小學數學與生活論文
數學教學要生活化
新《數學課程標准》十分注重數學與生活的聯系,把「初步學會運用數學的思維方式去觀察、分析現實社會,去解決日常生活中的問題,增強學生應用數學的意識」。因此,本著數學源於生活又應用與生活的這一教學理念,教師要樹立將數學應用於現實生活中的意識,引導學生學習有價值的數學,培養學生用數學知識解決現實實際問題的能力,將學生的生活與數學學習結合起來,從學生熟悉的生活情境和感興趣的事物出發,聯系生活講數學,把生活經驗數學化,數學問題生活化,增強了學生的應用意識。讓學生學會用數學的眼光觀察周圍的客觀世界,讓學生會因為數學學習而感受到生活的豐富多彩,讓學生盡情地體驗到了數學與生活的密切聯系。
一、聯系生活實際,從身邊發現數學問題
教師聯系生活實際創設生活情景在於為學生提供體驗數學的機會,通過數學活動促進學生不斷增強自信心,用所學知識解決生活中的實際問題,享受成功的喜悅,發展學生的創新思維。讓學生在實踐中發展問題和提出問題,在實踐活動中理解知識,掌握知識。生活情景的創設,改變了傳統教學的「單一模式」色彩。如在教學完乘法後,我和學生進行了一節實踐活動課。當時我是這樣來創設情景的:在一個陽光明媚的早上,老師想和大家一起去欣賞春天的景色,大家想不想去游覽一下,去找一找春天?春遊時得帶食物,下面是一些零食的單價:麵包2元;飲料3元;梨子1元;話梅2元;餅干3元;瓜子2元……讓同學們用30元去買。這樣的情景創設,學生親身體會到數學就在我們身邊,要做一個有心人從生活中去發現數學。這樣既達到傳授數學知識的目的,又達到解決實際問題,感受生活中的數學之效果。
在體驗過程中教師要引導學生尋找生活中的數學問題,既可積累數學知識,更是培養學生學習數學興趣的最佳途徑。
二、導入生活化,激發學生學習數學的興趣
興趣是最好的老師,是學生學習的原動力,是開發智力的催化劑,能激發學生的創造性思維。教師要善於發展生活中的數學問題,在數學中,要從孩子的心裡特點出發,設計孩子感興趣的生活素材以豐富多採的形式展觀給學生。由於小學生年齡小,好動又好奇,對於枯燥的數學公式或概念往往坐不住,甚至感到厭煩。
如我在教學《認識人民幣》一課時,根據學生經常會去超市購物的這一生活實際,用多媒體出示到超市購物的畫面,引起學生的注意,然後問:「我們到超市去買東西需要用什麼?」這時學生會異口同聲地回答:「人民幣」。這時我出示課題:認識人民幣。並說:「我們買東西就要用到人民幣,今天我們就一起來學習它。」這樣就很自然地把學生帶到了虛擬的現實生活中去了。通過類似與生活密切相關的問題,可以幫助學生認識到數學與生活有著密切的聯系,從而體會到學習數學的樂趣,無形當中產生了學習數學的動力。
三、藉助生活實際,培養應用意識,做到學以致用
《小學數學課程標准》中指出:「學生能夠認識到數學存在與現實生活中,並被廣泛應用與現實世界,才能切實體會到數學的應用價值。」把所學的知識運用到實際生活中,是學習數學的最終目的。重視知識的應用,讓學生運用所學數學知識,分析、解決一些簡單的實際問題,使學生感受到數學知識與生活實際的密切聯系,可以激發學生形成學數學用數學的意識,培養正確的數學觀。因此,每一次學完新課後,我就編一些實際應用的題目,讓學生練習,培養學生運用所學的知識解決實際問題的能力。如我在教學:「你喜歡什麼體育運動?」的實踐活動課中,先真正讓學生了解周圍人都喜歡什麼體育運動,初步讓學生體會到收集,整理信息方式。通過這樣的活動,有效地培養學生處理信息的能力。
實踐充分證明,生活離不開數學,數學離不開生活。教師要積極的創造條件,在教學中為學生創設生動有趣的生活問題情景來幫助學生學習,使教學溶入學生的整體素質。
總而言之,數學教學一定要充分考慮數學發展進程中人類的活動軌跡,貼近學生熟悉的現實生活,充分挖掘生活資源,將數學教學生活化,讓學生感受生活化的數學,使學生有更多的機會從周圍熟悉的事物中去學習數學和理解數學。使學生感受到我們生活的世界是一個充滿數學的世界,從而更加熱愛生活,熱愛我們的數學。
㈡ 小學六年級數學與生活小論文(600字以上)
我在家裡用紙筒做了一個「籃筐」,用小時候玩的小球作為籃球來
打籃球。 一天,我在投籃,球落下後滾到了床底下,在用竹竿把它勾出來時,我還得到了一個意外的收獲:一個彈球。它幾乎只有「籃球」的十分之一大。用小球投久了,不免覺得乏味,便突發奇想用那彈球來投,意外的,那似乎非常容易投進,雖然剛開始時很不容易進球,但隨著投的次數增加,投進的幾率比原來大多了,甚至超過了投小球的准確率,幾乎百發百中。這絕不是運氣,更不是碰巧,也不是我的水平突飛猛進了。 那是為什麼呢?
於是我開始思考:彈球的質量比小球重多了,因此扔相同距離所需的力也較扔小球時增大不少。而以前扔小球居多,習慣上所用的力也不同,因此,這不是習慣或熟能生巧造成的,准確率的提高跟球的質量無關。而「籃筐」未變,故只可能是人或球的問題,而我方才沒有那麼高的進球率,故是球的問題。而進球率越來越高應該是漸漸習慣了投彈球時所用的力了。那麼應該就是球體積的大小的改變造成的。
於是我便開始驗證了。用尺子測量出「籃筐」的上截面直徑約為25厘米,小球的直徑約為10厘米,而彈球的直徑約為5厘米。因此,
「籃筐」的上截面的面積約為:25* 25/2/2*3.14=490.625平方厘米,小球的最大橫截面的面積約為:10*10/2/2*3.14=78.5平方厘米,
彈球的最大橫截面的面積約為:5*5/2/2*3.14=19.625平方厘米。
而若要進球,則球的重心應偏向籃筐,及至少有一半的最大橫截面的面積在籃筐內,而彈球的一半的最大橫截面的面積小於小球的一半的最大橫截面的面積,故彈球進球的幾率大於小球進球的幾率,且應為小球進球的幾率的4倍。
通過計算我搞清了這個小問題,可見生活中處處有數學。
這是一篇小學生在玩球時的發現,而他用彈球往球藍里投球得到了收獲,這就是一個彈球,改用彈球來投結果,似乎非常容易投進,隨著次數的增加,投進的幾率比原來大多了,甚至超過了投小球的准確率,幾乎百發百中,於是小作者就想探個究境,結果通過計算小作者明白了,這是球的重心偏向籃筐,及至少有一半的最大的橫截面的面積在籃筐內,而彈球的一半的橫截面的面積小於小球的一半的最大橫截面的面積,所以彈球的幾率大於小球的幾倍,所以容易進。
通過這個事例,我明白了教學生學數學就要教給學生數學要和生活實際聯系起來,學了就要會用,因為數學無處不在,只有這樣,數學才不會乏味,學生才願意學數學,學生才有興趣學數學,數學才能真正地為社會服務,為人類造福。
望採納
㈢ 一篇2000字的論文,內容為數學與生活,盡量快點,謝了
數學源於生活,生活中又充滿著數學。學生的數學知識與才能,不僅來自於課堂,還來自於現實生活實際。在課堂教學中,把數學和學生的生活實際銜接起來,讓數學貼近生活,使學生感到生活中處處有數學,學起來自然、親切、真實。實現「人人學有價值的數學;人人都能獲得必需的數學;不同的人在數學上得到不同的發展」。 如何把握數學與生活的銜接,提高教學效果,我在教學中注意從以下幾方面入手。
一、 數學語言生活化,理解數學
前蘇聯數學教育家斯托利亞爾曾說過:數學教學也就是數學語言的教學。在課堂教學的師生交往中,主要是通過言語交流。同一堂課,不同的教師教出來的學生接受程度不一樣,主要還是取決於教師的語言素質如何,尤其是在我們數學課堂教學中,要將抽象化的數學使學生形象地接受、理解。一個沒有高素質語言藝術的教師是不能勝任的。看似枯燥無味的數學,實則裡面蘊藏著生動有趣的東西。鑒於此,教師的數學語言生活化是學生引導理解數學、學習數學的重要手段。教師要結合兒童的認知特點、興趣愛好、心理特徵等個性心理傾向,在不影響知識的前提下,對數學語言進行加工、裝飾,使其通俗易懂、富有情趣。
如認識「 <」、「>」,教師可引導學生學習順口溜:大於號、小於號,兩個兄弟一起到,尖角在前是小於,開口在前是大於,兩個數字中間站,誰大對誰開口笑。區別這兩個符號對學生來說有一定的難度,這個富有童趣的順口溜可以幫助學生有效的區分。
又如把教學長度單位改成「長長短短」;把教學元、角、分改成「小小售貨員」,把比大小說成「排排隊」等等,學生對這些生活味十足的課題知識感到非常好奇,感到學習數學很有趣。
二、數學問題生活化,感受數學
新的課程標准更多地強調學生用數學的眼光從生活中捕捉數學問題,探索數學規律,主動地運用數學知識分析生活現象,自主地解決生活中的實際問題。在教學中我們要善於從學生的生活中抽象數學問題,從學生的已有生活經驗出發,設計學生感興趣的生活素材以豐富多彩的形式展現給學生,使學生感受到數學與生活的聯系——數學無處不在,生活處處有數學。因此,通過學生所了解、熟悉的社會實際問題(如環境問題、治理垃圾問題、旅遊問題等等),為學生創設生動活潑的探究知識的情境,從而充分調動學生學習數學知識的積極性,激發學生的探索慾望。
比如:生活中每時每刻都要用到估算,要求學生估算一下每天上學到校需多少時間,以免遲到;或估算一下外出旅遊要帶多少錢,才夠回來等等。在教學中引導學生尋找生活中的數學問題,既可積累數學知識,讓學生通過如此切身的問題感受到學數學的價值所在,更是培養學生探索意識和應用意識的最佳途徑。
三、數學情境生活化,體驗數學
教育心理學的研究表明:學生在沒有精神壓力,沒有心理負擔,心情舒暢,情緒飽滿的情境下,大腦皮層容易形成興奮中心,思維最活躍,實踐能力最強。在日常的教學中,應該提供這樣的思維環境,創設與學生生活環境、知識背景密切相關的、又是學生感興趣的學習情境,使學生感覺到在課堂上學習就像在日常生活中遇到了數學問題一樣,需要大家一起來實踐解決,通過自己的動手操作,集體的共同研究,最終得出學習結論。
如在空間與圖形的教學中,要充分利用學生生活中的事物,引導學生探索圖形的特徵,豐富空間與圖形的經驗,建立初步的空間觀念。教學中可以組織學生分小組到操場上選定一個建築物,讓學生站在不同角度看這個建築物,體會從不同的角度看同一個物體時,所看到的形狀的變化,並用簡單的圖形畫下來。也可讓學生在方格紙畫出示意圖:假設圖書館在學校的正東方向200米處,小紅家在學校正北方向500米處,醫院在學校的正南方向1000米處,車站在學校的正西方向800米處。學生可以根據這些信息,在方格紙上確定適當的單位距離,標出相對位置後,教師再及時組織引導學生進行交流,逐步發展學生的空間觀念。
又如教學「元角分的認識」,組織學生開展一次「我是一位出色的售貨員」活動,讓他們在逼真的買賣中掌握、消化和應用知識。再如,相遇問題應用題教學,教師採用學生登台表演,情景再現的方法,把抽象的相關的各種數學術語讓學生迅速地理解,既活躍了課堂氣氛,又高效率地完成了教學任務。
四、數學作業生活化,運用數學
數學來源於生活而最終服務於生活。尤其是小學數學知識 ,在生活中都能找到其原型。把所學的知識應用到生活中,是學習數學的最終目的。由於課堂時間短暫,所以作業成了課堂教學的有益延伸,成了創新的廣闊天地。學生適當運用課堂內容的自然延伸,能從廣闊的大千世界中學習知識。教師在教學中應努力激發學生運用知識解決問題的慾望,引導學生自覺地應用知識解決生活中相關的問題。
如學習了長度單位,可以測自己和父母的身高,從家到學校的路程;認識了人民幣可以用自己零用錢買所需要的東西;學習了統計知識和百分比應用題,可以去統計本校學生人數以及男女生比例;會計算圖形面積可以算一算自己家裡的面積,所用瓷磚的塊數等。
再如布置學生「觀察你家中的物品,找出幾道乘法算式」;「你家一天的生活費用是多少,記錄下來,製成表格,再進行計算」,這樣把抽象的知識具體化,有助於學生理解,同時能用所學的知識解釋生活中的現象,也培養學生收集處理信息的能力、觀察能力、實踐能力。這樣,學生在輕松愉快地交流中,學得積極、主動,思維隨之展開,興趣隨之激起。
將數學教學與生活相銜接,讓學生從生活中尋找數學素材,感受生活中處處有數學,學習數學如身臨其境,就會產生強烈的親近感和認同感,有利於形成似曾相識的接納心理。教學實踐使我體會到:數學即生活,只有將學生引到生活中去,切實地感受數學在生活的原型,才能讓學生真正的理解數學,使學生感受到我們生活的世界是一個充滿數學的世界,從而更加熱愛生活,熱愛數學
生活中的數學
在現實生活中,人們的生活越來越趨向於經濟化,合理化.但怎樣才能達到這樣的目的呢?
一天,我就遇到了這樣一道實際生活中的問題:
某報紙上報道了兩則廣告,甲商廈實行有獎銷售:特等獎10000元1名,一等獎1000元2名,二等獎100元10名,三等獎5元200名,乙商廈則實行九五折優惠銷售。請你想一想;哪一種銷售方式更吸引人?哪一家商廈提供給銷費者的實惠大?
面對問題我們並不能一目瞭然。我做了一個假設,假如有16人,其中8人願意去甲家,6人喜歡去乙家,還有兩人則認為去兩家都可以。調查結果表明:甲商廈的銷售方式更吸引人,但事實是否如此呢?
在實際問題中,甲商廈每組設獎銷售的營業額和參加抽獎的人數都沒有限制。所以我們認為這個問題應該有幾種答案。
一、苦甲商廈確定每組設獎,當參加人數較少時,少於213(1十2+10+200=213人)人,人們會認為獲獎機率較大,則甲商廈的銷售方式更吸引顧客,
二、若甲商廈的每組營業額較多時,它給顧客的優惠幅度就相應的小。因為甲商廈提供的優惠金額是固定的,共14000元(10000+2000+1000+1000= 14000)。假設兩商廈提供的優惠都是14000元,則可求乙商廈的營業額為280000元(14000÷5%=280000)。
所以由此可得:
(l)當兩商廈的營業額都為280000元時,兩家商廈所提供的優惠同樣多.
(2)當兩商廈的營業額都不足280000元時,乙商廈的優惠則小於14000元,所以這時甲商廈提供的優惠仍是14000元,優惠較大。
(3)當兩家的營業額都超過280000元時,乙商廈的優惠則大於14000元,而甲商廈的優惠仍保持14000元時,乙商廈所提供的實惠大。
像這樣的問題,我們在日常生活中隨處可見。例如。有兩家液化氣站,已知每瓶液化氣的質和量相同,開始定的價也相同.為了爭取更多的用戶,兩站分別推出優惠政策.甲站的辦法是實行七五折錯售,乙站的辦法是對客戶自第二次換氣以後以7折銷售。兩站的優惠期限都是一年.你作為用戶,應該選哪家好?
這個問題與前面的問題有很大相同之處。只要通過你所需要的罐數來分析討論,這樣,問題便可迎刃而解了。
隨著市場經濟的逐步完善,人們日常生活中的經濟活動越來越豐富多彩.買與賣,存款與保險,股票與債券,……都已進入我們的生活.同時與這一系列經濟活動相關的數學,利比和比例,利息與利率,統計與概率。運籌與優化,以及系統分析和決策,都將成為數學課程中的「座上客」。
作為跨世紀的小學生,我們不僅要學會數學知識,而且要會應用數學知識去分析、解決生活中遇到的問題。這樣才能更好地適應社會的發展和需要。
再給你一些地址:http://..com/question/40272309.html?si=10
http://..com/question/123588796.html?si=6
自己拼接吧
㈣ 小學數學與生活論文
好像沒有看到題目啊
㈤ 數學與生活論文怎麼寫1000字的
各門科學的數學化
數學究竟是什麼呢?我們說,數學是研究現實世界空間形式和數量關系的一門科學.它在現代生活和現代生產中的應用非常廣泛,是學習和研究現代科學技術必不可少的基本工具.
同其他科學一樣,數學有著它的過去、現在和未來.我們認識它的過去,就是為了了解它的現在和未來.近代數學的發展異常迅速,近30多年來,數學新的理論已經超過了18、19世紀的理論的總和.預計未來的數學成就每「翻一番」要不了10年.所以在認識了數學的過去以後,大致領略一下數學的現在和未來,是很有好處的.
現代數學發展的一個明顯趨勢,就是各門科學都在經歷著數學化的過程.
例如物理學,人們早就知道它與數學密不可分.在高等學校里,數學系的學生要學普通物理,物理系的學生要學高等數學,這也是盡人皆知的事實了.
又如化學,要用數學來定量研究化學反應.把參加反應的物質的濃度、溫度等作為變數,用方程表示它們的變化規律,通過方程的「穩定解」來研究化學反應.這里不僅要應用基礎數學,而且要應用「前沿上的」、「發展中的」數學.
再如生物學方面,要研究心臟跳動、血液循環、脈搏等周期性的運動.這種運動可以用方程組表示出來,通過尋求方程組的「周期解」,研究這種解的出現和保持,來掌握上述生物界的現象.這說明近年來生物學已經從定性研究發展到定量研究,也是要應用「發展中的」數學.這使得生物學獲得了重大的成就.
談到人口學,只用加減乘除是不夠的.我們談到人口增長,常說每年出生率多少,死亡率多少,那麼是否從出生率減去死亡率,就是每年的人口增長率呢?不是的.事實上,人是不斷地出生的,出生的多少又跟原來的基數有關系;死亡也是這樣.這種情況在現代數學中叫做「動態」的,它不能只用簡單的加減乘除來處理,而要用復雜的「微分方程」來描述.研究這樣的問題,離不開方程、數據、函數曲線、計算機等,最後才能說清楚每家只生一個孩子如何,只生兩個孩子又如何等等.
還有水利方面,要考慮海上風暴、水源污染、港口設計等,也是用方程描述這些問題再把數據放進計算機,求出它們的解來,然後與實際觀察的結果對比驗證,進而為實際服務.這里要用到很高深的數學.
談到考試,同學們往往認為這是用來檢查學生的學習質量的.其實考試手段(口試、筆試等等)以及試卷本身也是有質量高低之分的.現代的教育統計學、教育測量學,就是通過效度、難度、區分度、信度等數量指標來檢測考試的質量.只有質量合格的考試才能有效地檢測學生的學習質量.
至於文藝、體育,也無一不用到數學.我們從中央電視台的文藝大獎賽節目中看到,給一位演員計分時,往往先「去掉一個最高分」,再「去掉一個最低分」.然後就剩下的分數計算平均分,作為這位演員的得分.從統計學來說,「最高分」、「最低分」的可信度最低,因此把它們去掉.這一切都包含著數學道理.
我國著名的數學家關肇直先生說:「數學的發明創造有種種,我認為至少有三種:一種是解決了經典的難題,這是一種很了不起的工作;一種是提出新概念、新方法、新理論,其實在歷史上起更大作用的、歷史上著名的正是這種人;還有一種就是把原來的理論用在嶄新的領域,這是從應用的角度有一個很大的發明創造.」我們在這里所說的,正是第三種發明創造.「這里繁花似錦,美不勝收,把數學和其他各門科學發展成綜合科學的前程無限燦爛.」
正如華羅庚先生在1959年5月所說的,近100年來,數學發展突飛猛進,我們可以毫不誇張地用「宇宙之大、粒子之微、火箭之速、化工之巧、地球之變、生物之謎、日用之繁等各個方面,無處不有數學」來概括數學的廣泛應用.可以預見,科學越進步,應用數學的范圍也就越大.一切科學研究在原則上都可以用數學來解決有關的問題.可以斷言:只有現在還不會應用數學的部門,卻絕對找不到原則上不能應用數學的領域.
關於「0」
0,可以說是人類最早接觸的數了。我們祖先開始只認識沒有和有,其中的沒有便是0了,那麼0是不是沒有呢?記得小學里老師曾經說過「任何數減去它本身即等於0,0就表示沒有數量。」這樣說顯然是不正確的。我們都知道,溫度計上的0攝氏度表示水的冰點(即一個標准大氣壓下的冰水混合物的溫度),其中的0便是水的固態和液態的區分點。而且在漢字里,0作為零表示的意思就更多了,如:1)零碎;小數目的。2)不夠一定單位的數量……至此,我們知道了「沒有數量是0,但0不僅僅表示沒有數量,還表示固態和液態水的區分點等等。」
「任何數除以0即為沒有意義。」這是小學至中學老師仍在說的一句關於0的「定論」,當時的除法(小學時)就是將一份分成若干份,求每份有多少。一個整體無法分成0份,即「沒有意義」。後來我才了解到a/0中的0可以表示以零為極限的變數(一個變數在變化過程中其絕對值永遠小於任意小的已定正數),應等於無窮大(一個變數在變化過程中其絕對值永遠大於任意大的已定正數)。從中得到關於0的又一個定理「以零為極限的變數,叫做無窮小」。
「105、203房間、2003年」中,雖都有0的出現,粗「看」差不多;彼此意思卻不同。105、2003年中的0指數的空位,不可刪去。203房間中的0是分隔「樓(2)」與「房門號(3)」的(即表示二樓八號房),可刪去。0還表示……
愛因斯坦曾說:「要探究一個人或者一切生物存在的意義和目的,宏觀上看來,我始終認為是荒唐的。」我想研究一切「存在」的數字,不如先了解0這個「不存在」的數,不至於成為愛因斯坦說的「荒唐」的人。作為一個中學生,我的能力畢竟是有限的,對0的認識還不夠透徹,今後望(包括行動)能在「知識的海洋」中發現「我的新大陸」。
黃金分割
對於「黃金分割」大家應該都不陌生吧!
由於公元前6世紀古希臘的畢達哥拉斯學派研究過正五邊形和正十邊形的作圖,因此現代數學家們推斷當時畢達哥拉斯學派已經觸及甚至掌握了黃金分割。 公元前4世紀,古希臘數學家歐多克索斯第一個系統研究了這一問題,並建立起比例理論。
公元前300年前後歐幾里得撰寫《幾何原本》時吸收了歐多克索斯的研究成果,進一步系統論述了黃金分割,成為最早的有關黃金分割的論著。 中世紀後,黃金分割被披上神秘的外衣,義大利數家帕喬利稱中末比為神聖比例,並專門為此著書立說。德國天文學家開普勒稱黃金分割為神聖分割。 到19世紀黃金分割這一名稱才逐漸通行。黃金分割數有許多有趣的性質,人類對它的實際應用也很廣泛。最著名的例子是優選學中的黃金分割法或0.618法,是由美國數學家基弗於1953年首先提出的,70年代在中國推廣。
也許,0.618在科學藝術上的表現我們已了解了很多,但是,你有沒有聽說過,0.618還與炮火連天、硝煙彌漫、血肉橫飛的慘烈、殘酷的戰場也有著不解之緣,在軍事上也顯示出它巨大而神秘的力量?一代梟雄的的拿破崙大帝可能怎麼也不會想到,他的命運會與0.618緊緊地聯系在一起。1812年6月,正是莫斯科一年中氣候最為涼爽宜人的夏季,在未能消滅俄軍有生力量的博羅金諾戰役後,拿破崙於此時率領著他的大軍進入了莫斯科。這時的他可是躊躇滿志、不可一世。他並未意識到,天才和運氣此時也正從他身上一點點地消失,他一生事業的頂峰和轉折點正在同時到來。後來,法軍便在大雪紛揚、寒風呼嘯中灰溜溜地撤離了莫斯科。三個月的勝利進軍加上兩個月的盛極而衰,從時間軸上看,法蘭西皇帝透過熊熊烈焰俯瞰莫斯科城時,腳下正好就踩著黃金分割線。
古希臘帕提儂神廟是舉世聞名的完美建築,它的高和寬的比是0.618。建築師們發現,按這樣的比例來設計殿堂,殿堂
㈥ 急!急!!急!!!小學數學與生活論文
勾股定理又叫畢氏定理:在一個直角三角形中,斜邊邊長的平方等於兩條直角邊邊長平方之和。
據考證,人類對這條定理的認識,少說也超過 4000 年!又據記載,現時世上一共有超過 300 個對這定理的證明!
勾股定理是幾何學中的明珠,所以它充滿魅力,千百年來,人們對它的證明趨之若鶩,其中有著名的數學家,也有業余數學愛好者,有普通的老百姓,也有尊貴的政要權貴,甚至有國家總統。也許是因為勾股定理既重要又簡單,更容易吸引人,才使它成百次地反復被人炒作,反復被人論證。1940年出版過一本名為《畢達哥拉斯命題》的勾股定理的證明專輯,其中收集了367種不同的證明方法。實際上還不止於此,有資料表明,關於勾股定理的證明方法已有500餘種,僅我國清末數學家華蘅芳就提供了二十多種精彩的證法。這是任何定理無法比擬的。
勾股定理的證明:在這數百種證明方法中,有的十分精彩,有的十分簡潔,有的因為證明者身份的特殊而非常著名。
首先介紹勾股定理的兩個最為精彩的證明,據說分別來源於中國和希臘。
1.中國方法:畫兩個邊長為(a+b)的正方形,如圖,其中a、b為直角邊,c為斜邊。這兩個正方形全等,故面積相等。
左圖與右圖各有四個與原直角三角形全等的三角形,左右四個三角形面積之和必相等。從左右兩圖中都把四個三角形去掉,圖形剩下部分的面積必相等。左圖剩下兩個正方形,分別以a、b為邊。右圖剩下以c為邊的正方形。於是
a^2+b^2=c^2。
這就是我們幾何教科書中所介紹的方法。既直觀又簡單,任何人都看得懂。
2.希臘方法:直接在直角三角形三邊上畫正方形,如圖。
容易看出,
△ABA』 ≌△AA'C 。
過C向A』』B』』引垂線,交AB於C』,交A』』B』』於C』』。
△ABA』與正方形ACDA』同底等高,前者面積為後者面積的一半,△AA』』C與矩形AA』』C』』C』同底等高,前者的面積也是後者的一半。由△ABA』≌△AA』』C,知正方形ACDA』的面積等於矩形AA』』C』』C』的面積。同理可得正方形BB』EC的面積等於矩形B』』BC』C』』的面積。
於是, S正方形AA』』B』』B=S正方形ACDA』+S正方形BB』EC,
即 a2+b2=c2。
至於三角形面積是同底等高的矩形面積之半,則可用割補法得到(請讀者自己證明)。這里只用到簡單的面積關系,不涉及三角形和矩形的面積公式。
這就是希臘古代數學家歐幾里得在其《幾何原本》中的證法。
以上兩個證明方法之所以精彩,是它們所用到的定理少,都只用到面積的兩個基本觀念:
⑴ 全等形的面積相等;
⑵ 一個圖形分割成幾部分,各部分面積之和等於原圖形的面積。
這是完全可以接受的樸素觀念,任何人都能理解。
我國歷代數學家關於勾股定理的論證方法有多種,為勾股定理作的圖注也不少,其中較早的是趙爽(即趙君卿)在他附於《周髀算經》之中的論文《勾股圓方圖注》中的證明。採用的是割補法:
如圖,將圖中的四個直角三角形塗上硃色,把中間小正方形塗上黃色,叫做中黃實,以弦為邊的正方形稱為弦實,然後經過拼補搭配,「令出入相補,各從其類」,他肯定了勾股弦三者的關系是符合勾股定理的。即「勾股各自乘,並之為弦實,開方除之,即弦也」。
趙爽對勾股定理的證明,顯示了我國數學家高超的證題思想,較為簡明、直觀。
西方也有很多學者研究了勾股定理,給出了很多證明方法,其中有文字記載的最早的證明是畢達哥拉斯給出的。據說當他證明了勾股定理以後,欣喜若狂,殺牛百頭,以示慶賀。故西方亦稱勾股定理為「百牛定理」。遺憾的是,畢達哥拉斯的證明方法早已失傳,我們無從知道他的證法。
下面介紹的是美國第二十任總統伽菲爾德對勾股定理的證明。
如圖,
S梯形ABCD= (a+b)2
= (a2+2ab+b2), ①
又S梯形ABCD=S△AED+S△EBC+S△CED
= ab+ ba+ c2
= (2ab+c2)。 ②
比較以上二式,便得
a2+b2=c2。
這一證明由於用了梯形面積公式和三角形面積公式,從而使證明相當簡潔。
1876年4月1日,伽菲爾德在《新英格蘭教育日誌》上發表了他對勾股定理的這一證明。5年後,伽菲爾德就任美國第二十任總統。後來,人們為了紀念他對勾股定理直觀、簡捷、易懂、明了的證明,就把這一證法稱為勾股定理的「總統」證法,這在數學史上被傳為佳話。
在學習了相似三角形以後,我們知道在直角三角形中,斜邊上的高把這個直角三角形所分成的兩個直角三角形與原三角形相似。
如圖,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足為D。則
△BCD∽△BAC,△CAD∽△BAC。
由△BCD∽△BAC可得BC2=BD ? BA, ①
由△CAD∽△BAC可得AC2=AD ? AB。 ②
我們發現,把①、②兩式相加可得
BC2+AC2=AB(AD+BD),
而AD+BD=AB,
因此有 BC2+AC2=AB2,這就是
a2+b2=c2。
這也是一種證明勾股定理的方法,而且也很簡潔。它利用了相似三角形的知識。
在對勾股定理為數眾多的證明中,人們也會犯一些錯誤。如有人給出了如下證明勾股定理的方法:
設△ABC中,∠C=90°,由餘弦定理
c2=a2+b2-2abcosC,
因為∠C=90°,所以cosC=0。所以
a2+b2=c2。
這一證法,看來正確,而且簡單,實際上卻犯了循環證論的錯誤。原因是餘弦定理的證明來自勾股定理。
人們對勾股定理感興趣的原因還在於它可以作推廣。
歐幾里得在他的《幾何原本》中給出了勾股定理的推廣定理:「直角三角形斜邊上的一個直邊形,其面積為兩直角邊上兩個與之相似的直邊形面積之和」。
從上面這一定理可以推出下面的定理:「以直角三角形的三邊為直徑作圓,則以斜邊為直徑所作圓的面積等於以兩直角邊為直徑所作兩圓的面積和」。
勾股定理還可以推廣到空間:以直角三角形的三邊為對應棱作相似多面體,則斜邊上的多面體的表面積等於直角邊上兩個多面體表面積之和。
若以直角三角形的三邊為直徑分別作球,則斜邊上的球的表面積等於兩直角邊上所作二球表面積之和。
總之,在勾股定理探索的道路上,我們走向了數學殿堂
㈦ 我的數學與生活 小論文
生活中的數學
在現實生活中,人們的生活越來越趨向於經濟化,合理化.但怎樣才能達到這樣的目的呢?
一天,我就遇到了這樣一道實際生活中的問題:
某報紙上報道了兩則廣告,甲商廈實行有獎銷售:特等獎10000元1名,一等獎1000元2名,二等獎100元10名,三等獎5元200名,乙商廈則實行九五折優惠銷售。請你想一想;哪一種銷售方式更吸引人?哪一家商廈提供給銷費者的實惠大?
面對問題我們並不能一目瞭然。我做了一個假設,假如有16人,其中8人願意去甲家,6人喜歡去乙家,還有兩人則認為去兩家都可以。調查結果表明:甲商廈的銷售方式更吸引人,但事實是否如此呢?
在實際問題中,甲商廈每組設獎銷售的營業額和參加抽獎的人數都沒有限制。所以我們認為這個問題應該有幾種答案。
一、苦甲商廈確定每組設獎,當參加人數較少時,少於213(1十2+10+200=213人)人,人們會認為獲獎機率較大,則甲商廈的銷售方式更吸引顧客,
二、若甲商廈的每組營業額較多時,它給顧客的優惠幅度就相應的小。因為甲商廈提供的優惠金額是固定的,共14000元(10000+2000+1000+1000= 14000)。假設兩商廈提供的優惠都是14000元,則可求乙商廈的營業額為280000元(14000÷5%=280000)。
所以由此可得:
(l)當兩商廈的營業額都為280000元時,兩家商廈所提供的優惠同樣多.
(2)當兩商廈的營業額都不足280000元時,乙商廈的優惠則小於14000元,所以這時甲商廈提供的優惠仍是14000元,優惠較大。
(3)當兩家的營業額都超過280000元時,乙商廈的優惠則大於14000元,而甲商廈的優惠仍保持14000元時,乙商廈所提供的實惠大。
像這樣的問題,我們在日常生活中隨處可見。例如。有兩家液化氣站,已知每瓶液化氣的質和量相同,開始定的價也相同.為了爭取更多的用戶,兩站分別推出優惠政策.甲站的辦法是實行七五折錯售,乙站的辦法是對客戶自第二次換氣以後以7折銷售。兩站的優惠期限都是一年.你作為用戶,應該選哪家好?
這個問題與前面的問題有很大相同之處。只要通過你所需要的罐數來分析討論,這樣,問題便可迎刃而解了。
隨著市場經濟的逐步完善,人們日常生活中的經濟活動越來越豐富多彩.買與賣,存款與保險,股票與債券,……都已進入我們的生活.同時與這一系列經濟活動相關的數學,利比和比例,利息與利率,統計與概率。運籌與優化,以及系統分析和決策,都將成為數學課程中的「座上客」。
作為跨世紀的小學生,我們不僅要學會數學知識,而且要會應用數學知識去分析、解決生活中遇到的問題。這樣才能更好地適應社會的發展和需要。