當前位置:首頁 » 語數英語 » 高一數學總結

高一數學總結

發布時間: 2021-08-10 20:49:03

『壹』 高一數學必修一總結

高中高一數學必修1各章知識點總結

第一章 集合與函數概念

一、集合有關概念

1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

2、集合的中元素的三個特性:

1.元素的確定性; 2.元素的互異性; 3.元素的無序性

說明:(1)對於一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。

(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。

(3)集合中的元素是平等的,沒有先後順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

(4)集合元素的三個特性使集合本身具有了確定性和整體性。

3、集合的表示:{ … } 如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

1. 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

2.集合的表示方法:列舉法與描述法。

注意啊:常用數集及其記法:

非負整數集(即自然數集)記作:N

正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R

關於「屬於」的概念

集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬於集合A 記作 a∈A ,相反,a不屬於集合A 記作 aÏA

列舉法:把集合中的元素一一列舉出來,然後用一個大括弧括上。

描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。用確定的條件表示某些對象是否屬於這個集合的方法。

①語言描述法:例:{不是直角三角形的三角形}

②數學式子描述法:例:不等式x-3>2的解集是{xÎR| x-3>2}或{x| x-3>2}

4、集合的分類:

1.有限集 含有有限個元素的集合

2.無限集 含有無限個元素的集合

3.空集 不含任何元素的集合 例:{x|x2=-5}

二、集合間的基本關系

1.「包含」關系—子集

注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之: 集合A不包含於集合B,或集合B不包含集合A,記作A B或B A

2.「相等」關系(5≥5,且5≤5,則5=5)

實例:設 A={x|x2-1=0} B={-1,1} 「元素相同」

結論:對於兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等於集合B,即:A=B

① 任何一個集合是它本身的子集。AÍA

②真子集:如果AÍB,且A¹ B那就說集合A是集合B的真子集,記作A B(或B A)

③如果 AÍB, BÍC ,那麼 AÍC

④ 如果AÍB 同時 BÍA 那麼A=B

3. 不含任何元素的集合叫做空集,記為Φ

規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

三、集合的運算

1.交集的定義:一般地,由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.

記作A∩B(讀作」A交B」),即A∩B={x|x∈A,且x∈B}.

2、並集的定義:一般地,由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集。記作:A∪B(讀作」A並B」),即A∪B={x|x∈A,或x∈B}.

3、交集與並集的性質:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A,

A∪φ= A ,A∪B = B∪A.

4、全集與補集

(1)補集:設S是一個集合,A是S的一個子集(即 ),由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或余集)

記作: CSA 即 CSA ={x | xÎS且 xÏA}

S

CsA

A

(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。

(3)性質:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U

二、函數的有關概念

1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對於集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那麼就稱f:A→B為從集合A到集合B的一個函數.記作: y=f(x),x∈A.其中,x叫做自變數,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)| x∈A }叫做函數的值域.

注意:2如果只給出解析式y=f(x),而沒有指明它的定義域,則函數的定義域即是指能使這個式子有意義的實數的集合;3 函數的定義域、值域要寫成集合或區間的形式.

定義域補充

能使函數式有意義的實數x的集合稱為函數的定義域,求函數的定義域時列不等式組的主要依據是:(1)分式的分母不等於零; (2)偶次方根的被開方數不小於零; (3)對數式的真數必須大於零;(4)指數、對數式的底必須大於零且不等於1. (5)如果函數是由一些基本函數通過四則運算結合而成的.那麼,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數為零底不可以等於零 (6)實際問題中的函數的定義域還要保證實際問題有意義.

(又注意:求出不等式組的解集即為函數的定義域。)

構成函數的三要素:定義域、對應關系和值域

再注意:(1)構成函數三個要素是定義域、對應關系和值域.由於值域是由定義域和對應關系決定的,所以,如果兩個函數的定義域和對應關系完全一致,即稱這兩個函數相等(或為同一函數)(2)兩個函數相等當且僅當它們的定義域和對應關系完全一致,而與表示自變數和函數值的字母無關。相同函數的判斷方法:①表達式相同;②定義域一致 (兩點必須同時具備)

(見課本21頁相關例2)

值域補充

(1)、函數的值域取決於定義域和對應法則,不論採取什麼方法求函數的值域都應先考慮其定義域. (2).應熟悉掌握一次函數、二次函數、指數、對數函數及各三角函數的值域,它是求解復雜函數值域的基礎。

3. 函數圖象知識歸納

(1)定義:在平面直角坐標系中,以函數 y=f(x) , (x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數 y=f(x),(x ∈A)的圖象.

C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上 . 即記為C={ P(x,y) | y= f(x) , x∈A }

圖象C一般的是一條光滑的連續曲線(或直線),也可能是由與任意平行與Y軸的直線最多隻有一個交點的若干條曲線或離散點組成。

(2) 畫法

A、描點法:根據函數解析式和定義域,求出x,y的一些對應值並列表,以(x,y)為坐標在坐標系內描出相應的點P(x, y),最後用平滑的曲線將這些點連接起來.

B、圖象變換法(請參考必修4三角函數)

常用變換方法有三種,即平移變換、伸縮變換和對稱變換

(3)作用:

1、直觀的看出函數的性質;2、利用數形結合的方法分析解題的思路。提高解題的速度。

發現解題中的錯誤。

4.快去了解區間的概念

(1)區間的分類:開區間、閉區間、半開半閉區間;(2)無窮區間;(3)區間的數軸表示.

5.什麼叫做映射

一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對於集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那麼就稱對應f:A B為從集合A到集合B的一個映射。記作「f:A B」

給定一個集合A到B的映射,如果a∈A,b∈B.且元素a和元素b對應,那麼,我們把元素b叫做元素a的象,元素a叫做元素b的原象

說明:函數是一種特殊的映射,映射是一種特殊的對應,①集合A、B及對應法則f是確定的;②對應法則有「方向性」,即強調從集合A到集合B的對應,它與從B到A的對應關系一般是不同的;③對於映射f:A→B來說,則應滿足:(Ⅰ)集合A中的每一個元素,在集合B中都有象,並且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中對應的象可以是同一個;(Ⅲ)不要求集合B中的每一個元素在集合A中都有原象。

常用的函數表示法及各自的優點:

1 函數圖象既可以是連續的曲線,也可以是直線、折線、離散的點等等,注意判斷一個圖形是否是函數圖象的依據;2 解析法:必須註明函數的定義域;3 圖象法:描點法作圖要注意:確定函數的定義域;化簡函數的解析式;觀察函數的特徵;4 列表法:選取的自變數要有代表性,應能反映定義域的特徵.

注意啊:解析法:便於算出函數值。列表法:便於查出函數值。圖象法:便於量出函數值

補充一:分段函數 (參見課本P24-25)

在定義域的不同部分上有不同的解析表達式的函數。在不同的范圍里求函數值時必須把自變數代入相應的表達式。分段函數的解析式不能寫成幾個不同的方程,而就寫函數值幾種不同的表達式並用一個左大括弧括起來,並分別註明各部分的自變數的取值情況.(1)分段函數是一個函數,不要把它誤認為是幾個函數;(2)分段函數的定義域是各段定義域的並集,值域是各段值域的並集.

補充二:復合函數

如果y=f(u),(u∈M),u=g(x),(x∈A),則 y=f[g(x)]=F(x),(x∈A) 稱為f、g的復合函數。

例如: y=2sinX y=2cos(X2+1)

7.函數單調性

(1).增函數

設函數y=f(x)的定義域為I,如果對於定義域I內的某個區間D內的任意兩個自變數x1,x2,當x1<x2時,都有f(x1)<f(x2),那麼就說f(x)在區間D上是增函數。區間D稱為y=f(x)的單調增區間(睇清楚課本單調區間的概念)

如果對於區間D上的任意兩個自變數的值x1,x2,當x1<x2 時,都有f(x1)>f(x2),那麼就說f(x)在這個區間上是減函數.區間D稱為y=f(x)的單調減區間.

注意:1 函數的單調性是在定義域內的某個區間上的性質,是函數的局部性質;

2 必須是對於區間D內的任意兩個自變數x1,x2;當x1<x2時,總有f(x1)<f(x2) 。

(2) 圖象的特點

如果函數y=f(x)在某個區間是增函數或減函數,那麼說函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.

(3).函數單調區間與單調性的判定方法

(A) 定義法:

1 任取x1,x2∈D,且x1<x2;2 作差f(x1)-f(x2);3 變形(通常是因式分解和配方);4 定號(即判斷差f(x1)-f(x2)的正負);5 下結論(指出函數f(x)在給定的區間D上的單調性).

(B)圖象法(從圖象上看升降)_

(C)復合函數的單調性

復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律如下:

函數
單調性

u=g(x)





y=f(u)





y=f[g(x)]





注意:1、函數的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫成其並集. 2、還記得我們在選修里學習簡單易行的導數法判定單調性嗎?

8.函數的奇偶性

(1)偶函數

一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那麼f(x)就叫做偶函數.

(2).奇函數

一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那麼f(x)就叫做奇函數.

注意:1 函數是奇函數或是偶函數稱為函數的奇偶性,函數的奇偶性是函數的整體性質;函數可能沒有奇偶性,也可能既是奇函數又是偶函數。

2 由函數的奇偶性定義可知,函數具有奇偶性的一個必要條件是,對於定義域內的任意一個x,則-x也一定是定義域內的一個自變數(即定義域關於原點對稱).

(3)具有奇偶性的函數的圖象的特徵

偶函數的圖象關於y軸對稱;奇函數的圖象關於原點對稱.

總結:利用定義判斷函數奇偶性的格式步驟:1 首先確定函數的定義域,並判斷其定義域是否關於原點對稱;2 確定f(-x)與f(x)的關系;3 作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數.

注意啊:函數定義域關於原點對稱是函數具有奇偶性的必要條件.首先看函數的定義域是否關於原點對稱,若不對稱則函數是非奇非偶函數.若對稱,(1)再根據定義判定; (2)有時判定f(-x)=±f(x)比較困難,可考慮根據是否有f(-x)±f(x)=0或f(x)/f(-x)=±1來判定; (3)利用定理,或藉助函數的圖象判定 .

9、函數的解析表達式

(1).函數的解析式是函數的一種表示方法,要求兩個變數之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域.

(2).求函數的解析式的主要方法有:待定系數法、換元法、消參法等,如果已知函數解析式的構造時,可用待定系數法;已知復合函數f[g(x)]的表達式時,可用換元法,這時要注意元的取值范圍;當已知表達式較簡單時,也可用湊配法;若已知抽象函數表達式,則常用解方程組消參的方法求出f(x)

10.函數最大(小)值(定義見課本p36頁)

1 利用二次函數的性質(配方法)求函數的最大(小)值2 利用圖象求函數的最大(小)值3 利用函數單調性的判斷函數的最大(小)值:如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);

第二章 基本初等函數

一、指數函數

(一)指數與指數冪的運算

1.根式的概念:一般地,如果 ,那麼 叫做 的 次方根(n th root),其中 >1,且 ∈ *.

當 是奇數時,正數的 次方根是一個正數,負數的 次方根是一個負數.此時, 的 次方根用符號 表示.式子 叫做根式(radical),這里 叫做根指數(radical exponent), 叫做被開方數(radicand).

當 是偶數時,正數的 次方根有兩個,這兩個數互為相反數.此時,正數 的正的 次方根用符號 表示,負的 次方根用符號- 表示.正的 次方根與負的 次方根可以合並成± ( >0).由此可得:負數沒有偶次方根;0的任何次方根都是0,記作 。

注意:當 是奇數時, ,當 是偶數時,
2.分數指數冪

正數的分數指數冪的意義,規定:


0的正分數指數冪等於0,0的負分數指數冪沒有意義

指出:規定了分數指數冪的意義後,指數的概念就從整數指數推廣到了有理數指數,那麼整數指數冪的運算性質也同樣可以推廣到有理數指數冪.

3.實數指數冪的運算性質

(1) · ;

(2) ;

(3) .

(二)指數函數及其性質

1、指數函數的概念:一般地,函數 叫做指數函數(exponential ),其中x是自變數,函數的定義域為R.

注意:指數函數的底數的取值范圍,底數不能是負數、零和1.

2、指數函數的圖象和性質

a>1
0<a<1

圖象特徵
函數性質

向x、y軸正負方向無限延伸
函數的定義域為R

圖象關於原點和y軸不對稱
非奇非偶函數

函數圖象都在x軸上方
函數的值域為R+

函數圖象都過定點(0,1)

自左向右看,

圖象逐漸上升
自左向右看,

圖象逐漸下降
增函數
減函數

在第一象限內的圖象縱坐標都大於1
在第一象限內的圖象縱坐標都小於1

在第二象限內的圖象縱坐標都小於1
在第二象限內的圖象縱坐標都大於1

圖象上升趨勢是越來越陡
圖象上升趨勢是越來越緩
函數值開始增長較慢,到了某一值後增長速度極快;
函數值開始減小極快,到了某一值後減小速度較慢;

注意:利用函數的單調性,結合圖象還可以看出:
(1)在[a,b]上, 值域是 或 ;
(2)若 ,則 ; 取遍所有正數當且僅當 ;
(3)對於指數函數 ,總有 ;
(4)當 時,若 ,則 ;

二、對數函數

(一)對數

1.對數的概念:一般地,如果 ,那麼數 叫做以 為底 的對數,記作: ( — 底數, — 真數, — 對數式)

說明:1 注意底數的限制 ,且 ;

2 ;

3 注意對數的書寫格式.

兩個重要對數:

1 常用對數:以10為底的對數 ;

2 自然對數:以無理數 為底的對數的對數 .

對數式與指數式的互化

對數式 指數式

對數底數 ← → 冪底數

對數 ← → 指數

真數 ← → 冪

(二)對數的運算性質

如果 ,且 , , ,那麼:

1 · + ;

2 - ;

3 .

注意:換底公式

( ,且 ; ,且 ; ).

利用換底公式推導下面的結論(1) ;(2) .

(二)對數函數

1、對數函數的概念:函數 ,且 叫做對數函數,其中 是自變數,函數的定義域是(0,+∞).

注意:1 對數函數的定義與指數函數類似,都是形式定義,注意辨別。

如: , 都不是對數函數,而只能稱其為對數型函數.

2 對數函數對底數的限制: ,且 .

2、對數函數的性質:

a>1
0<a<1

圖象特徵
函數性質

函數圖象都在y軸右側
函數的定義域為(0,+∞)

圖象關於原點和y軸不對稱
非奇非偶函數

向y軸正負方向無限延伸
函數的值域為R

函數圖象都過定點(1,0)

自左向右看,

圖象逐漸上升
自左向右看,

圖象逐漸下降
增函數
減函數

第一象限的圖象縱坐標都大於0
第一象限的圖象縱坐標都大於0

第二象限的圖象縱坐標都小於0
第二象限的圖象縱坐標都小於0

(三)冪函數

1、冪函數定義:一般地,形如 的函數稱為冪函數,其中 為常數.

2、冪函數性質歸納.

(1)所有的冪函數在(0,+∞)都有定義,並且圖象都過點(1,1);

(2) 時,冪函數的圖象通過原點,並且在區間 上是增函數.特別地,當 時,冪函數的圖象下凸;當 時,冪函數的圖象上凸;

(3) 時,冪函數的圖象在區間 上是減函數.在第一象限內,當 從右邊趨向原點時,圖象在 軸右方無限地逼近 軸正半軸,當 趨於 時,圖象在 軸上方無限地逼近 軸正半軸.

第三章 函數的應用

一、方程的根與函數的零點

1、函數零點的概念:對於函數 ,把使 成立的實數 叫做函數 的零點。

2、函數零點的意義:函數 的零點就是方程 實數根,亦即函數 的圖象與 軸交點的橫坐標。即:

方程 有實數根 函數 的圖象與 軸有交點 函數 有零點.

3、函數零點的求法:

求函數 的零點:

1 (代數法)求方程 的實數根;

2 (幾何法)對於不能用求根公式的方程,可以將它與函數 的圖象聯系起來,並利用函數的性質找出零點.

4、二次函數的零點:

二次函數 .

1)△>0,方程 有兩不等實根,二次函數的圖象與 軸有兩個交點,二次函數有兩個零點.

2)△=0,方程 有兩相等實根(二重根),二次函數的圖象與 軸有一個交點,二次函數有一個二重零點或二階零點.

3)△<0,方程 無實根,二次函數的圖象與 軸無交點,二次函數無零點.

『貳』 高一數學必修一、的總結

高中數學必修1知識點
第一章 集合與函數概念
一、集合有關概念
1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。
2、集合的中元素的三個特性:
1.元素的確定性;
2.元素的互異性;
3.元素的無序性
說明:(1)對於一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。
(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。
(3)集合中的元素是平等的,沒有先後順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
(4)集合元素的三個特性使集合本身具有了確定性和整體性。
3、集合的表示:{ … } 如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
1.用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
2.集合的表示方法:列舉法與描述法。
注意:常用數集及其記法:
非負整數集(即自然數集)N 正整數集N*或 N+ 整數集Z 有理數集Q 實數集R
關於「屬於」的概念:集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬於集合A 記作 a∈A ,相反,a不屬於集合A 記作 aA
列舉法:把集合中的元素一一列舉出來,然後用一個大括弧括上。
描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。用確定的條件表示某些對象是否屬於這個集合的方法:①語言描述法:例:{不是直角三角形的三角形} ②數學式子描述法:例:不等式x-3>2的解集是{xR| x-3>2}或{x| x-3>2}
4、集合的分類:
1.有限集 含有有限個元素的集合
2.無限集 含有無限個元素的集合
3.空集 不含任何元素的集合例:{x|x2=-5}
二、集合間的基本關系
1.「包含」關系—子集
注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之: 集合A不包含於集合B,或集合B不包含集合A,記作A B或B A
2.「相等」關系(5≥5,且5≤5,則5=5) 實例:設 A={x|x2-1=0} B={-1,1} 「元素相同」
結論:對於兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等於集合B,即:A=B
① 任何一個集合是它本身的子集。AA
②真子集:如果AB,且A B那就說集合A是集合B的真子集,記作A B(或B A)
③如果 AB, BC ,那麼 AC
④ 如果AB 同時 BA 那麼A=B
3. 不含任何元素的集合叫做空集,記為Φ
規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
三、集合的運算
1、交集的定義:一般地,由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.記作A∩B(讀作"A交B"),即A∩B=
{x|x∈A,且x∈B}.
2、並集的定義:一般地,由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集。記作:A∪B(讀作"A並B"),即A∪B={x|x∈A,或x∈B}.
3、交集與並集的性質:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A,A∪φ= A ,A∪B = B∪A.
4、全集與補集
(1)補集:設S是一個集合,A是S的一個子集(即 ),由S中所有不屬於A的元素組成的
集合,叫做S中子集A的補集(或余集)記作: CSA 即 CSA ={x  xS且 xA}
(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。
通常用U來表示。
(3)性質:⑴ CU (C U A)=A ⑵ (C U A)∩ A=Φ ⑶(CU A)∪A=U
四、函數的有關概念
1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對於集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那麼就稱f:A→B為從集合A到集合B的一個函數.記作: y=f(x),x∈A.其中,x叫做自變數,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)| x∈A }叫做函數的值域.
注意:如果只給出解析式y=f(x),而沒有指明它的定義域,則函數的定義域即是指能使這個式子有意義的實數的集合; 函數的定義域、值域要寫成集合或區間的形式.
定義域補充:能使函數式有意義的實數x的集合稱為函數的定義域,求函數的定義域時列不等式組的主要依據是:
(1)分式的分母不等於零;
(2)偶次方根的被開方數不小於零;
(3)對數式的真數必須大於零;
(4)指數、對數式的底必須大於零且不等於1.
(5)如果函數是由一些基本函數通過四則運算結合而成的.那麼,它的定義域是使各部分都有意義的x的值組成的集合.
(6)指數為零底不可以等於零
(7)實際問題中的函數的定義域還要保證實際問題有意義.(又注意:求出不等式組的解集即為函數的定義域。)
構成函數的三要素:定義域、對應關系和值域
再注意:
(1)構成函數三個要素是定義域、對應關系和值域.由於值域是由定義域和對應關系決定的,所以,如果兩個函數的定義域和對應關系完全一致,即稱這兩個函數相等(或為同一函數)
(2)兩個函數相等當且僅當它們的定義域和對應關系完全一致,而與表示自變數和函數值的字母無關。相同函數的判斷方法:①表達式相同;②定義域一致 (兩點必須同時具備)
值域補充:(1)、函數的值域取決於定義域和對應法則,不論採取什麼方法求函數的值域都應先考慮其定義域.
(2)應熟悉掌握一次函數、二次函數、指數、對數函數及各三角函數的值域,它是求解復雜函數值域的基礎。
2. 函數圖象知識歸納
(1)定義:在平面直角坐標系中,以函數 y=f(x) , (x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數 y=f(x),(x ∈A)的圖象.C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上 . 即記為C={ P(x,y) | y= f(x) , x∈A }。圖象C一般的是一條光滑的連續曲線(或直線),也可能是由與任意平行與Y軸的直線最多隻有一個交點的若干條曲線或離散點組成。
(2)畫法
A、描點法:根據函數解析式和定義域,求出x,y的一些對應值並列表,以(x,y)為坐標在坐標系內描出相應的點P(x, y),最後用平滑的曲線將這些點連接起來.
B、圖象變換法(請參考必修4三角函數)常用變換方法有三種,即平移變換、伸縮變換和對稱變換
(3)作用:
1、直觀的看出函數的性質;
2、利用數形結合的方法分析解題的思路。提高解題的速度。發現解題中的錯誤。
3. 了解區間的概念
(1)區間的分類:開區間、閉區間、半開半閉區間;(2)無窮區間;(3)區間的數軸表示.
4.什麼叫做 映射
一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對於集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那麼就稱對應f:A B為從集合A到集合B的一個映射。記作「f:A B」
給定一個集合A到B的映射,如果a∈A,b∈B.且元素a和元素b對應,那麼,我們把元素b叫做元素a的象,元素a叫做元素b 的原象
說明:函數是一種特殊的映射,映射是一種特殊的對應,①集合A、B及對應法則f是確定的;②對應法則有「方向性」,即強調從集合A到集合B的對應,它與從B到A的對應關系一般是不同的;③對於映射f:A→B來說,則應滿足:(Ⅰ)集合A中的每一個元素,在集合B中都有象,並且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中對應的象可以是同一個;(Ⅲ)不要求集合B中的每一個元素在集合A中都有原象。
常用的函數表示法及各自的優點:
○1 函數圖象既可以是連續的曲線,也可以是直線、折線、離散的點等等,注意判斷一個圖形是否是函數圖象的依據;
○2 解析法:必須註明函數的定義域;
○3 圖象法:描點法作圖要注意:確定函數的定義域;化簡函數的解析式;觀察函數的特徵;
○4 列表法:選取的自變數要有代表性,應能反映定義域的特徵.
注意:解析法:便於算出函數值。列表法:便於查出函數值。圖象法:便於量出函數值
補充一:分段函數 :在定義域的不同部分上有不同的解析表達式的函數。在不同的范圍里求函數值時必須把自變數代入相應的表達式。分段函數的解析式不能寫成幾個不同的方程,而就寫函數值幾種不同的表達式並用一個左大括弧括起來,並分別註明各部分的自變數的取值情況.(1)分段函數是一個函數,不要把它誤認為是幾個函數;(2)分段函數的定義域是各段定義域的並集,值域是各段值域的並集.
補充二:復合函數:如果y=f(u),(u∈M),u=g(x),(x∈A),則 y=f[g(x)]=F(x),(x∈A) 稱為f、g的復合函數。例如: y=2sinX y=2cos(X2+1)
5.函數單調性
(1)增函數
設函數y=f(x)的定義域為I,如果對於定義域I內的某個區間D內的任意兩個自變數x1,x2,當x1<x2時,都有f(x1)<f(x2),那麼就說f(x)在區間D上是增函數。區間D稱為y=f(x)的單調增區間 (睇清楚課本單調區間的概念)
如果對於區間D上的任意兩個自變數的值x1,x2,當x1<x2 時,都有f(x1)>f(x2),那麼就說f(x)在這個區間上是減函數.區間D稱為y=f(x)的單調減區間.
注意:○1 函數的單調性是在定義域內的某個區間上的性質,是函數的局部性質;
○2 必須是對於區間D內的任意兩個自變數x1,x2;當x1<x2時,總有f(x1)<f(x2) 。
(2)圖象的特點
如果函數y=f(x)在某個區間是增函數或減函數,那麼說函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.
(3)函數單調區間與單調性的判定方法
(A) 定義法:
○1 任取x1,x2∈D,且x1<x2;
○2 作差f(x1)-f(x2);
○3 變形(通常是因式分解和配方);
○4 定號(即判斷差f(x1)-f(x2)的正負);
○5 下結論(指出函數f(x)在給定的區間D上的單調性).
(B)圖象法(從圖象上看升降)_
(C)復合函數的單調性
復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律如下:
函數 單調性
u=g(x) 增 增 減 減
y=f(u) 增 減 增 減
y=f[g(x)] 增 減 減 增
注意:1、函數的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫成其並集.
2、還記得我們在選修里學習簡單易行的導數法判定單調性嗎?
6.函數的奇偶性
(1)偶函數
一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那麼f(x)就叫做偶函數.
(2)奇函數
一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那麼f(x)就叫做奇函數.
注意:○1 函數是奇函數或是偶函數稱為函數的奇偶性,函數的奇偶性是函數的整體性質;函數可能沒有奇偶性,也可能既是奇函數又是偶函數。
○2 由函數的奇偶性定義可知,函數具有奇偶性的一個必要條件是,對於定義域內的任意一個x,則-x也一定是定義域內的一個自變數(即定義域關於原點對稱).
(3)具有奇偶性的函數的圖象的特徵
偶函數的圖象關於y軸對稱;奇函數的圖象關於原點對稱.
總結:利用定義判斷函數奇偶性的格式步驟:
○1 首先確定函數的定義域,並判斷其定義域是否關於原點對稱;
○2 確定f(-x)與f(x)的關系;
○3 作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數.
注意:函數定義域關於原點對稱是函數具有奇偶性的必要條件.首先看函數的定義域是否關於原點對稱,若不對稱則函數是非奇非偶函數.若對稱,(1)再根據定義判定; (2)有時判定f(-x)=±f(x)比較困難,可考慮根據是否有f(-x)±f(x)=0或f(x)/f(-x)=±1來判定; (3)利用定理,或藉助函數的圖象判定 .
7、函數的解析表達式
(1).函數的解析式是函數的一種表示方法,要求兩個變數之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域.
(2).求函數的解析式的主要方法有:待定系數法、換元法、消參法等,如果已知函數解析式的構造時,可用待定系數法;已知復合函數f[g(x)]的表達式時,可用換元法,這時要注意元的取值范圍;當已知表達式較簡單時,也可用湊配法;若已知抽象函數表達式,則常用解方程組消參的方法求出f(x)
8.函數最大(小)值
○1 利用二次函數的性質(配方法)求函數的最大(小)值
○2 利用圖象求函數的最大(小)值
○3 利用函數單調性的判斷函數的最大(小)值:如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b)

第二章 基本初等函數
一、指數函數
一)指數與指數冪的運算
1.根式的概念:一般地,如果 ,那麼 叫做 的 次方根(n th root),其中 >1,且 ∈ *.
當 是奇數時,正數的 次方根是一個正數,負數的 次方根是一個負數.此時, 的 次方根用符號 表示.式子 叫做根式(radical),這里 叫做根指數(radical exponent), 叫做被開方數(radicand).
當 是偶數時,正數的 次方根有兩個,這兩個數互為相反數.此時,正數 的正的 次方根用符號 表示,負的 次方根用符號- 表示.正的 次方根與負的 次方根可以合並成± ( >0).由 此可得:負數沒有偶次方根;0的任何次方根都是0,記作 。
注意:當 是奇數時, ,當 是偶數時,
2.分數指數冪
正數的分數指數冪的意義,規定:
0的正分數指數冪等於0,0的負分數指數冪沒有意義
指出:規定了分數指數冪的意義後,指數的概念就從整數指數推廣到了有理數指數,那麼整數指數冪的運算性質也同樣可以推廣到有理數指數冪.
3.實數指數冪的運算性質
(1) •
(2)
(3).
二)指數函數及其性質
1、指數函數的概念:
一般地,函數 叫做指數函數(exponential function),其中x是自變數,函數的定義域為R.
注意:指數函數的底數的取值范圍,底數不能是負數、零和1.
2、指數函數的圖象和性質
a>1 0<a<1

圖象特徵 函數性質

向x、y軸正負方向無限延伸 函數的定義域為R
圖象關於原點和y軸不對稱 非奇非偶函數
函數圖象都在x軸上方 函數的值域為R+
函數圖象都過定點(0,1)

自左向右看,圖象逐漸上升 自左向右看,圖象逐漸下降 增函數 減函數
在第一象限內的圖象縱坐標都大於1 在第一象限內的圖象縱坐標都小於1

在第二象限內的圖象縱坐標都小於1 在第二象限內的圖象縱坐標都大於1

圖象上升趨勢是越來越陡 圖象上升趨勢是越來越緩 函數值開始增長較慢,到了某一值後增長速度極快; 函數值開始減小極快,到了某一值後減小速度較慢;
注意:利用函數的單調性,結合圖象還可以看出:
(1)在[a,b]上, 值域是 或 ;
(2)若 ,則 ; 取遍所有正數當且僅當 ;
(3)對於指數函數 ,總有 ;
(4)當 時,若 ,則 ;
二、對數函數
一)對數
1.對數的概念:
一般地,如果 ,那麼數 叫做以 為底 的對數,記作: ( — 底數, — 真數, — 對數式)
說明:○1 注意底數的限制 ,且 ;○2 ;○3 注意對數的書寫格式.
兩個重要對數:○1 常用對數:以10為底的對數 ;○2 自然對數:以無理數 為底的對數的對數 .
對數式與指數式的互化
對數式 指數式 對數底數← → 冪底數 對數← →指數 真數← →冪
二)對數的運算性質
如果 ,且 , , ,那麼:
○1 +
○2 - ;
○3 .
注意:換底公式 ( ,且 ; ,且 ; ).
利用換底公式推導下面的結論(1) ;(2).
三)對數函數
1、對數函數的概念:函數 ,且 叫做對數函數,其中 是自變數,函數的定義域是(0,+∞).
注意:○1 對數函數的定義與指數函數類似,都是形式定義,注意辨別。
如: , 都不是對數函數,而只能稱其為對數型函數.
○2 對數函數對底數的限制: ,且 .
2、對數函數的性質:
a>1 0<a<1

圖象特徵 函數性質

函數圖象都在y軸右側 函數的定義域為(0,+∞)
圖象關於原點和y軸不對稱 非奇非偶函數
向y軸正負方向無限延伸 函數的值域為R
函數圖象都過定點(1,0)

自左向右看,圖象逐漸上升 自左向右看,圖象逐漸下降 增函數 減函數
第一象限的圖象縱坐標都大於0 第一象限的圖象縱坐標都大於0

第二象限的圖象縱坐標都小於0 第二象限的圖象縱坐標都小於0

四)冪函數
1、冪函數定義:一般地,形如 的函數稱為冪函數,其中 為常數.
2、冪函數性質歸納.
(1)所有的冪函數在(0,+∞)都有定義,並且圖象都過點(1,1);
(2) 時,冪函數的圖象通過原點,並且在區間 上是增函數.特別地,當 時,冪函數的圖象下凸;當 時,冪函數的圖象上凸;
(3) 時,冪函數的圖象在區間 上是減函數.在第一象限內,當 從右邊趨向原點時,圖象在 軸右方無限地逼近 軸正半軸,當 趨於 時,圖象在 軸上方無限地逼近 軸正半軸.

第三章 函數的應用
一、方程的根與函數的零點
1、函數零點的概念:對於函數 ,把使 成立的實數 叫做函數 的零點。
2、函數零點的意義:函數 的零點就是方程 實數根,亦即函數 的圖象與 軸交點的橫坐標。即:方程 有實數根 函數 的圖象與 軸有交點 函數 有零點.
3、函數零點的求法:
求函數 的零點:
○1 (代數法)求方程 的實數根;
○2 (幾何法)對於不能用求根公式的方程,可以將它與函數 的圖象聯系起來,並利用函數的性質找出零點.
4、二次函數的零點:
二次函數 .
1)△>0,方程 有兩不等實根,二次函數的圖象與 軸有兩個交點,二次函數有兩個零點.
2)△=0,方程 有兩相等實根(二重根),二次函數的圖象與 軸有一個交點,二次函數有一個二重零點或二階零點.
3)△<0,方程 無實根,二次函數的圖象與 軸無交點,二次函數無零點.

『叄』 高一數學總結

高中高一數學必修1各章知識點總結

第一章 集合與函數概念

一、集合有關概念

1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

2、集合的中元素的三個特性:

1.元素的確定性; 2.元素的互異性; 3.元素的無序性

說明:(1)對於一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。

(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。

(3)集合中的元素是平等的,沒有先後順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

(4)集合元素的三個特性使集合本身具有了確定性和整體性。

3、集合的表示:{ … } 如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

1. 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

2.集合的表示方法:列舉法與描述法。

注意啊:常用數集及其記法:

非負整數集(即自然數集)記作:N

正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R

關於「屬於」的概念

集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬於集合A 記作 a∈A ,相反,a不屬於集合A 記作 aÏA

列舉法:把集合中的元素一一列舉出來,然後用一個大括弧括上。

描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。用確定的條件表示某些對象是否屬於這個集合的方法。

①語言描述法:例:{不是直角三角形的三角形}

②數學式子描述法:例:不等式x-3>2的解集是{xÎR| x-3>2}或{x| x-3>2}

4、集合的分類:

1.有限集 含有有限個元素的集合

2.無限集 含有無限個元素的集合

3.空集 不含任何元素的集合 例:{x|x2=-5}

二、集合間的基本關系

1.「包含」關系—子集

注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之: 集合A不包含於集合B,或集合B不包含集合A,記作A B或B A

2.「相等」關系(5≥5,且5≤5,則5=5)

實例:設 A={x|x2-1=0} B={-1,1} 「元素相同」

結論:對於兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等於集合B,即:A=B

① 任何一個集合是它本身的子集。AÍA

②真子集:如果AÍB,且A¹ B那就說集合A是集合B的真子集,記作A B(或B A)

③如果 AÍB, BÍC ,那麼 AÍC

④ 如果AÍB 同時 BÍA 那麼A=B

3. 不含任何元素的集合叫做空集,記為Φ

規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

三、集合的運算

1.交集的定義:一般地,由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.

記作A∩B(讀作」A交B」),即A∩B={x|x∈A,且x∈B}.

2、並集的定義:一般地,由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集。記作:A∪B(讀作」A並B」),即A∪B={x|x∈A,或x∈B}.

3、交集與並集的性質:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A,

A∪φ= A ,A∪B = B∪A.

4、全集與補集

(1)補集:設S是一個集合,A是S的一個子集(即 ),由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或余集)

記作: CSA 即 CSA ={x | xÎS且 xÏA}

S

CsA

A

(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。

(3)性質:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U

二、函數的有關概念

1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對於集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那麼就稱f:A→B為從集合A到集合B的一個函數.記作: y=f(x),x∈A.其中,x叫做自變數,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)| x∈A }叫做函數的值域.

注意:2如果只給出解析式y=f(x),而沒有指明它的定義域,則函數的定義域即是指能使這個式子有意義的實數的集合;3 函數的定義域、值域要寫成集合或區間的形式.

定義域補充

能使函數式有意義的實數x的集合稱為函數的定義域,求函數的定義域時列不等式組的主要依據是:(1)分式的分母不等於零; (2)偶次方根的被開方數不小於零; (3)對數式的真數必須大於零;(4)指數、對數式的底必須大於零且不等於1. (5)如果函數是由一些基本函數通過四則運算結合而成的.那麼,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數為零底不可以等於零 (6)實際問題中的函數的定義域還要保證實際問題有意義.

(又注意:求出不等式組的解集即為函數的定義域。)

構成函數的三要素:定義域、對應關系和值域

再注意:(1)構成函數三個要素是定義域、對應關系和值域.由於值域是由定義域和對應關系決定的,所以,如果兩個函數的定義域和對應關系完全一致,即稱這兩個函數相等(或為同一函數)(2)兩個函數相等當且僅當它們的定義域和對應關系完全一致,而與表示自變數和函數值的字母無關。相同函數的判斷方法:①表達式相同;②定義域一致 (兩點必須同時具備)

(見課本21頁相關例2)

值域補充

(1)、函數的值域取決於定義域和對應法則,不論採取什麼方法求函數的值域都應先考慮其定義域. (2).應熟悉掌握一次函數、二次函數、指數、對數函數及各三角函數的值域,它是求解復雜函數值域的基礎。

3. 函數圖象知識歸納

(1)定義:在平面直角坐標系中,以函數 y=f(x) , (x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數 y=f(x),(x ∈A)的圖象.

C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上 . 即記為C={ P(x,y) | y= f(x) , x∈A }

圖象C一般的是一條光滑的連續曲線(或直線),也可能是由與任意平行與Y軸的直線最多隻有一個交點的若干條曲線或離散點組成。

(2) 畫法

A、描點法:根據函數解析式和定義域,求出x,y的一些對應值並列表,以(x,y)為坐標在坐標系內描出相應的點P(x, y),最後用平滑的曲線將這些點連接起來.

B、圖象變換法(請參考必修4三角函數)

常用變換方法有三種,即平移變換、伸縮變換和對稱變換

(3)作用:

1、直觀的看出函數的性質;2、利用數形結合的方法分析解題的思路。提高解題的速度。

發現解題中的錯誤。

4.快去了解區間的概念

(1)區間的分類:開區間、閉區間、半開半閉區間;(2)無窮區間;(3)區間的數軸表示.

5.什麼叫做映射

一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對於集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那麼就稱對應f:A B為從集合A到集合B的一個映射。記作「f:A B」

給定一個集合A到B的映射,如果a∈A,b∈B.且元素a和元素b對應,那麼,我們把元素b叫做元素a的象,元素a叫做元素b的原象

說明:函數是一種特殊的映射,映射是一種特殊的對應,①集合A、B及對應法則f是確定的;②對應法則有「方向性」,即強調從集合A到集合B的對應,它與從B到A的對應關系一般是不同的;③對於映射f:A→B來說,則應滿足:(Ⅰ)集合A中的每一個元素,在集合B中都有象,並且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中對應的象可以是同一個;(Ⅲ)不要求集合B中的每一個元素在集合A中都有原象。

常用的函數表示法及各自的優點:

1 函數圖象既可以是連續的曲線,也可以是直線、折線、離散的點等等,注意判斷一個圖形是否是函數圖象的依據;2 解析法:必須註明函數的定義域;3 圖象法:描點法作圖要注意:確定函數的定義域;化簡函數的解析式;觀察函數的特徵;4 列表法:選取的自變數要有代表性,應能反映定義域的特徵.

注意啊:解析法:便於算出函數值。列表法:便於查出函數值。圖象法:便於量出函數值

補充一:分段函數 (參見課本P24-25)

在定義域的不同部分上有不同的解析表達式的函數。在不同的范圍里求函數值時必須把自變數代入相應的表達式。分段函數的解析式不能寫成幾個不同的方程,而就寫函數值幾種不同的表達式並用一個左大括弧括起來,並分別註明各部分的自變數的取值情況.(1)分段函數是一個函數,不要把它誤認為是幾個函數;(2)分段函數的定義域是各段定義域的並集,值域是各段值域的並集.

補充二:復合函數

如果y=f(u),(u∈M),u=g(x),(x∈A),則 y=f[g(x)]=F(x),(x∈A) 稱為f、g的復合函數。

例如: y=2sinX y=2cos(X2+1)

7.函數單調性

(1).增函數

設函數y=f(x)的定義域為I,如果對於定義域I內的某個區間D內的任意兩個自變數x1,x2,當x1<x2時,都有f(x1)<f(x2),那麼就說f(x)在區間D上是增函數。區間D稱為y=f(x)的單調增區間(睇清楚課本單調區間的概念)

如果對於區間D上的任意兩個自變數的值x1,x2,當x1<x2 時,都有f(x1)>f(x2),那麼就說f(x)在這個區間上是減函數.區間D稱為y=f(x)的單調減區間.

注意:1 函數的單調性是在定義域內的某個區間上的性質,是函數的局部性質;

2 必須是對於區間D內的任意兩個自變數x1,x2;當x1<x2時,總有f(x1)<f(x2) 。

(2) 圖象的特點

如果函數y=f(x)在某個區間是增函數或減函數,那麼說函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.

(3).函數單調區間與單調性的判定方法

(A) 定義法:

1 任取x1,x2∈D,且x1<x2;2 作差f(x1)-f(x2);3 變形(通常是因式分解和配方);4 定號(即判斷差f(x1)-f(x2)的正負);5 下結論(指出函數f(x)在給定的區間D上的單調性).

(B)圖象法(從圖象上看升降)_

(C)復合函數的單調性

復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律如下:

函數
單調性

u=g(x)





y=f(u)





y=f[g(x)]





注意:1、函數的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫成其並集. 2、還記得我們在選修里學習簡單易行的導數法判定單調性嗎?

8.函數的奇偶性

(1)偶函數

一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那麼f(x)就叫做偶函數.

(2).奇函數

一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那麼f(x)就叫做奇函數.

注意:1 函數是奇函數或是偶函數稱為函數的奇偶性,函數的奇偶性是函數的整體性質;函數可能沒有奇偶性,也可能既是奇函數又是偶函數。

2 由函數的奇偶性定義可知,函數具有奇偶性的一個必要條件是,對於定義域內的任意一個x,則-x也一定是定義域內的一個自變數(即定義域關於原點對稱).

(3)具有奇偶性的函數的圖象的特徵

偶函數的圖象關於y軸對稱;奇函數的圖象關於原點對稱.

總結:利用定義判斷函數奇偶性的格式步驟:1 首先確定函數的定義域,並判斷其定義域是否關於原點對稱;2 確定f(-x)與f(x)的關系;3 作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數.

注意啊:函數定義域關於原點對稱是函數具有奇偶性的必要條件.首先看函數的定義域是否關於原點對稱,若不對稱則函數是非奇非偶函數.若對稱,(1)再根據定義判定; (2)有時判定f(-x)=±f(x)比較困難,可考慮根據是否有f(-x)±f(x)=0或f(x)/f(-x)=±1來判定; (3)利用定理,或藉助函數的圖象判定 .

9、函數的解析表達式

(1).函數的解析式是函數的一種表示方法,要求兩個變數之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域.

(2).求函數的解析式的主要方法有:待定系數法、換元法、消參法等,如果已知函數解析式的構造時,可用待定系數法;已知復合函數f[g(x)]的表達式時,可用換元法,這時要注意元的取值范圍;當已知表達式較簡單時,也可用湊配法;若已知抽象函數表達式,則常用解方程組消參的方法求出f(x)

10.函數最大(小)值(定義見課本p36頁)

1 利用二次函數的性質(配方法)求函數的最大(小)值2 利用圖象求函數的最大(小)值3 利用函數單調性的判斷函數的最大(小)值:如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);

第二章 基本初等函數

一、指數函數

(一)指數與指數冪的運算

1.根式的概念:一般地,如果 ,那麼 叫做 的 次方根(n th root),其中 >1,且 ∈ *.

當 是奇數時,正數的 次方根是一個正數,負數的 次方根是一個負數.此時, 的 次方根用符號 表示.式子 叫做根式(radical),這里 叫做根指數(radical exponent), 叫做被開方數(radicand).

當 是偶數時,正數的 次方根有兩個,這兩個數互為相反數.此時,正數 的正的 次方根用符號 表示,負的 次方根用符號- 表示.正的 次方根與負的 次方根可以合並成± ( >0).由此可得:負數沒有偶次方根;0的任何次方根都是0,記作 。

注意:當 是奇數時, ,當 是偶數時,
2.分數指數冪

正數的分數指數冪的意義,規定:


0的正分數指數冪等於0,0的負分數指數冪沒有意義

指出:規定了分數指數冪的意義後,指數的概念就從整數指數推廣到了有理數指數,那麼整數指數冪的運算性質也同樣可以推廣到有理數指數冪.

3.實數指數冪的運算性質

(1) · ;

(2) ;

(3) .

(二)指數函數及其性質

1、指數函數的概念:一般地,函數 叫做指數函數(exponential ),其中x是自變數,函數的定義域為R.

注意:指數函數的底數的取值范圍,底數不能是負數、零和1.

2、指數函數的圖象和性質

a>1
0<a<1

圖象特徵
函數性質

向x、y軸正負方向無限延伸
函數的定義域為R

圖象關於原點和y軸不對稱
非奇非偶函數

函數圖象都在x軸上方
函數的值域為R+

函數圖象都過定點(0,1)

自左向右看,

圖象逐漸上升
自左向右看,

圖象逐漸下降
增函數
減函數

在第一象限內的圖象縱坐標都大於1
在第一象限內的圖象縱坐標都小於1

在第二象限內的圖象縱坐標都小於1
在第二象限內的圖象縱坐標都大於1

圖象上升趨勢是越來越陡
圖象上升趨勢是越來越緩
函數值開始增長較慢,到了某一值後增長速度極快;
函數值開始減小極快,到了某一值後減小速度較慢;

注意:利用函數的單調性,結合圖象還可以看出:
(1)在[a,b]上, 值域是 或 ;
(2)若 ,則 ; 取遍所有正數當且僅當 ;
(3)對於指數函數 ,總有 ;
(4)當 時,若 ,則 ;

二、對數函數

(一)對數

1.對數的概念:一般地,如果 ,那麼數 叫做以 為底 的對數,記作: ( — 底數, — 真數, — 對數式)

說明:1 注意底數的限制 ,且 ;

2 ;

3 注意對數的書寫格式.

兩個重要對數:

1 常用對數:以10為底的對數 ;

2 自然對數:以無理數 為底的對數的對數 .

對數式與指數式的互化

對數式 指數式

對數底數 ← → 冪底數

對數 ← → 指數

真數 ← → 冪

(二)對數的運算性質

如果 ,且 , , ,那麼:

1 · + ;

2 - ;

3 .

注意:換底公式

( ,且 ; ,且 ; ).

利用換底公式推導下面的結論(1) ;(2) .

(二)對數函數

1、對數函數的概念:函數 ,且 叫做對數函數,其中 是自變數,函數的定義域是(0,+∞).

注意:1 對數函數的定義與指數函數類似,都是形式定義,注意辨別。

如: , 都不是對數函數,而只能稱其為對數型函數.

2 對數函數對底數的限制: ,且 .

2、對數函數的性質:

a>1
0<a<1

圖象特徵
函數性質

函數圖象都在y軸右側
函數的定義域為(0,+∞)

圖象關於原點和y軸不對稱
非奇非偶函數

向y軸正負方向無限延伸
函數的值域為R

函數圖象都過定點(1,0)

自左向右看,

圖象逐漸上升
自左向右看,

圖象逐漸下降
增函數
減函數

第一象限的圖象縱坐標都大於0
第一象限的圖象縱坐標都大於0

第二象限的圖象縱坐標都小於0
第二象限的圖象縱坐標都小於0

(三)冪函數

1、冪函數定義:一般地,形如 的函數稱為冪函數,其中 為常數.

2、冪函數性質歸納.

(1)所有的冪函數在(0,+∞)都有定義,並且圖象都過點(1,1);

(2) 時,冪函數的圖象通過原點,並且在區間 上是增函數.特別地,當 時,冪函數的圖象下凸;當 時,冪函數的圖象上凸;

(3) 時,冪函數的圖象在區間 上是減函數.在第一象限內,當 從右邊趨向原點時,圖象在 軸右方無限地逼近 軸正半軸,當 趨於 時,圖象在 軸上方無限地逼近 軸正半軸.

第三章 函數的應用

一、方程的根與函數的零點

1、函數零點的概念:對於函數 ,把使 成立的實數 叫做函數 的零點。

2、函數零點的意義:函數 的零點就是方程 實數根,亦即函數 的圖象與 軸交點的橫坐標。即:

方程 有實數根 函數 的圖象與 軸有交點 函數 有零點.

3、函數零點的求法:

求函數 的零點:

1 (代數法)求方程 的實數根;

2 (幾何法)對於不能用求根公式的方程,可以將它與函數 的圖象聯系起來,並利用函數的性質找出零點.

4、二次函數的零點:

二次函數 .

1)△>0,方程 有兩不等實根,二次函數的圖象與 軸有兩個交點,二次函數有兩個零點.

2)△=0,方程 有兩相等實根(二重根),二次函數的圖象與 軸有一個交點,二次函數有一個二重零點或二階零點.

『肆』 高一數學知識點總結


集合與簡易邏輯
集合具有四個性質
廣泛性
集合的元素什麼都可以
確定性
集合中的元素必須是確定的,比如說是好學生就不具有這種性質,因為它的概念是模糊不清的
互異性
集合中的元素必須是互不相等的,一個元素不能重復出現
無序性
集合中的元素與順序無關

函數
這是個重點,但是說起來也不好說,要作專題訓練,比如說二次函數,指數對數函數等等做這一類型題的時候,要掌握幾個函數思想如
構造函數
函數與方程結合
對稱思想,換元等等

數列
這也是個比較重要的題型,做體的時候要有整體思想,整體代換,等比等差要分開來,也要注意聯系,這樣才能做好,注意觀察數列的形式判斷是什麼數列,還要掌握求數列通向公式的幾種方法,和求和公式,求和方法,比如裂項相消,錯位相減,公式法,分組求和法等等

三角函數
三角函數不是考試題型,只是個應用的知識點,所以只要記熟特殊角的三角函數值和一些重要的定理就行

平面向量
這是個比較抽象的把幾何與代數結合起來的重難點,結體的時候要有技巧,主要就是把基本知識掌握到位,注意拓展,另外要多做題,見的題型多,結體的時候就有思路,能夠把問題簡單化,有利於提高做題效率
常用導數公式
1.y=c(c為常數)
y'=0
2.y=x^n
y'=nx^(n-1)
3.y=a^x
y'=a^xlna
y=e^x
y'=e^x
4.y=logax
y'=logae/x
y=lnx
y'=1/x
5.y=sinx
y'=cosx
6.y=cosx
y'=-sinx
7.y=tanx
y'=1/cos^2x
8.y=cotx
y'=-1/sin^2x
9.y=arcsinx
y'=1/√1-x^2
10.y=arccosx
y'=-1/√1-x^2
11.y=arctanx
y'=1/1+x^2
12.y=arccotx
y'=-1/1+x^2

『伍』 高一數學知識總結

高考數學總復習精品資料---高中數學解題小結大匯總
熟悉這些解題小結論,啟迪解題思路、探求解題佳徑,總結解題方法,防止解題易誤點的產生,對提升高考數學成績將會起到立竿見影的效果。
一、集合與簡易邏輯
1.集合的元素具有無序性和互異性.
2.對集合 , 時,你是否注意到「極端」情況: 或 ;求集合的子集時是否注意到 是任何集合的子集、 是任何非空集合的真子集.
3.對於含有 個元素的有限集合 ,其子集、真子集、非空子集、非空真子集的個數依次為
4.「交的補等於補的並,即 」;「並的補等於補的交,即 」.
5.判斷命題的真假
關鍵是「抓住關聯字詞」;注意:「不『或』即『且』,不『且』即『或』」.
6.「或命題」的真假特點是「一真即真,要假全假」;「且命題」的真假特點是「一假即假,要真全真」;「非命題」的真假特點是「一真一假」.
7.四種命題中「『逆』者『交換』也」、「『否』者『否定』也」.
原命題等價於逆否命題,但原命題與逆命題、否命題都不等價.反證法分為三步:假設、推矛、得果.
注意:命題的否定是「命題的非命題,也就是『條件不變,僅否定結論』所得命題」,但否命題是「既否定原命題的條件作為條件,又否定原命題的結論作為結論的所得命題」 .
8.充要條件

二、函數
1.指數式、對數式,
, ,
,.
, , , , ,
,. .
2.(1)映射是「『全部射出』加『一箭一雕』」;映射中第一個集合 中的元素必有像,但第二個集合 中的元素不一定有原像( 中元素的像有且僅有下一個,但 中元素的原像可能沒有,也可任意個);函數是「非空數集上的映射」,其中「值域是映射中像集 的子集」.
(2)函數圖像與 軸垂線至多一個公共點,但與 軸垂線的公共點可能沒有,也可任意個.
(3)函數圖像一定是坐標系中的曲線,但坐標系中的曲線不一定能成為函數圖像.
(4)原函數與反函數有兩個「交叉關系」:自變數與因變數、定義域與值域.求一個函數的反函數,分三步:逆解、交換、定域(確定原函數的值域,並作為反函數的定義域).
注意:① , , ,
但 .
②函數 的反函數是 ,而不是 .
3.單調性和奇偶性
(1)奇函數在關於原點對稱的區間上若有單調性,則其單調性完全相同.
偶函數在關於原點對稱的區間上若有單調性,則其單調性恰恰相反.
單調函數的反函數和原函數有相同的性;如果奇函數有反函數,那麼其反函數一定還是奇函數.
注意:(1)確定函數的奇偶性,務必先判定函數定義域是否關於原點對稱.確定函數奇偶性的常用方法有:定義法、圖像法等等.
對於偶函數而言有: .
(2)若奇函數定義域中有0,則必有 .即 的定義域時, 是 為奇函數的必要非充分條件.
(3)確定函數的單調性或單調區間,在解答題中常用:定義法(取值、作差、鑒定)、導數法;在選擇、填空題中還有:數形結合法(圖像法)、特殊值法等等.
(4)函數單調是函數有反函數的一個充分非必要條件.
(5)定義在關於原點對稱區間上的任意一個函數,都可表示成「一個奇函數與一個偶函數的和(或差)」.
(6)函數單調是函數有反函數的充分非必要條件,奇函數可能反函數,但偶函數只有 有反函數;既奇又偶函數有無窮多個( ,定義域是關於原點對稱的任意一個數集).
(7)復合函數的單調性特點是:「同性得增,增必同性;異性得減,減必異性」.
復合函數的奇偶性特點是:「內偶則偶,內奇同外」.
復合函數要考慮定義域的變化。(即復合有意義)

4.對稱性與周期性(以下結論要消化吸收,不可強記)
(1)函數 與函數 的圖像關於直線 ( 軸)對稱.
推廣一:如果函數 對於一切 ,都有 成立,那麼 的圖像關於直線 (由「 和的一半 確定」)對稱.
推廣二:函數 , 的圖像關於直線 (由 確定)對稱.
(2)函數 與函數 的圖像關於直線 ( 軸)對稱.
推廣:函數 與函數 的圖像關於直線 對稱(由「 和的一半 確定」).
(3)函數 與函數 的圖像關於坐標原點中心對稱.
推廣:函數 與函數 的圖像關於點 中心對稱.
(4)函數 與函數 的圖像關於直線 對稱.
推廣:曲線 關於直線 的對稱曲線是 ;
曲線 關於直線 的對稱曲線是 .
(5)曲線 繞原點逆時針旋轉 ,所得曲線是 (逆時針橫變再交換).
特別: 繞原點逆時針旋轉 ,得 ,若 有反函數 ,則得 .
曲線 繞原點順時針旋轉 ,所得曲線是 (順時針縱變再交換).
特別: 繞原點順時針旋轉 ,得 ,若 有反函數 ,則得 .
(6)類比「三角函數圖像」得:
若 圖像有兩條對稱軸 ,則 必是周期函數,且一周期為 .
若 圖像有兩個對稱中心 ,則 是周期函數,且一周期為 .
如果函數 的圖像有下一個對稱中心 和一條對稱軸 ,則函數 必是周期函數,且一周期為 .
如果 是R上的周期函數,且一個周期為 ,那麼 .
特別:若 恆成立,則 .
若 恆成立,則 .若 恆成立,則 .
如果 是周期函數,那麼 的定義域「無界」.
5.圖像變換
(1)函數圖像的平移和伸縮變換應注意哪些問題?
函數 的圖像按向量 平移後,得函數 的圖像.

(2)函數圖像的平移、伸縮變換中,圖像的特殊點、特殊線也作相應的變換.

(3)圖像變換應重視將所研究函數與常見函數(正比例函數、反比例函數、一次函數、二次函數、對數函數、指數函數、三角函數、「魚鉤函數 」及函數 等)相互轉化.
注意:①形如 的函數,不一定是二次函數.
②應特別重視「二次三項式」、「二次方程」、「二次函數」、「二次曲線」之間的特別聯系.
③形如 的圖像是等軸雙曲線,雙曲線兩漸近線分別直線 (由分母為零確定)、直線 (由分子、分母中 的系數確定),雙曲線的中心是點 .
三、數列
1.數列的通項、數列項的項數,遞推公式與遞推數列,數列的通項與數列的前 項和公式的關系: (必要時請分類討論).
注意: ;
.
2.等差數列 中:
(1)等差數列公差的取值與等差數列的單調性.
(2) ; .
(3) 、 也成等差數列. (4)兩等差數列對應項和(差)組成的新數列仍成等差數列.
(5) 仍成等差數列.
(6) , , ,
, .
(7) ; ; .
(8)「首正」的遞減等差數列中,前 項和的最大值是所有非負項之和;
「首負」的遞增等差數列中,前 項和的最小值是所有非正項之和;
(9)有限等差數列中,奇數項和與偶數項和的存在必然聯系,由數列的總項數是偶數還是奇數決定.若總項數為偶數,則「偶數項和」-「奇數項和」=總項數的一半與其公差的積;若總項數為奇數,則「奇數項和」-「偶數項和」=此數列的中項.
(10)兩數的等差中項惟一存在.在遇到三數或四數成等差數列時,常考慮選用「中項關系」轉化求解.
(11)判定數列是否是等差數列的主要方法有:定義法、中項法、通項法、和式法、圖像法(也就是說數列是等差數列的充要條件主要有這五種形式).
3.等比數列 中:
(1)等比數列的符號特徵(全正或全負或一正一負),等比數列的首項、公比與等比數列的單調性.
(1) ; .
(3) 、 、 成等比數列; 成等比數列 成等比數列.
(4)兩等比數列對應項積(商)組成的新數列仍成等比數列.
(5) 成等比數列.
(6) .
特別: .
(7) .
(8)「首大於1」的正值遞減等比數列中,前 項積的最大值是所有大於或等於1的項的積;「首小於1」的正值遞增等比數列中,前 項積的最小值是所有小於或等於1的項的積;
(9)有限等比數列中,奇數項和與偶數項和的存在必然聯系,由數列的總項數是偶數還是奇數決定.若總項數為偶數,則「偶數項和」=「奇數項和」與「公比」的積;若總項數為奇數,則「奇數項和」=「首項」加上「公比」與「偶數項和」積的和.
(10)並非任何兩數總有等比中項. 僅當實數 同號時,實數 存在等比中項.對同號兩實數 的等比中項不僅存在,而且有一對 .也就是說,兩實數要麼沒有等比中項(非同號時),如果有,必有一對(同號時).在遇到三數或四數成等差數列時,常優先考慮選用「中項關系」轉化求解.
(11)判定數列是否是等比數列的方法主要有:定義法、中項法、通項法、和式法(也就是說數列是等比數列的充要條件主要有這四種形式).
4.等差數列與等比數列的聯系
(1)如果數列 成等差數列,那麼數列 ( 總有意義)必成等比數列.
(2)如果數列 成等比數列,那麼數列 必成等差數列.
(3)如果數列 既成等差數列又成等比數列,那麼數列 是非零常數數列;但數列 是常數數列僅是數列既成等差數列又成等比數列的必要非充分條件.
(4)如果兩等差數列有公共項,那麼由他們的公共項順次組成的新數列也是等差數列,且新等差數列的公差是原兩等差數列公差的最小公倍數.
如果一個等差數列與一個等比數列有公共項順次組成新數列,那麼常選用「由特殊到一般的方法」進行研討,且以其等比數列的項為主,探求等比數列中那些項是他們的公共項,並構成新的數列.
注意:(1)公共項僅是公共的項,其項數不一定相同,即研究 .但也有少數問題中研究 ,這時既要求項相同,也要求項數相同.(2)三(四)個數成等差(比)的中項轉化和通項轉化法.
5.數列求和的常用方法:
(1)公式法:①等差數列求和公式(三種形式),②等比數列求和公式(三種形式),
③ , ,
, .
(2)分組求和法:在直接運用公式法求和有困難時,常將「和式」中「同類項」先合並在一起,再運用公式法求和.
(3)倒序相加法:在數列求和中,若和式中到首尾距離相等的兩項和有其共性或數列的通項與組合數相關聯,則常可考慮選用倒序相加法,發揮其共性的作用求和(這也是等差數列前 和公式的推導方法).
(4)錯位相減法:如果數列的通項是由一個等差數列的通項與一個等比數列的通項相乘構成,那麼常選用錯位相減法,將其和轉化為「一個新的的等比數列的和」求解(注意:一般錯位相減後,其中「新等比數列的項數是原數列的項數減一的差」!)(這也是等比數列前 和公式的推導方法之一).
(5)裂項相消法:如果數列的通項可「分裂成兩項差」的形式,且相鄰項分裂後相關聯,那麼常選用裂項相消法求和.常用裂項形式有:
① , ② ,
③ ,

④ ,⑤ ,
⑥ ,
⑦ ,⑧ .
特別聲明:運用等比數列求和公式,務必檢查其公比與1的關系,必要時分類討論.
(6)通項轉換法。

6.分期付款型應用問題
(1)重視將這類應用題與等差數列或等比數列相聯系.
(2)若應用問題像「森林木材問題」那樣,既增長又砍伐,則常選用「統一法」統一到「最後」解決.
(3)「分期付款」、「森林木材」等問題的解決過程中,務必「卡手指」,細心計算「年限」作為相應的「指數」. 

四、三角函數
1. 終邊與 終邊相同( 的終邊在 終邊所在射線上) .
終邊與 終邊共線( 的終邊在 終邊所在直線上) .
終邊與 終邊關於 軸對稱 .
終邊與 終邊關於 軸對稱 .
終邊與 終邊關於原點對稱 .
一般地: 終邊與 終邊關於角 的終邊對稱 .
與 的終邊關系由「兩等分各象限、一二三四」確定.
2.弧長公式: ,扇形面積公式: ,1弧度(1rad) .
3.三角函數符號特徵是:一是全正、二正弦正、三是切正、四餘弦正.
注意: ,
, .
4.三角函數線的特徵是:正弦線「站在 軸上(起點在 軸上)」、餘弦線「躺在 軸上(起點是原點)」、正切線「站在點 處(起點是 )」.務必重視「三角函數值的大小與單位圓上相應點的坐標之間的關系,『正弦』 『縱坐標』、『餘弦』 『橫坐標』、『正切』 『縱坐標除以橫坐標之商』」;務必記住:單位圓中角終邊的變化與 值的大小變化的關系. 為銳角 .

5.三角函數同角關系中,平方關系的運用中,務必重視「根據已知角的范圍和三角函數的取值,精確確定角的范圍,並進行定號」;
6.三角函數誘導公式的本質是:奇變偶不變,符號看象限.
7.三角函數變換主要是:角、函數名、次數、系數(常值)的變換,其核心是「角的變換」!
角的變換主要有:已知角與特殊角的變換、已知角與目標角的變換、角與其倍角的變換、兩角與其和差角的變換.
如 , ,
, 等.
常值變換主要指「1」的變換:
等.
三角式變換主要有:三角函數名互化(切割化弦)、三角函數次數的降升(降次、升次)、運算結構的轉化(和式與積式的互化). 解題時本著「三看」的基本原則來進行:「看角、看函數、看特徵」,基本的技巧有:巧變角,公式變形使用,化切割為弦,用倍角公式將高次降次.
注意:和(差)角的函數結構與符號特徵;餘弦倍角公式的三種形式選用;降次(升次)公式中的符號特徵.「正餘弦『三兄妹— 』的內存聯系」(常和三角換元法聯系在一起
).
輔助角公式中輔助角的確定: (其中 角所在的象限由a, b的符號確定, 角的值由 確定)在求最值、化簡時起著重要作用.尤其是兩者系數絕對值之比為 的情形. 有實數解 .
8.三角函數性質、圖像及其變換:
(1)三角函數的定義域、值域、單調性、奇偶性、有界性和周期性
注意:正切函數、餘切函數的定義域;絕對值對三角函數周期性的影響:一般說來,某一周期函數解析式加絕對值或平方,其周期性是:弦減半、切不變.既為周期函數又是偶函數的函數自變數加絕對值,其周期性不變;其他不定. 如 的周期都是 , 但 的周期為 , y=|tanx|的周期不變,問函數y=cos|x|, ,y=cos|x|是周期函數嗎?
(2)三角函數圖像及其幾何性質:

(3)三角函數圖像的變換:兩軸方向的平移、伸縮及其向量的平移變換.
(4)三角函數圖像的作法:三角函數線法、五點法(五點橫坐標成等差數列)和變換法.
9.三角形中的三角函數:
(1)內角和定理:三角形三角和為 ,任意兩角和與第三個角總互補,任意兩半形和與第三個角的半形總互余.銳角三角形 三內角都是銳角 三內角的餘弦值為正值 任兩角和都是鈍角 任意兩邊的平方和大於第三邊的平方.
(2)正弦定理: (R為三角形外接圓的半徑).
注意:已知三角形兩邊一對角,求解三角形時,若運用正弦定理,則務必注意可能有兩解.
(3)餘弦定理: 等,常選用餘弦定理鑒定三角形的類型.
(4)面積公式: .
10.反三角函數:
(1)反正弦 、反餘弦 、反正切 的取值范圍分別是 .
(2)異面直線所成的角、直線與平面所成的角、二面角、向量的夾角的范圍依次是 , .直線的傾斜角、 到 的角、 與 的夾角的范圍依次是 .
五、向 量
1.向量運算的幾何形式和坐標形式,請注意:向量運算中向量起點、終點及其坐標的特徵.
2.幾個概念:零向量、單位向量(與 共線的單位向量是 ,特別: )、平行(共線)向量(無傳遞性,是因為有 )、相等向量(有傳遞性)、相反向量、向量垂直、以及一個向量在另一向量方向上的投影( 在 上的投影是 ).
3.兩非零向量平行(共線)的充要條件 .
兩個非零向量垂直的充要條件 .
特別:零向量和任何向量共線. 是向量平行的充分不必要條件!
4.平面向量的基本定理:如果e1和e2是同一平面內的兩個不共線向量,那麼對該平面內的任一向量a,有且只有一對實數 、 ,使a= e1+ e2.
5.三點 共線 共線;
向量 中三終點 共線 存在實數 使得: 且 .
6.向量的數量積: , ,

.
注意: 為銳角 且 不同向;
為直角 且 ;
為鈍角 且 不反向
是 為鈍角的必要非充分條件.
向量運算和實數運算有類似的地方也有區別:一個封閉圖形首尾連接而成的向量和為零向量,這是題目中的天然條件,要注意運用;對於一個向量等式,可以移項,兩邊平方、兩邊同乘以一個實數,兩邊同時取模,兩邊同乘以一個向量,但不能兩邊同除以一個向量,即兩邊不能約去一個向量;向量的「乘法」不滿足結合律,即 ,切記兩向量不能相除(相約).
7.
注意: 同向或有 ;
反向或有 ;
不共線 .(這些和實數集中類似)
8.平移與定比分點
(1)線段的定比分點坐標公式
設P(x,y)、P1(x1,y1),P2(x2,y2),且 ,則. , .
特別:分點的位置與 的對應關系.
中點坐標公式 , 為 的中點.
中, 過 邊中點; ;
.
為 的重心;
特別 為 的重心.
為 的垂心;
所在直線過 的內心(是 的角平分線所在直線);
的內心.
.
(2)平移公式: 如果點P(x,y)按向量a=(h,k)平移至 ,則 .
曲線 按向量a=(h,k)平移得曲線 .
六、不等式
1.(1)解不等式是求不等式的解集,最後務必有集合的形式表示;不等式解集的端點值往往是不等式對應方程的根或不等式有意義范圍的端點值.
(2)解分式不等式 的一般解題思路是什麼?(移項通分,分子分母分解因式,x的系數變為正值,標根及奇穿過偶彈回);
(3)含有兩個絕對值的不等式如何去絕對值?(一般是根據定義分類討論、平方轉化或換元轉化);
(4)解含參不等式常分類等價轉化,必要時需分類討論.注意:按參數討論,最後按參數取值分別說明其解集,但若按未知數討論,最後應求並集.
2. 利用重要不等式 以及變式 等求函數的最值時,務必注意a,b (或a ,b非負),且「等號成立」時的條件是積ab或和a+b其中之一應是定值(一正二定三等四同時).
3.常用不等式有: (根據目標不等式左右的運算結構選用) a、b、c R, (當且僅當 時,取等號)
4.比較大小的方法和證明不等式的方法主要有:差比較法、商比較法、函數性質法、綜合法、分析法和放縮法(注意:對「整式、分式、絕對值不等式」的放縮途徑, 「配方、函數單調性等」對放縮的影響).
5.含絕對值不等式的性質:
同號或有 ;
異號或有 .
注意:不等式恆成立問題的常規處理方式?(常應用方程函數思想和「分離變數法」轉化為最值問題).
七、直線和圓
1.直線傾斜角與斜率的存在性及其取值范圍;直線方向向量的意義( 或 )及其直線方程的向量式( ( 為直線的方向向量)).應用直線方程的點斜式、斜截式設直線方程時,一般可設直線的斜率為k,但你是否注意到直線垂直於x軸時,即斜率k不存在的情況?
2.知直線縱截距 ,常設其方程為 或 ;知直線橫截距 ,常設其方程為 (直線斜率k存在時, 為k的倒數)或 .知直線過點 ,常設其方程為 或 .
注意:(1)直線方程的幾種形式:點斜式、斜截式、兩點式、截矩式、一般式、向量式.以及各種形式的局限性.(如點斜式不適用於斜率不存在的直線,還有截矩式呢?)
與直線 平行的直線可表示為 ;
與直線 垂直的直線可表示為 ;
過點 與直線 平行的直線可表示為:

過點 與直線 垂直的直線可表示為:
.
(2)直線在坐標軸上的截距可正、可負、也可為0.直線兩截距相等 直線的斜率為-1或直線過原點;直線兩截距互為相反數 直線的斜率為1或直線過原點;直線兩截距絕對值相等 直線的斜率為 或直線過原點.
(3)在解析幾何中,研究兩條直線的位置關系時,有可能這兩條直線重合,而在立體幾何中一般提到的兩條直線可以理解為它們不重合.
3.相交兩直線的夾角和兩直線間的到角是兩個不同的概念:夾角特指相交兩直線所成的較小角,范圍是 ,而其到角是帶有方向的角,范圍是 .相應的公式是:夾角公式 ,直線 到 角公式 .註:點到直線的距離公式 .
特別: ;

.
4.線性規劃中幾個概念:約束條件、可行解、可行域、目標函數、最優解.
5.圓的方程:最簡方程 ;
標准方程 ;
一般式方程 ;
參數方程 為參數);
直徑式方程 .
注意:(1)在圓的一般式方程中,圓心坐標和半徑分別是 .
(2)圓的參數方程為「三角換元」提供了樣板,常用三角換元有:



.
6.解決直線與圓的關系問題有「函數方程思想」和「數形結合思想」兩種思路,等價轉化求解,重要的是發揮「圓的平面幾何性質(如半徑、半弦長、弦心距構成直角三角形,切線長定理、割線定理、弦切角定理等等)的作用!」
(1)過圓 上一點 圓的切線方程是: ,
過圓 上一點 圓的切線方程是:

過圓 上一點 圓的切線方程是: .
如果點 在圓外,那麼上述直線方程表示過點 兩切線上兩切點的「切點弦」方程.
如果點 在圓內,那麼上述直線方程表示與圓相離且垂直於 ( 為圓心)的直線方程, ( 為圓心 到直線的距離).
7.曲線 與 的交點坐標 方程組 的解;
過兩圓 、 交點的圓(公共弦)系為 ,當且僅當無平方項時, 為兩圓公共弦所在直線方程.
八、圓錐曲線
1.圓錐曲線的兩個定義,及其「括弧」內的限制條件,在圓錐曲線問題中,如果涉及到其兩焦點(兩相異定點),那麼將優先選用圓錐曲線第一定義;如果涉及到其焦點、准線(一定點和不過該點的一定直線)或離心率,那麼將優先選用圓錐曲線第二定義;涉及到焦點三角形的問題,也要重視焦半徑和三角形中正餘弦定理等幾何性質的應用.
(1)注意:①圓錐曲線第一定義與配方法的綜合運用;②圓錐曲線第二定義是:「點點距為分子、點線距為分母」,橢圓 點點距除以點線距商是小於1的正數,雙曲線 點點距除以點線距商是大於1的正數,拋物線 點點距除以點線距商是等於1.③圓錐曲線的焦半徑公式如下圖:

2.圓錐曲線的幾何性質:圓錐曲線的對稱性、圓錐曲線的范圍、圓錐曲線的特殊點線、圓錐曲線的變化趨勢.其中 ,橢圓中 、雙曲線中 .重視「特徵直角三角形、焦半徑的最值、焦點弦的最值及其『頂點、焦點、准線等相互之間與坐標系無關的幾何性質』」,尤其是雙曲線中焦半徑最值、焦點弦最值的特點.注意:等軸雙曲線的意義和性質.

3.在直線與圓錐曲線的位置關系問題中,有「函數方程思想」和「數形結合思想」兩種思路,等價轉化求解. 特別是:
①直線與圓錐曲線相交的必要條件是他們構成的方程組有實數解,當出現一元二次方程時,務必「判別式≥0」,尤其是在應用韋達定理解決問題時,必須先有「判別式≥0」.
②直線與拋物線(相交不一定交於兩點)、雙曲線位置關系(相交的四種情況)的特殊性,應謹慎處理. 
③在直線與圓錐曲線的位置關系問題中,常與「弦」相關,「平行弦」問題的關鍵是「斜率」、「中點弦」問題關鍵是「韋達定理」或「小小直角三角形」或「點差法」、「長度(弦長)」問題關鍵是長度(弦長)公式
( , ,
)或「小小直角三角形」.
④如果在一條直線上出現「三個或三個以上的點」,那麼可選擇應用「斜率」為橋梁轉化.
4.要重視常見的尋求曲線方程的方法(待定系數法、定義法、直譯法、代點法、參數法、交軌法、向量法等), 以及如何利用曲線的方程討論曲線的幾何性質(定義法、幾何法、代數法、方程函數思想、數形結合思想、分類討論思想和等價轉化思想等),這是解析幾何的兩類基本問題,也是解析幾何的基本出發點.
注意:①如果問題中涉及到平面向量知識,那麼應從已知向量的特點出發,考慮選擇向量的幾何形式進行「摘帽子或脫靴子」轉化,還是選擇向量的代數形式進行「摘帽子或脫靴子」轉化.
②曲線與曲線方程、軌跡與軌跡方程是兩個不同的概念,尋求軌跡或軌跡方程時應注意軌跡上特殊點對軌跡的「完備性與純粹性」的影響.
③在與圓錐曲線相關的綜合題中,常藉助於「平面幾何性質」數形結合(如角平分線的雙重身份)、「方程與函數性質」化解析幾何問題為代數問題、「分類討論思想」化整為零分化處理、「求值構造等式、求變數范圍構造不等關系」等等.

熱點內容
教師讀書活動記錄 發布:2025-06-29 16:50:45 瀏覽:654
社政教師 發布:2025-06-29 16:05:54 瀏覽:479
沒有教師資格證可以當老師嗎 發布:2025-06-29 15:39:27 瀏覽:80
一年級班主任工作計劃小學 發布:2025-06-29 12:05:08 瀏覽:959
語文是美麗的 發布:2025-06-29 10:43:39 瀏覽:78
泉州市教師招聘公告 發布:2025-06-29 10:29:35 瀏覽:858
師德專題培訓總結 發布:2025-06-29 10:28:45 瀏覽:974
學考物理試卷 發布:2025-06-29 07:17:27 瀏覽:225
牛肉燉多久熟 發布:2025-06-29 06:34:20 瀏覽:377
樂高的老師一月多少錢 發布:2025-06-29 06:07:28 瀏覽:158