高中數學競賽大綱
❶ 全國高中數學聯賽競賽大綱
全國高中數學聯賽(一試)所涉及的知識范圍不超出教育部2000年《全日制普通高級中學數學教學大綱》。
全國高中數學聯賽(加試)在知識方面有所擴展,適當增加一些教學大綱之外的內容,所增加內容是:
1.平面幾何
幾個重要定理:
梅涅勞斯定理、塞瓦定理、托勒密定理、西姆松定理;
三角形旁心、費馬點、歐拉線;
幾何不等式;
幾何極值問題;
幾何中的變換:對稱、平移、旋轉;
圓的冪和根軸:
面積方法,復數方法,向量方法,解析幾何方法。
2.代數
周期函數,帶絕對值的函數;
三角公式,三角恆等式,三角方程,三角不等式,反三角函數;
遞歸,遞歸數列及其性質,一階、二階線性常系數遞歸數列的通項公式;
第二數學歸納法;
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函數及其應用;
復數及其指數形式、三角形式,歐拉公式,棣莫弗定理,單位根;
多項式的除法定理、因式分解定理,多項式的相等,整系數多項式的有理根*,多項式的插值公式*;
n次多項式根的個數,根與系數的關系,實系數多項式虛根成對定理;
函數迭代,求n次迭代*,簡單的函數方程*。
3.初等數論
同餘,歐幾里得除法,裴蜀定理,完全剩餘系,不定方程和方程組,高斯函數[x],費馬小定理,格點及其性質,無窮遞降法*,歐拉定理*,孫子定理*。
4.組合問題
圓排列,有重復元素的排列與組合,組合恆等式;
組合計數,組合幾何;
抽屜原理; 容斥原理; 極端原理;
圖論問題; 集合的劃分; 覆蓋;
平面凸集、凸包及應用*。
註:有*號的內容加試中暫不考,但在冬令營中可能考。
❷ 高中有哪些數學競賽
高中數學競賽大綱(2006年修訂試用稿)
中國數學會普及工作委員會制定
(2006年8月第14次全國數學普及工作會議討論通過)
從1981年中國數學會普及工作委員會舉辦全國高中數學聯賽以來,在「普及的基礎上不斷提高」的方針指引下,全國數學競賽活動方興未艾,每年一次的競賽活動吸引了廣大青少年學生參加。1985年我國又步入國際數學奧林匹克殿堂,加強了數學課外教育的國際交流,20年來我國已躋身於國際數學奧林匹克強國之列。數學競賽活動對於開發學生智力、開拓視野、促進教學改革、提高教學水平、發現和培養數學人才都有著積極的作用。這項活動也激勵著廣大青少年學習數學的興趣,吸引他們去進行積極的探索,不斷培養和提高他們的創造性思維能力。數學競賽的教育功能顯示出這項活動已成為中學數學教育的一個重要組成部分。
為了使全國數學競賽活動持久、健康地發展,中國數學會普及工作委員會於1994年制定了《高中數學競賽大綱》。這份大綱的制定對高中數學競賽活動的開展起到了很好的指導作用,使我國高中數學競賽活動日趨規范化和正規化。
近年來,課程改革的實踐,在一定程度上改變了我國中學數學課程的體系、
內容和要求。同時,隨著國內外數學競賽活動的發展,對競賽試題所涉及的知識、思想和方法等方面也有了一些新的要求。為了使新的《高中數學競賽大綱》能夠更好地適應高中數學教育形勢的發展和要求,經過廣泛徵求意見和多次討論,中國數學會普及工作委員會組織了對《高中數學競賽大綱》的修訂。
本大綱是在教育部2000年《全日制普通高級中學數學教學大綱》的精神和基礎上制定的。該教學大綱指出:「要促進每一個學生的發展,既要為所有的學生打好共同基礎,也要注意發展學生的個性和特長;……在課內外教學中宜從學生的實際出發,兼顧學習有困難和學有餘力的學生,通過多種途徑和方法,滿足他們的學習需求,發展他們的數學才能。」
學生的數學學習活動應當是一個生動活潑、富有個性的過程,不應只限於接受、記憶、模仿和練習,還應倡導閱讀自學、自主探索、動手實踐、合作交流等學習數學的方式,這些方式有助於發揮學生學習的主動性。教師要根據學生的不同基礎、不同水平、不同興趣和發展方向給予具體的指導。教師應引導學生主動地從事數學活動,從而使學生形成自己對數學知識的理解和有效的學習策略。教師應激發學生的學習積極性,向學生提供充分從事數學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數學知識與技能、數學的思想和方法,獲得廣泛的數學活動經驗。對於學有餘力並對數學有濃厚興趣的學生,教師要為他們設置一些選學內容,提供足夠的材料,指導他們閱讀,發展他們的數學才能。
教育部2000年《全日制普通高級中學數學教學大綱》中所列出的內容,是教學的要求,也是競賽的基本要求。在競賽中對同樣的知識內容,在理解程度、靈活運用能力以及方法與技巧掌握的熟練程度等方面有更高的要求。「課堂教學為主,課外活動為輔」也是應遵循的原則。因此,本大綱所列的內容充分考慮到學生的實際情況,旨在使不同程度的學生都能在數學上得到相應的發展,同時注重貫徹「少而精」的原則。
全國高中數學聯賽
全國高中數學聯賽(一試)所涉及的知識范圍不超出教育部2000年《全日制
普通高級中學數學教學大綱》中所規定的教學要求和內容,但在方法的要求上有所提高。
全國高中數學聯賽加試
全國高中數學聯賽加試(二試)與國際數學奧林匹克接軌,在知識方面有所
擴展;適當增加一些教學大綱之外的內容,所增加的內容是:
1.平面幾何
幾個重要定理:梅涅勞斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的幾個特殊點:旁心、費馬點,歐拉線。
幾何不等式。
幾何極值問題。
幾何中的變換:對稱、平移、旋轉。
圓的冪和根軸。
面積方法,復數方法,向量方法,解析幾何方法。
2.代數
周期函數,帶絕對值的函數。
三角公式,三角恆等式,三角方程,三角不等式,反三角函數。
遞歸,遞歸數列及其性質,一階、二階線性常系數遞歸數列的通項公式。
第二數學歸納法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函數。
復數及其指數形式、三角形式,歐拉公式,棣莫弗定理,單位根。
多項式的除法定理、因式分解定理,多項式的相等,整系數多項式的有理根*,多項式的插值公式*。
n次多項式根的個數,根與系數的關系,實系數多項式虛根成對定理。
函數迭代,簡單的函數方程*
3.初等數論
同餘,歐幾里得除法,裴蜀定理,完全剩餘類,二次剩餘,不定方程和方程組,高斯函數[x],費馬小定理,格點及其性質,無窮遞降法,歐拉定理。,孫子定理*。
4. 組合問題
圓排列,有重復元素的排列與組合,組合恆等式。
組合計數,組合幾何。
抽屜原理。
容斥原理。
極端原理。
圖論問題。
集合的劃分。
覆蓋。
平面凸集、凸包及應用*。
註:有*號的內容加試中暫不考,但在冬令營中可能考!
❸ 高中數學競賽學習數論組合要看哪一本
數論部分推薦書目
(1)《初等數論》潘承洞潘承彪
(2)《華章數學譯叢·數論概論》約瑟夫H.西爾弗曼
(3)《整數與多項式》馮克勤、余紅兵
(4)《初等數論難題集》(共兩卷)劉培傑
(5)《數學奧賽輔導叢書(第二輯)·初等數論》王慧興
(6)《高中數學競賽課程講座·初等數論》中等數學編輯部
(7)《高中數學競賽解題策略·數論分冊》楊樟松
(8)《高中數學競賽專題講座·初等數論》邊紅平
(9)《命題人講座·初等數論》馮志剛
(10)《奧賽經典·奧林匹克數學中的數論問題》沈文選張垚冷崗松
(11)《數學奧賽輔導叢書(第二輯)·不定方程》單墫、余紅兵
(12)《基礎數論典型題解300例》曾榮、王玉
(13)《數論導引》華羅庚
(14)《算術探索》高斯
組合部分推薦書目
(1)《命題人講座·組合幾何》田廷彥
(2)《命題人講座·圖論》任韓
(3)《命題人講座·集合與對應》單墫
(4)《命題人講座·組合問題》劉培傑、張永芹
(5)《數學奧賽輔導叢書(第二輯)·趣味的圖論問題》單墫
(6)《高中數學競賽課程講座·組合數學》中等數學編輯部
(7)《高中數學競賽解題策略·組合分冊》
(8)中數學競賽專題講座·組合構造》馮躍峰
(9)《高中數學競賽專題講座·組合問題》王建中
(10)《高中數學競賽專題講座·染色與染色方法》王慧興
(11)《奧賽經典·奧林匹克數學中的組合問題》沈文選張垚冷崗松
(12)《數學奧賽輔導叢書(第二輯)·組合幾何》單墫
(13)《數學奧林匹克小叢書·高中卷1、13》劉詩雄等
(14)《中學生數學思維方法叢書》(全套12本)馮躍峰
(15)《數學奧賽輔導叢書(第一輯)·1、13》
(16)數林外傳系列大量代數方面的專題科普書籍,其中如巧用抽屜原理等是比較不錯的
❹ 高中數學奧賽知識范圍
高中數學競賽大綱(修訂稿)
高中數學競賽大綱(修訂稿)
在「普及的基礎上不斷提高」的方針指引下,全國數學競賽活動方興未艾,特別是連續幾年我國選手在國際數學奧林匹克中取得了可喜的成績,使廣大中小學師生和數學工作者為之振奮,熱忱不斷高漲,數學競賽活動進入了一個新的階段。為了使全國數學競賽活動持久、健康、逐步深入地開展,應廣大中學師生和各級數學奧林匹克教練員的要求,特製定《數學競賽大綱》以適應當前形勢的需要。
本大綱是在國家教委制定的全日制中學「數學教學大綱」的精神和基礎上制定的。《教學大綱》在教學目的一欄中指出:「要培養學生對數學的興趣,激勵學生為實現四個現代化學好數學的積極性」。具體作法是:「對學有餘力的學生,要通過課外活動或開設選修課等多種方式,充分發展他們的數學才能」,「要重視能力的培養......,著重培養學生的運算能力、邏輯思維能力和空間想像能力,要使學生逐步學會分析、綜合、歸納、演繹、概括、抽象、類比等重要的思想方法。同時,要重視培養學生的獨立思考和自學的能力」。
《教學大綱》中所列出的內容,是教學的要求,也是競賽的最低要求。在競賽中對同樣的知識內容的理解程度與靈活運用能力,特別是方法與技巧掌握的熟練程度,有更高的要求。而「課堂教學為主,課外活動為輔」是必須遵循的原則。因此,本大綱所列的課外講授內容必須充分考慮學生的實際情況,分階段、分層次讓學生逐步地去掌握,並且要貫徹「少而精」的原則,這樣才能加強基礎,不斷提高。
一試
全國高中數學聯賽的一試競賽大綱,完全按照全日制中學《數學教學大綱》中所規定的教學要求和內容,即高考所規定的知識范圍和方法,在方法的要求上略有提高,其中概率和微積分初步不考。
二試
1、平面幾何
基本要求:掌握初中數學競賽大綱所確定的所有內容。
補充要求:面積和面積方法。
幾個重要定理:梅涅勞斯定理、塞瓦定理、托勒密定理、西姆松定理。
幾個重要的極值:到三角形三頂點距離之和最小的點--費馬點。到三角形三頂點距離的平方和最小的點--重心。三角形內到三邊距離之積最大的點--重心。
幾何不等式。
簡單的等周問題。了解下述定理:
在周長一定的n邊形的集合中,正n邊形的面積最大。
在周長一定的簡單閉曲線的集合中,圓的面積最大。
在面積一定的n邊形的集合中,正n邊形的周長最小。
在面積一定的簡單閉曲線的集合中,圓的周長最小。
幾何中的運動:反射、平移、旋轉。
復數方法、向量方法。
平面凸集、凸包及應用。
2、代數
在一試大綱的基礎上另外要求的內容:
周期函數與周期,帶絕對值的函數的圖像。
三倍角公式,三角形的一些簡單的恆等式,三角不等式。
第二數學歸納法。
遞歸,一階、二階遞歸,特徵方程法。
函數迭代,求n次迭代,簡單的函數方程。
n個變元的平均不等式,柯西不等式,排序不等式及應用。
復數的指數形式,歐拉公式,棣莫佛定理,單位根,單位根的應用。
圓排列,有重復的排列與組合,簡單的組合恆等式。
一元n次方程(多項式)根的個數,根與系數的關系,實系數方程虛根成對定理。
簡單的初等數論問題,除初中大綱中所包括的內容外,還應包括無窮遞降法,同餘,歐幾里得除法,非負最小完全剩餘類,高斯函數,費馬小定理,歐拉函數,孫子定理,格點及其性質。
3、立體幾何
多面角,多面角的性質。三面角、直三面角的基本性質。
正多面體,歐拉定理。
體積證法。
截面,會作截面、表面展開圖。
4、平面解析幾何
直線的法線式,直線的極坐標方程,直線束及其應用。
二元一次不等式表示的區域。
三角形的面積公式。
圓錐曲線的切線和法線。
圓的冪和根軸。
5、其它
抽屜原理。
容斤原理。
極端原理。
集合的劃分。
覆蓋。
❺ 全國高中數學聯賽大綱
搜的--- 《教學大綱》中所列出的內容,是教學的要求,也是競賽的最低要求。在競賽中對同樣的知識內容的理解程度與靈活運用能力,特別是方法與技巧掌握的熟練程度,有更高的要求。而「課堂教學為主,課外活動為輔」是必須遵循的原則。因此,本大綱所列的課外講授內容必須充分考慮學生的實際情況,分階段、分層次讓學生逐步地去掌握,並且要貫徹「少而精」的原則,這樣才能加強基礎,不斷提高。
一試
全國高中數學聯賽的一試競賽大綱,完全按照全日制中學《數學教學大綱》中所規定的教學要求和內容,即高考所規定的知識范圍和方法,在方法的要求上略有提高,其中概率和微積分初步不考。
二試
1、平面幾何
基本要求:掌握初中數學競賽大綱所確定的所有內容。
補充要求:面積和面積方法。
幾個重要定理:梅涅勞斯定理、塞瓦定理、托勒密定理、西姆松定理。
幾個重要的極值:到三角形三頂點距離之和最小的點--費馬點。到三角形三頂點距離的平方和最小的點--重心。三角形內到三邊距離之積最大的點--重心。
幾何不等式。
簡單的等周問題。了解下述定理:
在周長一定的n邊形的集合中,正n邊形的面積最大。
在周長一定的簡單閉曲線的集合中,圓的面積最大。
在面積一定的n邊形的集合中,正n邊形的周長最小。
在面積一定的簡單閉曲線的集合中,圓的周長最小。
幾何中的運動:反射、平移、旋轉。
復數方法、向量方法。
平面凸集、凸包及應用。
2、代數
在一試大綱的基礎上另外要求的內容:
周期函數與周期,帶絕對值的函數的圖像。
三倍角公式,三角形的一些簡單的恆等式,三角不等式。
第二數學歸納法。
遞歸,一階、二階遞歸,特徵方程法。
函數迭代,求n次迭代,簡單的函數方程。
n個變元的平均不等式,柯西不等式,排序不等式及應用。
復數的指數形式,歐拉公式,棣莫佛定理,單位根,單位根的應用。
圓排列,有重復的排列與組合,簡單的組合恆等式。
一元n次方程(多項式)根的個數,根與系數的關系,實系數方程虛根成對定理。
簡單的初等數論問題,除初中大綱中所包括的內容外,還應包括無窮遞降法,同餘,歐幾里得除法,非負最小完全剩餘類,高斯函數,費馬小定理,歐拉函數,孫子定理,格點及其性質。
3、立體幾何
多面角,多面角的性質。三面角、直三面角的基本性質。
正多面體,歐拉定理。
體積證法。
截面,會作截面、表面展開圖。
4、平面解析幾何
直線的法線式,直線的極坐標方程,直線束及其應用。
二元一次不等式表示的區域。
三角形的面積公式。
圓錐曲線的切線和法線。
圓的冪和根軸。
5、其它
抽屜原理。
容斤原理。
極端原理。
集合的劃分。
覆蓋。
梅涅勞斯定理
梅涅勞斯(Menelaus)定理是由古希臘數學家梅涅勞斯首先證明的。它指出:如果一條直線與△ABC的三邊AB、BC、CA或其延長線交於F、D、E點,那麼(AF/FB)×(BD/DC)×(CE/EA)=1。
證明:
過點A作AG∥BC交DF的延長線於G,
則AF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG。
三式相乘得:AF/FB×BD/DC×CE/EA=AG/BD×BD/DC×DC/AG=1
它的逆定理也成立:若有三點F、D、E分別在的邊AB、BC、CA或其延長線上,且滿足(AF/FB)×(BD/DC)×(CE/EA)=1,則F、D、E三點共線。利用這個逆定理,可以判斷三點共線。
另外,有很多人會覺得書寫這個公式十分煩瑣,不看書根本記不住,下面從別人轉來一些方法幫助書寫
為了說明問題,並給大家一個深刻印象,我們假定圖中的A、B、C、D、E、F是六個旅遊景點,各景點之間有公路相連。我們乘直升機飛到這些景點的上空,然後選擇其中的任意一個景點降落。我們換乘汽車沿公路去每一個景點遊玩,最後回到出發點,直升機就停在那裡等待我們回去。
我們不必考慮怎樣走路程最短,只要求必須「游歷」了所有的景點。只「路過」而不停留觀賞的景點,不能算是「游歷」。
例如直升機降落在A點,我們從A點出發,「游歷」了其它五個字母所代表的景點後,最終還要回到出發點A。
另外還有一個要求,就是同一直線上的三個景點,必須連續游過之後,才能變更到其它直線上的景點。
從A點出發的旅遊方案共有四種,下面逐一說明:
方案 ① ——從A經過B(不停留)到F(停留),再返回B(停留),再到D(停留),之後經過B(不停留)到C(停留),再到E(停留),最後從E經過C(不停留)回到出發點A。
按照這個方案,可以寫出關系式:
(AF:FB)*(BD:DC)*(CE:EA)=1。
現在,您知道應該怎樣寫「梅涅勞斯定理」的公式了吧。
從A點出發的旅遊方案還有:
方案 ② ——可以簡記為:A→B→F→D→E→C→A,由此可寫出以下公式:
(AB:BF)*(FD:DE)*(EC:CA)=1。從A出發還可以向「C」方向走,於是有:
方案 ③ —— A→C→E→D→F→B→A,由此可寫出公式:
(AC:CE)*(ED:DF)*(FB:BA)=1。 從A出發還有最後一個方案:
方案 ④ —— A→E→C→D→B→F→A,由此寫出公式:
(AE:EC)*(CD:DB)*(BF:FA)=1。
我們的直升機還可以選擇在B、C、D、E、F任一點降落,因此就有了圖中的另外一些公式。
值得注意的是,有些公式中包含了四項因式,而不是「梅涅勞斯定理」中的三項。當直升機降落在B點時,就會有四項因式。而在C點和F點,既會有三項的公式,也會有四項的公式。公式為四項時,有的景點會游覽了兩次。
不知道梅涅勞斯當年是否也是這樣想的,只是列出了一兩個典型的公式給我們看看。
還可以從逆時針來看,從第一個頂點到逆時針的第一個交點比上到下一個頂點的距離,以此類推,可得到三個比例,它們的乘積為1.
現在是否可以說,我們對梅涅勞斯定理有了更深刻的了解呢。那些復雜的相除相乘的關系式,不會再寫錯或是記不住吧。
一般幾何教科書中的「托勒密定理」,實出自依巴谷(Hipparchus)之手,托勒密只是從他的書中摘出。
托勒密(Ptolemy)定理指出,圓內接凸四邊形兩對對邊乘積的和等於兩條對角線的乘積。
原文:圓內接四邊形中,兩對角線所包矩形的面積等於 一組對邊所包矩形的面積與另一組對邊所包矩形的面積之和。
從這個定理可以推出正弦、餘弦的和差公式及一系列的三角恆等式,托勒密定理實質上是關於共圓性的基本性質. [編輯本段]證明 (以下是推論的證明,托勒密定理可視作特殊情況。)
在任意四邊形ABCD中,作△ABE使∠BAE=∠CAD ∠ABE=∠ ACD
因為△ABE∽△ACD
所以 BE/CD=AB/AC,即BE·AC=AB·CD (1)
又有比例式AB/AC=AE/AD
而∠BAC=∠DAE
所以△ABC∽△AED相似.
BC/ED=AC/AD即ED·AC=BC·AD (2)
(1)+(2),得
AC(BE+ED)=AB·CD+AD·BC
又因為BE+ED≥BD
(僅在四邊形ABCD是某圓的內接四邊形時,等號成立,即「托勒密定理」)
所以命題得證 [編輯本段]推論 1.任意凸四邊形ABCD,必有AC·BD≤AB·CD+AD·BC,當且僅當ABCD四點共圓時取等號。
2.托勒密定理的逆定理同樣成立:一個凸四邊形兩對對邊乘積的和等於兩條對角線的乘積,則這個凸四邊形內接於一圓、 [編輯本段]推廣 托勒密不等式:四邊形的任兩組對邊乘積不小於另外一組對邊的乘積,取等號當且僅當共圓或共線。
簡單的證明:復數恆等式:(a-b)(c-d)+(a-d)(b-c)=(a-c)(b-d),兩邊取模,
得不等式AC·BD≤|(a-b)(c-d)|+|(b-c)(a-d)|=AB·CD+BC·AD
注意:
1.等號成立的條件是(a-b)(c-d)與(a-d)(b-c)的輻角相等,這與A、B、C、D四點共圓等價。
2.四點不限於同一平面。
歐拉定理:在一條線段上AD上,順次標有B、C兩點,則AD·BC+AB·CD=AC·BD
有三角形ABC,平面上有一點P。P在三角形三邊上的投影(即由P到邊上的垂足)共線(此線稱為西姆松線, Simson line)當且僅當P在三角形的外接圓上。
相關的結果有:
稱三角形的垂心為H。西姆松線和PH的交點為線段PH的中點,且這點在九點圓上。
兩點的西姆松線的交角等於該兩點的圓周角。
若兩個三角形的外接圓相同,這外接圓上的一點P對應兩者的西姆松線的交角,跟P的位置無關。
從一點向三角形的三邊所引垂線的垂足共線的充要條件是該點落在三角形的外接圓上。 [編輯本段]證明 證明一: △ABC外接圓上有點P,且PE⊥AC於E,PF⊥AB於F,PD⊥BC於D,分別連DE、DF.
易證P、B、F、D及P、D、C、E和A、B、P、C分別共圓,於是∠FDP=∠ACP ①,(∵都是∠ABP的補角) 且∠PDE=∠PCE
② 而∠ACP+∠PCE=180°
③ ∴∠FDP+∠PDE=180°
④ 即F、D、E共線. 反之,當F、D、E共線時,由④→②→③→①可見A、B、P、C共圓.
證明二: 如圖,若L、M、N三點共線,連結BP,CP,則因PL垂直於BC,PM垂直於AC,PN垂直於AB,有B、P、L、N和
M、P、L、C分別四點共圓,有
角 PBN = 180 - 角 PLN = 角 PLM = 角 PCM.
故A、B、P、C四點共圓。
若A、B、P、C四點共圓,則角 PBN = 角 PCM。因PL垂直於BC,PM垂直於AC,PN垂直於AB,有B、P、L、N和M、P、L、C四點共圓,有
角 PBN = 180 - 角 PLN = 角 PLM = 角 PCM.
故L、M、N三點共線。
對於三角形ABC所在平面上任一點O,聯結AO、BO、CO並延長之,如果分別交三角形的另一邊於P、Q、R,則有,BP/PC·CQ/QA·AR/RB=1
上述定理的逆命題也成立。
賽瓦(G·CEVA,1648---1734)定理及其逆定理可用來證明有關三直線共點的問題 呵呵,還有幾個月,加油 祝你發揮出最好水平然後拿獎!
❻ 全國高中數學聯賽的比賽規則
預賽的時間在6月份,全國在校高中生均可報名參加,考試形式為筆試,試題難度略高於高考。數學競賽預選賽在各地學校舉行,通過預賽並拿到一定名次的同學可晉級參加復賽。預賽只是挑選有資格參加復賽的考生,不產生任何獎項,對於自主招生沒有實質性作用。
通過預賽的同學在9月初可以參加復賽,復賽的難度大於預賽。和生物競賽、物理競賽有所不同,數學競賽沒有實驗項目,筆試成績是最終排名的唯一依據。
在聯賽過後,各省劃線按排名獲得一二三等獎(即省一、省二、省三),一等獎中靠前同學獲得省隊資格,代表所在省參加數學奧林匹克額競賽(CMO)比賽,CMO是全國性比賽,統一閱卷按排名 獲得金銀銅牌,金牌前60名左右進入國家集訓隊,集訓隊多次考試選拔後,有6人會入選國家隊參加國際數學奧林匹克競賽(IMO),IMO同樣是按分數高低排出金銀銅牌,比例為1:2:3。
❼ 求 高中數學聯賽 考試大綱 及詳細知識點 解析最好有例題
一試 全國高中數學聯賽的一試競賽大綱,完全按照全日制中學《數學教學大綱》中所規定的教學要求和內容,即高考所規定的知識范圍和方法,在方法的要求上略有提高,其中概率和微積分初步不考。 二試 1、平面幾何基本要求:掌握初中數學競賽大綱所確定的所有內容。 補充要求:面積和面積方法。 幾個重要定理:梅涅勞斯定理、塞瓦定理、托勒密定理、西姆松定理。 幾個重要的極值:到三角形三頂點距離之和最小的點--費馬點。到三角形三頂點距離的平方和最小的點--重心。三角形內到三邊距離之積最大的點--重心。 幾何不等式。 簡單的等周問題。了解下述定理: 在周長一定的n邊形的集合中,正n邊形的面積最大。 在周長一定的簡單閉曲線的集合中,圓的面積最大。 在面積一定的n邊形的集合中,正n邊形的周長最小。 在面積一定的簡單閉曲線的集合中,圓的周長最小。 幾何中的運動:反射、平移、旋轉。 復數方法、向量方法。 平面凸集、凸包及應用。 2、代數在一試大綱的基礎上另外要求的內容: 周期函數與周期,帶絕對值的函數的圖像。 三倍角公式,三角形的一些簡單的恆等式,三角不等式。 第二數學歸納法。 遞歸,一階、二階遞歸,特徵方程法。 函數迭代,求n次迭代,簡單的函數方程。 n個變元的平均不等式,柯西不等式,排序不等式及應用。 復數的指數形式,歐拉公式,棣莫佛定理,單位根,單位根的應用。 圓排列,有重復的排列與組合,簡單的組合恆等式。 一元n次方程(多項式)根的個數,根與系數的關系,實系數方程虛根成對定理。 簡單的初等數論問題,除初中大綱中所包括的內容外,還應包括無窮遞降法,同餘,歐幾里得除法,非負最小完全剩餘類,高斯函數,費馬小定理,歐拉函數,孫子定理,格點及其性質。 3、立體幾何多面角,多面角的性質。三面角、直三面角的基本性質。 正多面體,歐拉定理。 體積證法。 截面,會作截面、表面展開圖。 4、平面解析幾何直線的法線式,直線的極坐標方程,直線束及其應用。 二元一次不等式表示的區域。 三角形的面積公式。 圓錐曲線的切線和法線。 圓的冪和根軸。 5、其它抽屜原理。 容斥原理。 極端原理。 集合的劃分。 覆蓋。 梅涅勞斯定理 托勒密定理 西姆松線的存在性及性質(西姆松定理)。 賽瓦定理及其逆定理。 編輯本段高中數學競賽大綱(修訂討論稿)中國數學會普及工作委員會制定 從1981年中國數學會普及工作委員會舉辦全國高中數學聯賽以來,在「普及的基礎上不斷提高」的方針指導下,全國數學競賽活動方興未艾,每年一次的數學競賽吸引了上百萬學生參加。1985年我國步入國際數學奧林匹克殿堂,加強了數學課外教育的國際交流,20年來我國已躋身於IMO強國之列。數學競賽活動對於開發學生智力、開拓視野、促進教學改革、提高教學水平、發現和培養數學人才都有著積極的作用。這項活動也激勵著廣大青少年學習數學的興趣,吸引他們去進行積極的探索,不斷培養和提高他們的創造性思維能力。數學競賽的教育功能顯示出這項活動已成為中學數學教育的一個重要組成部分。 為了使全國數學競賽活動持久、健康、逐步深入地開展,中國數學會普及工作委員會於1994年制定了《高中數學競賽大綱》,這份大綱的制定對高中數學競賽活動的開展起到了很好的指導性作用,我國高中數學競賽活動日趨規范化和正規化。 近年來,新的教學大綱的實施在一定程度上改變了我國中學數學課程的體系、內容和要求。同時,隨著國內外數學競賽活動的發展,對競賽活動所涉及的知識、思想和方法等方面也有了一些新的要求,原來的《高中數學競賽大綱》已經不能適應新形勢的發展和要求。經過廣泛徵求意見和多次討論, 對《高中數學競賽大綱》進行了修訂。 本大綱是在《全日制普通高級中學數學教學大綱》的精神和基礎上制定的。《全日制普通高級中學數學教學大綱》指出:「要促進每一個學生的發展,既要為所有的學生打好共同基礎,也要注意發展學生的個性和特長;……在課內外教學中宜從學生的實際出發,兼顧學習有困難和學有餘力的學生,通過多種途徑和方法,滿足他們的學習需求,發展他們的數學才能 。」 學生的數學學習活動應當是一個生動活潑、富有個性的過程,不應只限於接受、記憶、模仿和練習,還應倡導閱讀自學、自主探索、動手實踐、合作交流等學習數學的方式,這些方式有助於發揮學生學習的主動性。教師要根據學生的不同基礎、不同水平、不同興趣和發展方向給予具體的指導。教師應引導學生主動地從事數學活動,從而使學生形成自己對數學知識的理解和有效的學習策略。教師應激發學生的學習積極性,向學生提供充分從事數學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數學知識與技能、數學的思想和方法,獲得廣泛的數學活動經驗。對於學有餘力並對數學有濃厚興趣的學生,教師要為他們設置一些選學內容,提供足夠的材料,指導他們閱讀,發展他們的數學才能。 編輯本段《全日制普通高級中學數學教學大綱》教育部2000年《全日制普通高級中學數學教學大綱》中所列出的內容,是教學的要求,也是競賽的最低要求。在競賽中對同樣的知識內容,在理解程度、靈活運用能力以及方法與技巧掌握的熟練程度等方面有更高的要求。「課堂教學為主,課外活動為輔」是必須遵循的原則。因此,本大綱所列的課外講授內容必須充分考慮學生的實際情況,使不同程度的學生在數學上得到相應的發展,並且要貫徹「少而精」的原則。 編輯本段高中數學聯賽全國高中數學聯賽(一試)所涉及的知識范圍不超出教育部2000年《全日制普通高級中學數學教學大綱》。 全國高中數學聯賽(加試)在知識方面有所擴展,適當增加一些教學大綱之外的內容,所增加內容是: 1.平面幾何 幾個重要定理:梅涅勞斯定理、塞瓦定理、托勒密定理、西姆松定理; 三角形旁心、費馬點、歐拉線; 幾何不等式; 幾何極值問題; 幾何中的變換:對稱、平移、旋轉; 圓的冪和根軸: 面積方法,復數方法,向量方法,解析幾何方法。 2.代數 周期函數,帶絕對值的函數; 三角公式,三角恆等式,三角方程,三角不等式,反三角函數; 遞歸,遞歸數列及其性質,一階、二階線性常系數遞歸數列的通項公式; 第二數學歸納法; 平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函數及其應用; 復數及其指數形式、三角形式,歐拉公式,棣莫弗定理,單位根; 多項式的除法定理、因式分解定理,多項式的相等,整系數多項式的有理根*,多項式的插值公式*; n次多項式根的個數,根與系數的關系,實系數多項式虛根成對定理; 函數迭代,求n次迭代*,簡單的函數方程*。 3.初等數論 同餘,歐幾里得除法,裴蜀定理,完全剩餘系,不定方程和方程組,高斯函數[x],費馬小定理,格點及其性質,無窮遞降法*,歐拉定理*,孫子定理*。 4.組合問題 圓排列,有重復元素的排列與組合,組合恆等式; 組合計數,組合幾何; 抽屜原理; 容斥原理; 極端原理; 圖論問題; 集合的劃分; 覆蓋; 平面凸集、凸包及應用*。 (有*號的內容加試中暫不考,但在冬令營中可能考。) 華東師大出版的有本聯賽備考的書上面有聯賽考試范圍和前一年的聯賽各省預賽試題和一套全國聯賽試題我個人覺得和有點用,有興趣你去新華書店看看,祝你進入省隊哈~加油!!!
❽ 全國高中數學聯賽考綱
一試
全國高中數學聯賽的一試競賽大綱,完全按照全日制中學《數學教學大綱》中所規定的教學要求和內容,即高考所規定的知識范圍和方法,在方法的要求上略有提高,其中概率和微積分初步不考。
二試
1、平面幾何
基本要求:掌握初中數學競賽大綱所確定的所有內容。
補充要求:面積和面積方法。
幾個重要定理:梅涅勞斯定理、塞瓦定理、托勒密定理、西姆松定理。
幾個重要的極值:到三角形三頂點距離之和最小的點--費馬點。到三角形三頂點距離的平方和最小的點--重心。三角形內到三邊距離之積最大的點--重心。
幾何不等式。
簡單的等周問題。了解下述定理:
在周長一定的n邊形的集合中,正n邊形的面積最大。
在周長一定的簡單閉曲線的集合中,圓的面積最大。
在面積一定的n邊形的集合中,正n邊形的周長最小。
在面積一定的簡單閉曲線的集合中,圓的周長最小。
幾何中的運動:反射、平移、旋轉。
復數方法、向量方法。
平面凸集、凸包及應用。
2、代數
在一試大綱的基礎上另外要求的內容:
周期函數與周期,帶絕對值的函數的圖像。
三倍角公式,三角形的一些簡單的恆等式,三角不等式。
第二數學歸納法。
遞歸,一階、二階遞歸,特徵方程法。
函數迭代,求n次迭代,簡單的函數方程。
n個變元的平均不等式,柯西不等式,排序不等式及應用。
復數的指數形式,歐拉公式,棣莫佛定理,單位根,單位根的應用。
圓排列,有重復的排列與組合,簡單的組合恆等式。
一元n次方程(多項式)根的個數,根與系數的關系,實系數方程虛根成對定理。
簡單的初等數論問題,除初中大綱中所包括的內容外,還應包括無窮遞降法,同餘,歐幾里得除法,非負最小完全剩餘類,高斯函數,費馬小定理,歐拉函數,孫子定理,格點及其性質。
3、立體幾何
多面角,多面角的性質。三面角、直三面角的基本性質。
正多面體,歐拉定理。
體積證法。
截面,會作截面、表面展開圖。
4、平面解析幾何
直線的法線式,直線的極坐標方程,直線束及其應用。
二元一次不等式表示的區域。
三角形的面積公式。
圓錐曲線的切線和法線。
圓的冪和根軸。
5、其它
抽屜原理。
容斤原理。
極端原理。
集合的劃分。
覆蓋。
參考資料: http://post..com/f?kz=106983819回答者: l19900601 - 四級 2008-5-7 22:55 我來評論>> 相關內容
❾ 高中數學競賽大綱怎麼在論文引用
摘要是文章主要內容的摘錄,要求短、精、完整。字數少可幾十字,多不超過三百字為宜[3]。
摘要的規范
摘要是對論文的內容不加註釋和評論的簡短陳述,要求扼要地說明研究工作的目的、研究方法和最終結論等,重點是結論,是一篇具有獨立性和完整性的短文,可以引用、推廣。
關鍵詞
關鍵詞是從論文的題名、提要和正文中選取出來的,是對表述論文的中心內容有實質意義的詞彙。關鍵詞是用作計算機系統標引論文內容特徵的詞語,便於信息系統匯集,以供讀者檢索。每篇論文一般選取3-8個詞彙作為關鍵詞,另起一行,排在「提要」的左下方。
主題詞是經過規范化的詞,在確定主題詞時,要對論文進行主題分析,依照標引和組配規則轉換成主題詞表中的規范詞語。(參見《漢語主題詞表》和《世界漢語主題詞表》)。
❿ 高中數學奧林匹克競賽都考哪些內容
看大綱吧 比較詳細 我給你找來了高中數學競賽大綱(修訂稿)
在「普及的基礎上不斷提高」的方針指引下,全國數學競賽活動方興未艾,特別是連續幾年我國選手在國際數學奧林匹克中取得了可喜的成績,使廣大中小學師生和數學工作者為之振奮,熱忱不斷高漲,數學競賽活動進入了一個新的階段。為了使全國數學競賽活動持久、健康、逐步深入地開展,應廣大中學師生和各級數學奧林匹克教練員的要求,特製定《數學競賽大綱》以適應當前形勢的需要。
本大綱是在國家教委制定的全日制中學「數學教學大綱」的精神和基礎上制定的。《教學大綱》在教學目的一欄中指出:「要培養學生對數學的興趣,激勵學生為實現四個現代化學好數學的積極性」。具體作法是:「對學有餘力的學生,要通過課外活動或開設選修課等多種方式,充分發展他們的數學才能」,「要重視能力的培養……,著重培養學生的運算能力、邏輯思維能力和空間想像能力,要使學生逐步學會分析、綜合、歸納、演繹、概括、抽象、類比等重要的思想方法。同時,要重視培養學生的獨立思考和自學的能力」。
《教學大綱》中所列出的內容,是教學的要求,也是競賽的最低要求。在競賽中對同樣的知識內容的理解程度與靈活運用能力,特別是方法與技巧掌握的熟練程度,有更高的要求。而"課堂教學為主,課外活動為輔"是必須遵循的原則。因此,本大綱所列的課外講授內容必須充分考慮學生的實際情況,分階段、分層次讓學生逐步地去掌握,並且要貫徹"少而精"的原則,這樣才能加強基礎,不斷提高。
一試
全國高中數學聯賽的一試競賽大綱,完全按照全日制中學《數學教學大綱》中所規定的教學要求和內容,即高考所規定的知識范圍和方法,在方法的要求上略有提高,其中概率和微積分初步不考。
二試
1.平面幾何
基本要求:掌握初中競賽大綱所確定的所有內容。
補充要求:面積和面積方法。
幾個重要定理;梅涅勞斯定理、塞瓦定理、托勒密定理、西姆松定理。
幾個重要的極值:到三角形三頂點距離之和最小的點--費馬點。到三角形三頂點距離的平方和最小的點--重心。三角形內到三邊距離之積最大的點--重心。
幾何不等式。
簡單的等周問題。了解下述定理;
在周長一定的n邊形的集合中,正n邊形的面積最大。
在周長一定的簡單閉曲線的集合中,圓的面積最大。
在面積一定的n邊形的集合中,正n邊形的周長最小。
在面積一定的簡單閉曲線的集合中,圓的周長最小。
幾何中的運動:反射、平移、旋轉。
復數方法、向量方法*。
平面凸集、凸包及應用。
2.代數
在一試大綱的基礎上另外要求的內容:
周期函數與周期,帶絕對值的函數的圖像。
三倍角公式,三角形的一些簡單的恆等式,三角不等式。
第二數學歸納法。
遞歸,一階、二階遞歸,特徵方程法。
函數迭代,求n次迭代*,簡單的函數方程*。
n個變元的平均不等式,柯西不等式,排序不等式及應用。
復數的指數形式,歐拉公式,棣美弗定理,單位根,單位根的應用。
圓排列,有重復的排列與組合,簡單的組合恆等式。
一元n次方程(多項式)根的個數,根與系數的關系,實系數方程虛根成對定理。
簡單的初等數論問題,除初中大綱中所包含的內容外,還應包含無窮遞降法,同餘,歐幾里得除法,非負最小完全乘余類,高斯函數〔x〕,費馬小定理,歐拉函數*,孫子定理*,格點及其性質。
3.立體幾何
多面角,多面角的性質。三面角、直三面角的基本性質。 正多面體,歐拉定理。
體積證法。 截面,會作截面,表面展開圖。
4.平面解析幾何
直線的法線式,直線的極坐標方程,直線束及其應用。
二元一次不等式表示的區域。
三角形的面積公式。
圓錐曲線的切線和法線。
圓的冪和根軸。
5.其它
抽屜原理。
容斥原理。
極端原理。
集合的劃分。
覆蓋。
註:全國高中數學聯賽的二試命題的基本原則是向國際數學奧林匹克靠攏。總的精神是比高中數學大綱的要求略有提高,在知識方面略有擴展,適當增加一些課堂上沒有的內容作為課外活動或奧校的講授內容。 對教師和教練員的要求是逐步地掌握以下所列內容,並根據學生的具體情況適當地講授。
有*號的內容二試中暫不考,但在冬令營中可能考。
(初審稿於1992年3月重慶會議通過)
(修訂稿於1994年3月福州會議通過)
北京十二中
劉文武