當前位置:首頁 » 語數英語 » 高斯的數學成就

高斯的數學成就

發布時間: 2021-08-17 16:08:23

❶ 高斯的數學成就是什麼

還不到十八歲的高斯發現了:一個正n邊形可以用直尺和圓規畫出當且僅當n是底下兩種形式之一:k=0,1,2……十七世紀時法國數學家費馬(Fermat)以為公式在k=0,1,2,3,……給出素數。(事實上,目前只確定F0,F1,F2,F4是質數,F5不是)。
高斯用代數方法解決了二千多年來的幾何難題,而且找到正十七邊形的直尺與圓規的作法。他是那麼的興奮,因此決定一生研究數學。據說,他還表示希望死後在他的墓碑上能刻上一個正十七邊形,以紀念他少年時最重要的數學發現。
1799年高斯呈上他的博士論文,這論文證明了代數一個重要的定理:任何一元代數方程都有根。這結果數學上稱為「代數基本定理」。
事實上在高斯之間有許多數學家認為已給出了這個結果的證明,可是沒有一個證是嚴密的,高斯是第一個數學家給出嚴密無誤的證明,高斯認為這個定理是很重要的,在他一生中給了一共四個不同的證明。高斯沒有錢印刷他的學位論文,還好費迪南公爵給他錢印刷。
1807年高斯開始在哥廷根大學任數學和天文學教授,並任該校天文台台長。高斯在許多領域都有卓越的建樹。如果說微分幾何是他將數學應用於實際的產物,那麼非歐幾何則是他的純粹數學思維的結晶。他在數論,超幾何級數,復變函數論,橢圓函數論,統計數學,向量分析等方面也都取得了輝煌的成就。高斯關於數論的研究貢獻殊多。他認為「數學是科學之王,數論是數學之王,」。他的工作對後世影響深遠。19世紀德國代數數論有著突飛猛進的發展,是與高斯分不開的。
二十歲時高斯在他的日記上寫,他有許多數學想法出現在腦海中,由於時間不定,因此只能記錄一小部份。幸虧他把研究的成果寫成一本叫《算學研究》,並且在二十四歲時出版,這書是用拉丁文寫,原來有八章,由於錢不夠,只好印七章,這書可以說是數論第一本有系統的著作,高斯第一次介紹「同餘」這個概念

❷ 高斯在數學上最出色的成就是什麼

還不到十八歲的高斯發現了:一個正n邊形可以用直尺和圓規畫出當且僅當n是底下兩種形式之一:k=0,1,2……十七世紀時法國數學家費馬(Fermat)以為公式在k=0,1,2,3,……給出素數。(事實上,目前只確定F0,F1,F2,F4是質數,F5不是)。 高斯用代數方法解決了二千多年來的幾何難題,而且找到正十七邊形的直尺與圓規的作法。他是那麼的興奮,因此決定一生研究數學。據說,他還表示希望死後在他的墓碑上能刻上一個正十七邊形,以紀念他少年時最重要的數學發現。 1799年高斯呈上他的博士論文,這論文證明了代數一個重要的定理:任何一元代數方程都有根。這結果數學上稱為「代數基本定理」。 事實上在高斯之間有許多數學家認為已給出了這個結果的證明,可是沒有一個證是嚴密的,高斯是第一個數學家給出嚴密無誤的證明,高斯認為這個定理是很重要的,在他一生中給了一共四個不同的證明。高斯沒有錢印刷他的學位論文,還好費迪南公爵給他錢印刷。 1807年高斯開始在哥廷根大學任數學和天文學教授,並任該校天文台台長。高斯在許多領域都有卓越的建樹。如果說微分幾何是他將數學應用於實際的產物,那麼非歐幾何則是他的純粹數學思維的結晶。他在數論,超幾何級數,復變函數論,橢圓函數論,統計數學,向量分析等方面也都取得了輝煌的成就。高斯關於數論的研究貢獻殊多。他認為「數學是科學之王,數論是數學之王,」。他的工作對後世影響深遠。19世紀德國代數數論有著突飛猛進的發展,是與高斯分不開的。 二十歲時高斯在他的日記上寫,他有許多數學想法出現在腦海中,由於時間不定,因此只能記錄一小部份。幸虧他把研究的成果寫成一本叫《算學研究》,並且在二十四歲時出版,這書是用拉丁文寫,原來有八章,由於錢不夠,只好印七章,這書可以說是數論第一本有系統的著作,高斯第一次介紹「同餘」這個概念。

❸ 高斯一生有什麼成就

高斯,德國數學家、天文學家、物理學家。1777年生於德意志一個貧苦農民家庭。
高斯是數學史上少有的天才。很多人都認為偉大的科學家和才子都出自書香門第,家裡人可以對他的智力進行較早的開發。可是,高斯的出身卻正好推翻了這一論斷。高斯的祖父是一個朴實的德國農民,父親也以種果樹為生,母親則是一個窮石匠的女兒。由於家貧,他的母親在34歲時才做新娘,而他父親這時已經40歲了。父親根本就沒有指望他能讀書長學問,也根本不可能對他進行早期教育。幸運的是,高斯有一個聰明的舅舅,他是一位心靈手巧的織綢能手,雖然文化不高,但知道許多故事。這位舅舅也十分喜歡高斯,常常通過給他講故事來教育他。
高斯的父親整天忙於自己的事,根本沒有時間照顧小高斯。只要高斯不哭,他就專心算自己的賬。而小高斯則經常在旁邊一聲不響地看父親算賬。有一次,還在牙牙學語的高斯像往常一樣聚精會神地看父親算賬。父親一邊算,一邊直搖頭,算來算去也算不出一個結果來,過了好久,才自言自語地報出一個結果。父親緊縮的眉頭終於舒展了,點上一支煙,深深地吸了一口,一邊准備把答案寫下來。可是小高斯在一旁卻用小手敲擊著桌子,不停地搖頭,向父親示意這個結果是不正確的,然後自己從小嘴中慢慢地說出了一個數字。父親感到十分驚異,兒子還不會說話,怎麼會報數呢?他突然靈感一現,莫不是高斯說的是自己所計算的正確答案。於是,父親抱著好奇的心理,重新進行演算,答案竟然真的和高斯說的一樣,高斯對了!
父親高興極了,逢人便誇自己的兒子還不會說話就會做數學了。此後,高斯的父親發現高斯具有良好的天賦,於是決定全家省吃儉用送他去讀書。
1795年10月,高斯遠離家鄉來到他渴望已久的哥廷根大學深造。很快,那裡豐富的數學藏書深深地吸引了他。
在哥廷根大學的第一年,高斯就用代數方法解決了兩千多年來對正幾邊形用直尺和圓規幾何作圖的世界性難題。同時,他還證明了單用圓規和直尺根本不可能作出正七邊形、正九邊形、正十一邊形、正十三邊形和正十四邊形。也就是說,高斯用一般性的方法歸納證明哪些正多邊形可以用直尺和圓規做出來,哪些做不出來。他的這種思想已經超越他所在時代的方法論水平,具有很高的創意。少年高斯的這一數學思想,將數學的方法論研究帶入了一個新領域。有一天,高斯帶著他正十七邊形可以用幾何作圖的代數證明去找哥廷根大學的數學教授卡斯特請教。高斯說明來意後,卡斯特先是大吃一驚,然後哈哈大笑起來。他根本不相信一個19歲的少年能解決這道兩千多年來的數學難題。
為了讓卡斯特對他的證明感興趣,高斯換了一個說法:「卡斯特教授,我曾經解出過一道十七次方的代數方程。」
「年輕人,別開玩笑了。科學是神聖的,容不得半點虛假。」卡斯特一臉嚴肅地說。
「但這是真的。教授,我把這個十七次方程化簡成了一個低次方程。」高斯冷靜地答道。
「噢,那好吧,讓我看看你的『傑作』吧!」卡斯特略帶懷疑、甚至嘲諷的口氣說道,把高斯的手稿接了過去。
不看則罷,看了之後,卡斯特大吃一驚:這個少年太神奇了,其中的運算推理極其嚴密,看不出半點漏洞。卡斯特馬上讓高斯把證明過程重新整理,然後由他推薦到一家著名數學雜志上去發表。高斯小小的年紀就引起了世界數學界的注意,他自己也對這個發現十分得意。他在日記中寫道:「這是多麼干凈利索、周密漂亮!我死以後,要在墓碑上鐫刻一個正十七邊形,以紀念我在少年時代最偉大的發現!」
高斯是數學領域繼歐幾里德、牛頓、歐拉以後最偉大的數學家,有人稱之為「數學之王」。

❹ 牛頓,高斯,歐拉的主要數學成就是什麼

牛頓的主要抄數學成就襲是和萊布尼茨創立了微積分;高斯是數學史上最偉大的數學家,他所做的成績都是其他數學家無法企及的,非要說最好的成就,恐怕解決了代數基本定理應該算是非常出名了;歐拉的主要成就也就是以他名字命名的歐拉公式了。

❺ 數學家高斯有什麼成就

還不到十八歲的高斯發現了:一個正n邊形可以用直尺和圓規畫出當且僅當n是底下兩種形式之一:k=0,1,2……十七世紀時法國數學家費馬(Fermat)以為公式在k=0,1,2,3,……給出素數。(事實上,目前只確定F0,F1,F2,F4是質數,F5不是)。
高斯用代數方法解決了二千多年來的幾何難題,而且找到正十七邊形的直尺與圓規的作法。他是那麼的興奮,因此決定一生研究數學。據說,他還表示希望死後在他的墓碑上能刻上一個正十七邊形,以紀念他少年時最重要的數學發現。
1799年高斯呈上他的博士論文,這論文證明了代數一個重要的定理:任何一元代數方程都有根。這結果數學上稱為「代數基本定理」。
事實上在高斯之間有許多數學家認為已給出了這個結果的證明,可是沒有一個證是嚴密的,高斯是第一個數學家給出嚴密無誤的證明,高斯認為這個定理是很重要的,在他一生中給了一共四個不同的證明。高斯沒有錢印刷他的學位論文,還好費迪南公爵給他錢印刷。
1807年高斯開始在哥廷根大學任數學和天文學教授,並任該校天文台台長。高斯在許多領域都有卓越的建樹。如果說微分幾何是他將數學應用於實際的產物,那麼非歐幾何則是他的純粹數學思維的結晶。他在數論,超幾何級數,復變函數論,橢圓函數論,統計數學,向量分析等方面也都取得了輝煌的成就。高斯關於數論的研究貢獻殊多。他認為「數學是科學之王,數論是數學之王,」。他的工作對後世影響深遠。19世紀德國代數數論有著突飛猛進的發展,是與高斯分不開的。
二十歲時高斯在他的日記上寫,他有許多數學想法出現在腦海中,由於時間不定,因此只能記錄一小部份。幸虧他把研究的成果寫成一本叫《算學研究》,並且在二十四歲時出版,這書是用拉丁文寫,原來有八章,由於錢不夠,只好印七章,這書可以說是數論第一本有系統的著作,高斯第一次介紹「同餘」這個概念。

❻ 高斯的成就有哪些

在德國流傳著一個關於天才男孩的故事,傳說一個三歲的小孩幫助他的父親糾正了借款賬目中的錯誤。這位天才男孩就是後來有「數學王子」之稱的高斯。

高斯是數學史上一個轉折時期的重要代表人物,他的許多研究成果都具有劃時代的意義。

1777年4月30日,高斯生於德國不倫瑞克的一個工匠家庭,幼時家貧,受人資助才進入學校讀書。16歲時進入哥廷根大學學習,後轉入黑爾姆施泰特大學,1799年獲得博士學位。從1807年起擔任哥廷根大學教授兼哥廷根天文台台長直至逝世。

被稱為天才數學家的高斯,在很小的時候就展現出了極高的數學天賦。上小學的時候,他用很短的時間計算出了對自然數從1到100的求和。他所使用的方法是:對50對構造成和為101的數的求和。同時得到結果:5050。如果說這僅僅是小技巧的話,那麼在他16歲的時候預測到了非歐氏幾何的必然產生,並且還推導出了二項式定理的一般形式,並發展了數學分析的理論,就不得不承認他天才的智慧了。

在進入哥廷根大學的同年,高斯發現了質數分布定理和最小二乘法。接著他又轉入曲面與曲線的計算,並成功得到高斯鍾形曲線,這一曲線在概率計算中大量使用。次年,年僅17歲的他首次用尺規構造出了規則的17角形,為歐氏幾何自古希臘以來做了首次重要的補充。

在1807年的時候,高斯成為了哥廷根大學的教授和當地天文台的台長,於是他開始涉足於小行星的研究,他利用自己創立的三次觀測決定小行星軌道的計算方法,成功計算出了穀神星和智神星的軌道。此後,天文界對小行星軌道的計算幾乎都採用這種方法。

1818年至1826年,高斯領導了漢諾威公國的大地測量工作,他利用測量平差和求解線性方程組的方法,使測量的精度得到了極大的提升。在此期間,他白天測量,夜晚計算,在剛開始的五六年間,他經歷了上百萬次的大地測量數據計算,後來他轉入測量數據的研究和計算,從中推導了由橢圓面向圓球面投影時的公式,這些理論在今天仍有很大的應用價值。

在長期的測量中,他發明了還日光反射儀,可以將光束反射至450公里外的地方。但是要利用日光反射儀進行精確測量就必須解決曲面和投影的理論關系,高斯在這段時間開始了對曲面和投影的理論研究。這方面的研究成果為後來微分幾何的創立奠定了基礎。在非歐氏幾何的研究中,他獨自提出和證明歐氏幾何的平行公設不具有物理的必然性,由於他擔心同時代的人不能理解該理論,最終沒有發表。但後來量子力學證明了他的觀點的正確性。

高斯在數學上的成就十分廣泛,在微分幾何、非歐幾何、超幾何級數、數論以及橢圓函數論等方面均有開創性貢獻,並且在天文學、大地測量學和磁學的研究中引入數學方法,取得巨大的成就。1855年2月23日,79歲的高斯在哥廷根逝世。為了紀念他,哥廷根大學的校園里建立了一個正17邊形台座的高斯雕像。

❼ 高斯少年時期有哪些數學上的成就

被稱為天才數學家的高斯,在很小的時候就展現出了極高的數學天賦。上小學的時候,他用很短的時間計算出了對自然數從1到100的求和。他所使用的方法是:對50對構造成和為101的數的求和。同時得到結果:5050。如果說這僅僅是小技巧的話,那麼在他16歲的時候預測到了非歐氏幾何的必然產生,並且還推導出了二項式定理的一般形式,並發展了數學分析的理論,就不得不承認他天才的智慧了。

❽ 高斯在數學上有哪些成就

高斯在數學上的成就十分廣泛,在微分幾何、非歐幾何、超幾何級數、數論以及橢圓函數論等方面均有開創性貢獻,並且在天文學、大地測量學和磁學的研究中引入數學方法,取得巨大的成就。

❾ 大數學家高斯在數學方面的主要成就是什麼

一個正n邊形可以用直尺和圓規畫出當且僅當n是底下兩種形式之一:k=0,1,2……十七世紀時法國數學家費馬(Fermat)以為公式在k=0,1,2,3,……給出素數。(事實上,目前只確定F0,F1,F2,F4是質數,F5不是)。

高斯用代數方法解決了二千多年來的幾何難題,而且找到正十七邊形的直尺與圓規的作法。他是那麼的興奮,因此決定一生研究數學。據說,他還表示希望死後在他的墓碑上能刻上一個正十七邊形,以紀念他少年時最重要的數學發現。

高斯總結了復數的應用

並且嚴格證明了每一個n階的代數方程必有n個實數或者復數解。在他的第一本著名的著作《算術研究》中,做出了二次互反律的證明,成為數論繼續發展的重要基礎。在這部著作的第一章,導出了三角形全等定理的概念。高斯在最小二乘法基礎上創立的測量平差理論的幫助下,測算天體的運行軌跡。他用這種方法,測算出了小行星穀神星的運行軌跡。

以上內容參考:網路-高斯

❿ 高斯有什麼成就

高斯是德國數學家、天文學家和物理學家,被譽為歷史上偉大的數學家之一,和阿基米德、牛頓並列,同享盛名。

高斯1777年4月30日生於不倫瑞克的一個工匠家庭,1855年2月23日卒於格丁根。幼時家境貧困,但聰敏異常,受一貴族資助才進學校受教育。1795~1798年在格丁根大學學習1798年轉入黑爾姆施泰特大學,翌年因證明代數基本定理獲博士學位。從1807年起擔任格丁根大學教授兼格丁根天文台台長直至逝世。

高斯的成就遍及數學的各個領域,在數論、非歐幾何、微分幾何、超幾何級數、復變函數論以及橢圓函數論等方面均有開創性貢獻。他十分注重數學的應用,並且在對天文學、大地測量學和磁學的研究中也偏重於用數學方法進行研究。

熱點內容
數學拼搭教案 發布:2025-05-23 15:08:28 瀏覽:565
必修一生物課本 發布:2025-05-23 13:00:54 瀏覽:845
小學五年級語文期中測試卷 發布:2025-05-23 11:13:10 瀏覽:478
小學英語教師個人述職報告 發布:2025-05-23 09:09:51 瀏覽:731
戀足師生 發布:2025-05-23 07:40:50 瀏覽:880
德宏州歷史 發布:2025-05-23 04:10:49 瀏覽:944
化學式hf 發布:2025-05-23 03:35:36 瀏覽:858
零基礎學b超視頻教學 發布:2025-05-23 02:08:22 瀏覽:876
高一歷史期末試題 發布:2025-05-22 23:46:40 瀏覽:782
學美術賺錢 發布:2025-05-22 22:37:49 瀏覽:740