)=0.45÷3=0.15(元)
8個練習本比8支鉛筆貴的錢數:
0.15×8=1.2(元)
每支鉛筆的價錢:
(3.8-1.2)÷(5+8)=2.6÷13=0.2(元)
也可以用方程解:
設一枝鉛筆X元,則一本練習本為 元。
8X+5× =3.8-0.45
64X+19-25X=30.4-3.6
39X=7.8
X=0.2
答:每支鉛筆0.2元。
15、想:根據一輛客車比一輛卡車多載10人,可求6輛客車比6輛卡車多載的人數,即多用的(8-6)輛卡車所載的人數,進而可求每輛卡車載多少人和每輛大客車載多少人。
解:卡車的數量:
360÷[10×6÷(8-6)]
=360÷[10×6÷2]
=360÷30
=12(輛)
客車的數量:
360÷[10×6÷(8-6)+10]
=360÷[30+10]
=360÷40
=9(輛)
答:可用卡車12輛,客車9輛。
16、想:根據計劃每天修720米,這樣實際提前的長度是(720×3-1200)米。根據每天多修80米可求已修的天數,進而求公路的全長。
解:已修的天數:
(720×3-1200)÷80
=960÷80
=12(天)
公路全長:
(720+80)×12+1200
=800×12+1200
=9600+1200
=10800(米)
答:這條公路全長10800米。
17、想:根據已知條件,可求12個紙箱轉化成木箱的個數,先求出每個木箱裝多少雙,再求每個紙箱裝多少雙。
解:12個紙箱相當木箱的個數:
2×(12÷3)=2×4=8(個)
一個木箱裝鞋的雙數:
1800÷(8+4)=18000÷12=150(雙)
一個紙箱裝鞋的雙數:
150×2÷3=100(雙)
答:每個紙箱可裝鞋100雙,每個木箱可裝鞋
150雙
18、想:由已知條件可知道,每天用去30袋水泥,同時用去30×2袋沙子,才能同時用完。但現在每天只用去40袋沙子,少用(30×2-40)袋,這樣才累計出120袋沙子。因此看120袋裡有多少個少用的沙子袋數,便可求出用的天數。進而可求出沙子和水泥的總袋數。
解:水泥用完的天數:
120÷(30×2-40)=120÷20=6(天)
水泥的總袋數:
30×6=180(袋)
沙子的總袋數:
180×2=360(袋)
答:運進水泥180袋,沙子360袋。
19、想:根據每個保溫瓶的價錢是每個茶杯的4倍,可把5個保溫瓶的價錢轉化為20個茶杯的價錢。這樣就可把5個保溫瓶和10個茶杯共用的90元錢,看作30個茶杯共用的錢數。
解:每個茶杯的價錢:
90÷(4×5+10)=3(元)
每個保溫瓶的價錢:
3×4=12(元)
答:每個保溫瓶12元,每個茶杯3元。
20、想:已知一個加數個位上是0,去掉0,就與第二個加數相同,可知第一個加數是第二個加數的10倍,那麼兩個加數的和572,就是第二個加數的(10+1)倍。
解:第一個加數:
572÷(10+1)=52
第二個加數:
52×10=520
答:這兩個加數分別是52和520。
21、想:由已知條件可知,16千克和9千克的差正好是半桶油的重量。9千克是半桶油和桶的重量,去掉半桶油的重量就是桶的重量。
解:9-(16-9)
=9-7
=2(千克)
答:桶重2千克。
22、想:由已知條件可知,10千克與5.5千克的差正好是半桶油的重量,再乘以2就是原來油的重量。
解:(10-5.5)×2=9(千克)
答:原來有油9千克。
23、想:由已知條件可知,桶里原有水的(5-2)倍正好是(22-10)千克,由此可求出桶里原有水的重量。
解:(22-10)÷(5-2)
=12÷3
=4(千克)
答:桶里原有水4千克。
24、想:從「小紅給小華5本,兩人故事書的本數就相等」這一條件,可知小紅比小華多(5×2)本書,用共有的36本去掉小紅比小華多的本數,剩下的本數正好是小華本數的2倍。
解:小華有書的本數:
(36-5×2)÷2=13(本)
小紅有書的本數:
13+5×2=23(本)
答:原來小紅有23本,小華有13本。
25、想:由已知條件知,5桶油共取出(15×5)千克。由於剩下油的重量正好等於原來2桶油的重量,可以推出(5-2)桶油的重量是(15×5)千克。
解:15×5÷(5-2)=25(千克)
答:原來每桶油重25千克。
26、想:把一根木料鋸成3段,只鋸出了(3-1)個鋸口,這樣就可以求出鋸出每個鋸口所需要的時間,進一步即可以求出鋸成5段所需的時間。
解:9÷(3-1)×(5-1)=18(分)
答:鋸成5段需要18分鍾。
27、想:女工比男工少35人,男、女工各調出17人後,女工仍比男工少35人。這時男工人數是女工人數的2倍,也就是說少的35人是女工人數的(2-1)倍。這樣就可求出現在女工多少人,然後再分別求出男、女工原來各多少人。
解:35÷(2-1)=35(人)
女工原有:
35+17=52(人)
男工原有:
52+35=87(人)
答:原有男工87人,女工52人。
28、想:由每小時行12千米,5小時到達可求出兩地的路程,即返回時所行的路程。由去時5小時到達和返回時多用1小時,可求出返回時所用時間。
解:12×5÷(5+1)=10(千米)
答:返回時平均每小時行10千米。
29、想:由題意知,狗跑的時間正好是二人的相遇時間,又知狗的速度,這樣就可求出狗跑了多少千米。
解:18÷(5+4)=2(小時)
8×2=16(千米)
答:狗跑了16千米。
30、想:由條件知,(21+20+19)表示三種球總個數的2倍,由此可求出三種球的總個數,再根據題目中的條件就可以求出三種球各多少個。
解:總個數:
(21+20+19)÷2=30(個)
白球:30-21=9(個)
紅球:30-20=10(個)
黃球:30-19=11(個)
答:白球有9個,紅球有10個,黃球有11個。
31、想:根據題意,33米比18米長的米數正好是3根細鋼管的長度,由此可求出一根細鋼管的長度,然後求一根粗鋼管的長度。
解:(33-18)÷(5-2)=5(米)
18-5×2=8(米)
答:一根粗鋼管長8米,一根細鋼管長5米。
32、想:由題意知,實際10天比原計劃10天多生產水泥(4.8×10)噸,而多生產的這些水泥按原計劃還需用(12-10)天才能完成,也就是說原計劃(12-10)天能生產水泥(4.8×10)噸。
解:4.8×10÷(12-10)=24(噸)
答:原計劃每天生產水泥24噸。
33、想:由題意知唱歌的70人中也有跳舞的,同樣跳舞的30人中也有唱歌的,把兩者相加,這樣既唱歌又跑舞的就統計了兩次,再減去參加表演的80人,就是既唱歌又跳舞的人數。
解:70+30-80
=100-80
=20(人)
答:既唱歌又跳舞的有20人。
34、想:參加語文競賽的36人中有參加數學競賽的,同樣參加數學競賽的38人中也有參加語 文競賽的,如果把兩者加起來,那麼既參加語文競賽又參加數學競賽的人數就統計了兩次,所以將參加語文競賽的人數加上參加數學競賽的人數再加上一科也沒參加 的人數減去全班人數就是雙科都參加的人數。
解:36+38+5-59=20(人)
答:雙科都參加的有20人。
35、想:由「2張桌子和5把椅子的價錢相等」這一條件,可以推出4張桌子就相當於10把椅子的價錢,買4張桌子和6把椅子共用640元,也就相當於買16把椅子共用640元。
解:5×(4÷2)+6=16(把)
640÷16=40(元)
40×5÷2=10O(元)
答:桌子和椅子的單價分別是100元、40元。
36、想:5年前父親的年齡是(45-5)歲,兒子的年齡是(45-5)÷4歲,再加上5就是今年兒子的年齡。
解:(45-5)÷4+5
=10+5
=15(歲)
答:今年兒子15歲。
37、想:「如果從甲桶倒入乙桶18千克,兩桶油就一樣重」可推出:甲桶油的重量比乙桶多(18×2)千克,又知「甲桶油重是乙桶油重的4倍」,可知(18×2)千克正好是乙桶油重量的(4-1)倍。
解:18×2÷(4-1)=12(千克)
12×4=48(千克)
答:原來甲桶有油48千克,乙桶有油12千克。
38、想:根據題意,20題全部答對得100分,答錯一題將失去(5+3)分,而不答僅失去5分。小麗共失去(100-79)分。再根據(100-79)÷8=2(題)……5(分),分析答對、答錯和沒答的題數。
解:(5×20-75)÷8=2(題)……5(分)
20-2-1=17(題)
答:答對17題,答錯2題,有1題沒答。
39、想:「從兩車頭相遇到兩車尾相離」,兩車所行的路程是兩車身長之和,即(240+264)米,速度之和為(20+16)米。根據路程、速度和時間的關系,就可求得所需時間。
解:(240+264)÷(20+16)
=504÷30
=14(秒)
答:從兩車頭相遇到兩車尾相離,需要14秒。
40、想:火車通過隧道是指從車頭進入隧道到車尾離開隧道,所行的路程正好是車身與隧道長度之和。
解:(600+1150)÷700
=1750÷700
=2.5(分)
答:火車通過隧道需2.5分。
41、想:在每分走50米的到校時間內按兩種速度走,相差的路程是(60×2)米,又知每秒相差(60-50)米,這就可求出小明按每分50米的到校時間。
解:60×2÷(60-50)=12(分)
50×12=600(米)
答:小明從家裡到學校是600米。
42、想:由已知條件可知,二人第一次相遇時,乙比甲多跑一周,即600米,又知乙每分鍾比甲多跑(400-300)米,即可求第一次相遇時經過的時間。
解:600÷(400-300)
=600÷100
=6(分)
答:經過6分鍾兩人第一次相遇
43、想:由「只把寬增加2厘米,面積就增加12平方厘米」,可求出原來的長是:(12÷2)厘米,同理原來的寬就是(8÷2)厘米,求出長和寬,就能求出原來的面積。
解:(12÷2)×(8÷2)=24(平方厘米)
答:這個長方形紙板原來的面積是24平方厘米。
44、想:用去的錢數除以3就是1千克蘋果和1千克梨的總錢數。從這個總錢數里去掉1千克蘋果的錢數,就是每千克梨的錢數。
解:(20-7.4)÷3-2.4
=12.6÷3-2.4
=4.2-2.4
=1.8(元)
答:每千克梨1.8元。
45、想:由題意知,甲乙速度和是(135÷3)千米,這個速度和是乙的速度的(2+1)倍。
解:135÷3÷(2+1)=15(千米)
15×2=30(千米)
答:甲乙每小時分別行30千米、15千米。
46、想:兩種球的數目相等,黑球取完時,白球還剩12個,說明黑球多取了12個,而每次多取(8-5)個,可求出一共取了幾次。
解:12÷(8-5)=4(次)
8×4+5×4+12=64(個)
或8×4×2=64(個)
答:一共取了4次,盒子里共有64個球。
47、想:1路和2路下次同時發車時,所經過的時間必須既是12分的倍數,又是18分的倍數。也就是它們的最小公倍數。
解:12和18的最小公倍數是36
6時+36分=6時36分
答:下次同時發車時間是上午6時36分。
48、想:父、子年齡的差是(45-15)歲,當父親的年齡是兒子年齡的11倍時,這個差正好是兒子年齡的(11-1)倍,由此可求出兒子多少歲時,父親是兒子年齡的11倍。又知今年兒子15歲,兩個歲數的差就是所求的問題。
解:(45-15)÷(11-1)=3(歲)
15-3=12(年)
答:12年前父親的年齡是兒子年齡的11倍。
49、想:根據題意,可以將題中的條件轉化為:平均分給2名同學、3名同學、4名同學、5名同學都少一支,因此,求出2、3、4、5的最小公倍數再減去1就是要求的問題。
解:2、3、4、5的最小公倍數是60
60-1=59(支)
答:這盒鉛筆最少有59支。
50、想:根據只把底增加8米,面積就增加40平方米, 可求出原來平行四邊形的高。根據只把高增加5米,面積就增加40平方米,可求出原來平行四邊形的底。再用原來的底乘以原來的高就是要求的面積。
解:(40÷5)×(40÷8)=40(平方米)
答:平行四邊形地原來的面積是40平方米。