小學數學筆算
Ⅰ 小學數學簡便計算公式
總結了小學數學的計算公式,及其靈活運用,簡便計算技巧。
①加法
加法交換律:a+b=b+a;
加法結合律:a+b+c=a+(b+c)=(a+b)+c;
②減法
a-b=-(b-a)
a-b-c=a-(b+c)
減法有一個口訣:加括弧,變符號。
③乘法
乘法交換律:a x b=b x a;
乘法結合律:a x b x c=a x (b x c);
乘法分配律:a x (b±c)=a x b±a x c;
小學數學試題中常考的一種題型-計算復雜數式。
經常就會用到乘法分配律,來提取公因數,簡化計算。
【例1】計算:7.19x1.36+3.13x2.81+1.77x7.19
分析:這道題就是加法結合律,乘法交換律,乘法分配律的綜合運用。
7.19x1.36+3.13x2.81+1.77x7.19
=7.19x(1.36+1.77)+3.13x2.81
=7.19x3.13+3.13x2.81
=(7.19+2.81)x3.13
=10x3.13
=31.3
④除法
a÷b÷c=a÷(b x c)(b,c不等於0);
a x b÷c=a÷cxb(c不等於0);
以上公式是解四則運算題目的基本關系式。
靈活學習,靈活運用。
它們除了正著用,有時候還得會倒著用。
【例2】計算:47.9x6.6+529x0.34;
分析:6.6+3.4=10,能不能想辦法把湊出一個3.4,然後讓3.4和6.6相加?
47.9x6.6+529x0.34
=47.9x6.6+529÷10x10x0.34
=47.9x6.6+52.9x3.4(3.4已經湊出來了)
=47.9x6.6+(47.9+5)x3.4
=47.9x6.6+47.9x3.4+5x3.4(6.6+3.4也湊出來了)
=47.9x(6.6+3.4)+17
=496
注意:例2題目中我們將乘法分配律倒著使用。
52.9x3.4=(47.9+5)x3.4=47.9x3.4+5x3.4
除此之外還用到了一個特別的公式。
529x0.34=529÷10x10x0.34
這個公式總結出來,即:
a x b=a÷c x c x b(c不等於0)。
Ⅱ 小學一年級數學筆算題
282+2=
123+28=
891+12=
19+21=
28+9=
6+5= 55-50= 26-6= 8+3= 24-4= 7+70= 2+80=
12-7= 30+2= 50+50= 20+30=
98-40= 66-6= 80-30= 60+10=
70+30 -40= 43-3+20= 100-50-10= 40+2=
18-9= 3+42= 19-6= 7+27=
38-8= 12+6= 45+60= 90-20=
48-8= 82+3= 8+30= 4+24=
30+8= 50-20= 15-9-3= 9+7-8=
14-7+8= 10-5+5= 2+5+9= 70-20+9=
90+7-60= 10+2-3= 88-8-80= 13-9=
16-9= 15-9= 17-9= 12-9=
18-9= 11-9= 14-9= 17-9=
16-9= 19-9= 9+6= 8+9=
14-9+7= 15-9-5= 6+7-9= 13-9+8=
17-9= 5+9= 9+8= 3+9=
9+6= 14-9= 17-9= 7+5=
8+4= 8+8= 12-7= 12-8=
16-8= 14-7= 17-8= 13-7=
12-8= 16-7= 15-8= 17-7=
11-7= 13-8= 18-8= 11-8=
12-7= 13-7= 12-8= 11-9=
4+2= 8-3= 3+6= 9-4=
40+20= 80-30= 30+60= 90-40=
10+3= 7+30= 5+70= 2+10=
30+7= 70+5= 12-2= 37-7=
75-5= 12-10= 37-30= 75-70=
70+4= 46-6= 33-30= 17-7=
58-50= 9+60= 20+5= 50+1=
30+5= 30+6= 70+3= 21+70=
46+20= 30+14= 21+7= 46+2=
3+14= 41+7= 30+28= 46+2=
46+20= 3+55= 53+5= 46+3=
6+62= 19+70= 4+32= 50+49=
63+6= 30+28= 40+12= 45+4=
33+40= 56+30= 3+34= 38+20=
20+38= 3+56= 20+78= 25+30=
25+30= 25+3= 31+23= 54-30=
68-40= 93-20= 39-20= 77-40=
67-30= 68-20= 48-3= 59-30=
69-40= 75-3= 75+3= 26-4=
85-70= 46-6= 73-50= 87-4=
99-7= 56-3= 72-20= 27-7=
95-70= 44-30= 58-40= 48-3=
48-30= 57-6= 47-6= 59-30=
69-40= 75-3= 75+4= 56-30=
34-3= 87-6= 74-2= 78-60=
34-30= 78-6= 74+2= 75-3=
88-5= 56-4= 89-7= 46-20=
69-40= 47-3= 38-7= 84-4=
63-60= 49-4= 94-70= 39-3=
71-30= 57-30= 49-5= 97-60=
47-3= 78-20= 47-5= 48-5=
32-30= 65-4= 53-50= 68-5=
47-4= 74-20= 86-5= 74-3=
75-30= 68-50= 47-30= 75-40=
86-50= 74-30= 74-50= 57-30=
28-6= 47-3= 98-20= 89-60=
39-8= 43-30= 38-20= 12+45=
36+23= 87+35= 65+24= 42+40=
78+35= 64+32= 32+53= 67-42=
68-5= 4+23= 35+42= 43+54=
67-37= 78-46= 45+32= 76-56=
74-30= 35-32= 38-7= 26+63=
69-7= 5+74= 63-41= 54-42=
38-11= 75+4= 46+30= 20+69=
75-4= 46-30= 69-20= 32+37=
4+65= 57-35= 88-63= 58+20=
78-5= 87-40= 76-3= 76-30=
4+35= 35+4= 42+40= 3+56=
24+8= 36+5= 6+4= 5+8=
9+7= 26+4= 5+38= 9+17=
46+4= 5+48= 9+37= 8+35=
14+6= 35+3= 2+46= 24+4=
35+5= 4+46= 26+3= 35+7=
6+46= 28+4= 36+5= 47+2=
7+52= 36+50= 47+7= 7+25=
37+8= 63+6= 4+58= 28+20=
42+9= 7+76= 89+2= 8+15=
46+30= 28+5= 34+6= 56+40=
3+29= 35+3= 2+46= 24+4=
5+26+32= 180-69= 86-52+9= 78-6+1= 60-50+20=
70+30 -40= 43-3+20= 100-50-10= 40+2= 50-23=
20+65-20= 80-10+20= 10+2-3= 88-8-80= 10+10+30=
14-7+8= 10-5+5= 2+5+9= 70-20+9=
90+7-60= 10+2-3= 88-8-80= 13-9=
2.豎式計算(40分)
8 9 7 6 4 6
+ 5 + 8 +5 +19 +25 +56
------- ______ ----- -------- ------- ------
7 96 98 32 45 70
+34 +4 -19 -28 -29 -35
-------- ------- ------ ------- ------ ------
81 62 45 77 45 27
-80 -34 -5 -69 -37 -17
------ ------ ------- ------ ------ -------
8 6
_ ( )( )
__________
2 6
20( )
- 16
_______
4
一、如何把握「可愛的校園」教學要求?
這是剛入學兒童的第一節認識10以內數的准備課,目的是通過學生數數的活動,了解學生觀察情景圖與數數的能力,以便為學生後續學習10以內數的數學符號做一些准備。因此,本課時的教學要求主要是能說清楚圖上有些什麼動物、能用數數的方法說一說動物的個數、以及引導學生有序觀察與數數的方法。
在組織教學活動時,建議教師首先把學生帶到校園內,讓學生邊看邊說找到了哪些「數」,如:「我們學校有3棵樹、4層樓等」。後半堂課,再回到教室出示情景圖,讓學生看看動物的學校里有哪些「數」?和我們學校的「數」有哪些不一樣?觀察情景圖時,由於各種信息的量較大,學生要說清楚圖中有些什麼?也需要有一個逐步引導的過程。建議教師為學生提供充分的機會來說圖中有些什麼。如「圖中有大象」、「圖中有小熊」等,這是學生數數的基礎。
在學生說的過程中應引導學生能用數描述信息。在學生交流校園和圖中信息的基礎上,教師可以引導學生用數的形式來描述圖中的信息。如「校園中有樹,那麼樹有幾棵呢?」「圖中有小熊,那麼小熊有幾只呢?」這樣,學生要回答上述的問題,就需要對圖中的小動物進行數數。在學生數數的過程中,可能有些學生會漏數、或者多數,學生出現這種現象是十分地正常,課堂上可以讓學生再數一數,從中糾正數數中的錯誤。
在說的過程中還要指導觀察的方法,因為信息呈現一般是不規則的,學生數數就需要會上下、左右地觀察,這些都要教師在學生數數中加以指導。
在鞏固性的練習中,有的老師採用「從學生的身體上找數」的教學處理方式,這對學生認識數將有較好的幫助。因為,剛入學的學生對數數是有一定生活經驗的,通過數身體上的數,使剛入學的兒童對數學產生親切感。
在本課中,通過上述的一些活動,教師能了解學生已有的認數基礎,以便為後續的學習設置良好的起點。因此,本課時主要以師生的語言交流為主,一般不出現抽象的數字元號。
二、教學「10以內數」、「20以內數」時,大部分學生都已認識這些數並會用實物數數,教學中如何把握課堂活動的重點?
現在的一年級學生,由於大部分都接受過學前的教育與家庭教育,因此,他們認識10以內的數與20以內的數也是十分正常,這也為設置課堂教學的起點創造了良好的基礎。但具有關的研究表明,現在很多學生認識數的符號與理解符號的意義之間仍存在著較大的不協調,學生之間的基礎也很不一樣。一些學生能直接數數與讀數,但卻不會很清晰解釋數的意義。因此,在教學活動中,針對學生現有的認知狀態,教師應把重點放在數的意義理解上,特別是20以內數的認識,應重點放在十進位值制的初步建立上。
如20以內數的認識,可以直接出示一些十幾的數,讓學生直接讀一讀。然後再請學生用學具擺一擺這些數,通過擺的過程,讓學生知道十幾的數就是「一個十與幾個一」組成的。學生的頭腦中有了這些數的圖象,那麼他們今後看到數就會想到圖象,這對學生建立位值觀將有較大的幫助。
三、比較物體輕重為什麼不直接告訴學生「稱」的方法,而要經歷「看」、「掂」、「稱」的過程?
本部分內容的教學目的是通過多種多樣的活動體驗,幫助學生建立起對質量的直觀感受。學生比較物體的輕重是需要豐富的直接經驗來做支撐的,單純「稱」只能告訴學生一個抽象的結果,並不能直觀地讓學生感受到到底誰重誰輕。所以,「說一說」、「掂一掂」等活動都是幫助學生建立對物體輕重直觀感覺與判斷物體輕重關系的重要方法。教材中之所以安排這些內容的目的,有幾個方面的思考:一是在活動中讓學生感知物體的質量,建立物體間輕重的經驗。二是通過一系列的活動,讓學生懂得比較物體間輕重的方法是多樣的;三是滲透根據比較物體對象的實際情況,靈活運用不同比較方法的思想;
如在「說一說」的內容中,由於學生已有一些判斷兩個物體輕重的經驗,所以他們可以利用原有的經驗直接判斷兩個物體誰輕誰重。在這一活動中,既應充分利用學生的原有經驗進行判斷,同時又需要引導學生用規范的語言敘述兩個物體的輕重。如根據蹺蹺板的圖示,學生敘述的語言往往是「小熊重」或「小猴輕」,這是不夠規范的判斷語言,這時教師就應指導學生說「小熊的體重比小猴重」或「小猴的體重比小熊輕。」在「掂一掂」的活動中,主要是讓學生知道當兩個或多個物體之間的輕重關系不明顯,也無法藉助參照物進行判斷時,就需要選擇「掂」的方法。同時,在學生掂的過程中,還有相當重要的作用,即幫助學生逐步建立物體間輕重的經驗,這對學生今後判斷物體間的輕重將有重要的影響。而「稱一稱」的方法主要是兩個物體用「掂」的方法還不能進行判斷,這時,「稱」則「稱」就成為了一個必需的方法。
所以,教材中安排的三組問題情景,各有不同的側重點,學生在這些活動中,既能感受判斷物體輕重的不同方法,又能加深對物體間輕重含義的真正體會。
Ⅲ 小學數學所有計演算法則。
對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?
一、重視課內聽講,課後及時進行復習.
新知識的接受和數學能力的培養主要是在課堂上進行的,所以我們必須特別注意課堂學習的效率,尋找正確的學習方法.在課堂上,我們必須遵循教師的思想,積極制定以下步驟,思考和預測解決問題的思想與教師之間的差異.特別是,我們必須了解基本知識和基本學習技能,並及時審查它們以避免疑慮.首先,在進行各種練習之前,我們必須記住教師的知識點,正確理解各種公式的推理過程,並試著記住而不是採用"不確定的書籍閱讀".勤於思考,對於一些問題試著用大腦去思考,認真分析問題,嘗試自己解決問題.
二、多做習題,養成解決問題的好習慣.
如果你想學好數學,你需要提出更多問題,熟悉各種問題的解決問題的想法.首先,我們先從課本的題目為標准,反復練習基本知識,然後找一些課外活動,幫助開拓思路練習,提高自己的分析和掌握解決的規律.對於一些易於查找的問題,您可以准備一個用於收集的錯題本,編寫自己的想法來解決問題,在日常養成解決問題的好習慣.學會讓自己高度集中精力,使大腦興奮,快速思考,進入最佳狀態並在考試中自由使用.
三、調整心態並正確對待考試.
首先,主要的重點應放在基礎、基本技能、基本方法,因為大多數測試出於基本問題,較難的題目也是出自於基本.所以只有調整學習的心態,盡量讓自己用一個清楚的頭腦去解決問題,就沒有太難的題目.考試前要多對習題進行演練,開闊思路,在保證真確的前提下提高做題的速度.對於簡單的基礎題目要拿出二十分的把握去做;難得題目要盡量去做對,使自己的水平能正常或者超常發揮.
由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.
Ⅳ 小學數學計算題50道
45(1-x)=40 x=0.11 實際節約百分之11480(1-x)=480-60 x=0.125 實際用電節版省百分之12.5400(1+x)=250+230 x=0.2 實際超額完成計劃百分之204.5. 48(1+x)=75 x=0.5625 多百分之56.256. (100-25)/100=0.75 發芽權率為百分之758. 4.2(1-x)=4.2-0.4 x=0.095 多捐百分之9.59. 90/(100/0.8)=0.72 實際7.2折售出10. (600-4*50)/5=80 每天吃80千克。。。。。。太多了啊孩子。只能幫你到這了
Ⅳ 小學階段的所有數學計算公式
1 每份數×份數=總數
總數÷每份數=份數
總數÷份數=每份數
2 1倍數×倍數=幾倍數
幾倍數÷1倍數=倍數
幾倍數÷倍數=1倍數
3 速度×時間=路程
路程÷速度=時間
路程÷時間=速度
4 單價×數量=總價
總價÷單價=數量
總價÷數量=單價
5 工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率
6 加數+加數=和
和-一個加數=另一個加數
7 被減數-減數=差
被減數-差=減數
差+減數=被減數
8 因數×因數=積
積÷一個因數=另一個因數
9 被除數÷除數=商
被除數÷商=除數
商×除數=被除數
小學數學圖形計算公式
1 正方形
C周長 S面積 a邊長
周長=邊長×4
C=4a
面積=邊長×邊長
S=a×a
2 正方體
V:體積 a:棱長
表面積=棱長×棱長×6
S表=a×a×6
體積=棱長×棱長×棱長
V=a×a×a
3 長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1=
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)(只能想這么多了,如果不夠,也沒辦法……)
Ⅵ 小學數學三年級下冊,十道筆算題
36+64= 36÷3= 666÷3= 0×=
68-35= 56+42= 25÷5= 270÷9=
96÷6= 20×4= 25×4= 120÷6=
25÷3= 10×8= 420÷7= 40×9=
36×30= 24+38= 12×5= 50×40=
87+23= 488÷8= 26×11= 52+28=
320+140= 300÷6= 12×4= 8÷8=
90×9= 10×5= 0×59= 12×40=
1.4-0.5= 10÷5= 7.2-3.6= 80×2=
4.4+2.1= 30÷5= 15×3= 20×3=
2.3+0.6= 1.8+0.7= 13×20= 59×0=
90×4= 80÷4= 1.7-0.9= 2.8+2.7=
30×5= 620-420= 707÷7= 80-25=
5×80= 20×40= 60×20 50×3=
(40÷8)= 20×20= 63÷7= 90÷3=
3×2= 41+39= 3÷3= 9+27=
69+12= 30÷3= 8÷2= 1×6=
90÷2= 42÷7= 32÷4= 80÷2=
9×7= 16÷8= 10÷2= 5×5=
40÷8= 10÷5= 56÷8= 35÷5=
40÷5= 370+80= 9÷9= 490÷7=
72+28= 470-70= 16÷4= 8×3=
790+40= 30×12= 37+23= 310-70=
12×3= 24÷4= 290+70= 24×2=
9+6= 410+30= 31×5= 9×6=
750-70= 12×6= 12÷6= 90-67=
18×21≈ 87+12= 170+90= 11×19≈
42+39= 100+30= 121÷3≈ 14÷7=
400+40= 302÷3≈ 75-37= 70+600=
419÷7≈ 903÷3= 12×3= 250÷5=
60×80= 15×40= 30×50= 59×60≈
22×30= 21×60≈ 39×70≈ 207×3=
700÷9≈ 640÷9≈ 50×3= 0.3+0.4=
40×20= 60×10= 41×70= 15×40=
70×90= 12×40= 45×20= 35×20=
40×20= 30×12= 21×30= 180÷6=
560÷7= 60×80= 15×40= 30×50=
22×30= 21×60≈ 39×70≈ 59×60≈
1600÷4= 99÷9= 2.3+0.6= 1.4-0.5=
50×3= 347+90= 0.3+0.4= 999÷9=
150÷3= 70×90= 40×20= 60×11=
70×90= 12×40= 45×20= 35×20=
40×20= 30×12= 21×30= 366÷6=
446÷2= 284÷2= 125-25= 810÷9=
560÷7= 60×90= 16×5= 3.9-0.6=
430-70= 270+300= 9.8-3.9 30+700=
11×80= 0.7+0.8= 1.7+2.6= 8.5-5.8=
18.2-12.1= 4.2+2.9= 500×7= 900×4=
3.6-0.8= 95-0.5= 35÷6= 13.1-4.6=
1.7-0.8= 1.5-0.4= 6.1+9.5= 0.3+0.9= 3.4+4.8=
30×90= 0.5+0.8= 2700÷9=
420÷6= 95÷5= 305÷5= 408÷8=
6300÷9= 42×30= 97+0.6= 650+90=
78.3-0= 34×0= 73-29= 37×0=
720÷9×5= 986÷2= 401+99= 130÷3≈
550÷7≈ 118÷6≈ 24×37≈ 87×21≈
47×58≈ 0÷75= 90×9×0= 60÷3-2=
20+5×4= 750-50= 40÷5= 60÷2=
660÷6= 555÷5= 780÷2= 720+67=
903÷3= 12×3= 250÷5= 632+99=
560÷7= 60×80= 15×40= 30×50=
20×30= 21×60≈ 39×70≈ 59×60≈
207+3= 600÷2= 304×3= 35÷7=
120÷4 700÷9≈ 126÷4≈ 640÷9≈
15÷7≈ 99÷9= 2.3+0.6= 1.4-0.5=
50×3= 341+59= 0.3+0.4= 3.1-1.3=
900÷9= 150÷3= 70×90= 180÷6=
400÷2= 60×11= 41×70= 15×40=
70×90= 12×40= 45×20= 35×20=
40×20= 30×12= 21×30= 366÷6=
446÷2= 284÷2= 40-25= 735-199=
810÷9= 700-50= 30÷5= 60÷6=
369÷3= 22×19≈ 446÷2= 30×5=
305×4= 213×4= 404×7= 501×7=
210×3= 56÷7= 45÷9= 55÷6≈
250÷4 ≈ 43÷6 ≈ 13÷4 ≈ 99×23≈
69×12 ≈ 26÷5 ≈ 36÷3= 55÷5=
82÷2= 52÷4= 76÷2= 33÷3=
206÷2= 484÷4= 122÷2= 300÷5=
1500÷5= 2800÷7= 900÷5= 909÷3=
三年級數學計算
一、直接寫出得數:(共20分)
300×30 = 24×10 = 12×200 = 22×20 =
18×20 = (50+25)×2= 39÷6 = 140×20=
22÷3= 0×99+1= 1000-1= 500+800=
105×9= 60×70 = 245-155= 13×11=
510-203= 804×4= 390÷3= 2500÷5=
47+253= 101+89= 50-0÷25= 61÷7=
721÷7= 800-425= 234×2= 8100÷9=
228+45 = 148÷2 = 24+180 = 51×10 =
99+0= 100-0×0= 60¬¬-50×0= 0×(0÷27)=
4÷3 = 6÷1×100= 4×25= 8×125=
二、估算下面各題: (共12分)
124÷3 223÷4 192÷6 19×22
40×31 72×39 570÷8 98÷4
48×51 92×78 56×99 24×35
三、列豎式計算。(要求驗算的題目要驗算,共68分)
1095-796 = 489+521= 680÷4=
59×64 = 89×46 = 45×36 =
43×87 = 832÷4 = 426÷7 =
88×45 = 26×18 = 262÷6 =
517÷5= 680÷4= 757÷9=
39×28 = 924÷5 =
Ⅶ 小學數學筆算與乘法怎麼教
計算是我國小學數學教學的重要內容,它貫穿小學數學教學的始終,無論是數學概念的形成、數學結論的獲得、還是數學問題的解決等都依賴於計算活動的參與。新的《數學課程標准》對計算教學在目標定位上提出了新要求,更注重讓學生體驗計算在生活中的意義,並能運用數學計算解決實際問題,使學生切身感受到數學就在身邊,真正體驗到學習數學的價值。而今,學生計算能力不盡人意,究其原因,需要先從影響學生計算的心理因素談起。
l 影響學生計算的心理因素
影響學生計算的心理因素主要有:感知粗略、注意失調、記憶還原、表象模糊、情感脆弱、強信息干擾、思維定勢副作用等方面。
以口算為例加以說明——
1、感知粗略
要進行口算,首先必須通過學生的感覺器官來感知數據和符號組成的算式。小學生感知事物的特點是比較籠統、粗糙、不具體,往往只注意到一些孤立的現象,看不出事物的聯系及特徵,因而頭腦中留下的印象缺乏整體性。而口算題本身無情節,外顯形式單調,不易引發興趣。因此,學生口算時,往往只感知數據、符號的本身而較少考慮其意義,對相似、相近的數據或符號容易產生感知失真,造成差錯。如一些學生常把「+」看作「×」,把「÷」看作是「+」,把「56」寫成「65」,把「109」當成「169」等等。
2、 注意失調。
注意是心理活動對一定對象的指向與集中。注意的不穩定和較差的分配能力是產生口算差錯的重要心理因素。小學生注意不穩定,不持久,不容易分配,注意的范圍不廣,易被無關因素吸引而出現「分心」現象。在口算過程中,需要經常注意或把注意同時分配在不同的對象上。由於小學生注意力所顧及的面不廣,要求他們在同一時間內,把注意分配到兩個或兩個以上的對象時,往往顧此失彼,丟三落四。例如單獨口算6×8和48+7等口算題,大部分學生能算準確,而把兩題合起來時,算6×8+7,學生往往得45,忘記進位而造成差錯。
3、記憶還原。
記憶的目的不僅是信息的貯存,更重要的是能准確地提取。學生貯存信息的過程中,由於生理、時間、復習量等多種因素的影響,使得貯存的信息消失或暫時中斷,從而丟頭忘尾,造成「遺忘性差錯」。特別是連加、連減、進位加、退位減、連乘、連除等口算題,瞬時記憶量較大,如口算28×3時,要求學生能暫時記住每一步口算的結果,即20×3=60,8×3=24,並在腦中口算出60+24=84。而這類口算題出錯的原因,主要是中間得數的貯存與提取不完整或遺忘所致。
4、表象模糊
表象是感知向思維過渡的橋梁。從運算形式看,小學生的口算是從直觀感知過渡到表象運算,再到抽象運算。從小學生的思維特點看,其思維帶有很大的具體形象性,表象常成為其思維的憑借物。特別是低年級兒童,常因口算方法的表象不清晰而產生差錯。如一些一年級學生口算7+6、8+5等進位加法時,頭腦中對「分解」→「湊十」→「合並」的表象模糊,想像不出「湊十法」的具體過程,因而出現差錯。
5、情感脆弱
口算時,學生都希望很快算出結果。有些學生在做口算題時候,由於存在急於求成的心理,當數目小、算式簡單時,易生「輕敵」思想;而當數目大、計算復雜時,又表現出不耐心,產生厭煩情緒。口算時,一些學生常不能全面精細地看題,認真耐心地分析,更不能正確合理地選擇口算方法,進而養成題目未看清就匆匆動筆、做完不檢查等陋習。
6、強信息干擾
小學生的視、聽知覺是有選擇性的,所接受信息的強弱程度影響他們的思考。強化了的信息在學生的頭腦中留下了深刻的印象,如同數想減得0,0和1在計算中的特性,25×4=100,125×8=1000等等。這種強信息首先映入眼簾,容易掩蓋其它信息。如口算18-18÷3,學生並非不懂得「先乘除後加減」的順序,而是被「同數相減等於0」這一強信息所干擾,一些學生首先想到18-18=0,而忽視了運算順序,錯誤地口算成18-18÷3=0。
7、思維定勢負作用
定勢是思維的一種「慣性」,是一定心理活動所形成的准備狀態。這種准備狀態可以決定同類後繼活動的某種趨勢。在540÷60、450÷90、360÷40等題之後夾一道300-50,很多學生往往錯算成300-50=6。
l 正確處理計算教學中的四種關系
當前計算教學中,要想上好一節計算課,就必須處理好以下四個方面的關系:創設情境與復習鋪墊的關系、演算法多樣化與演算法優化的關系、算理直觀與演算法抽象的關系、形成技能與解決問題的關系。
一、正確處理創設情境與復習鋪墊的關系
現在的計算教學幾乎不見了傳統教學中的復習鋪墊,取而代之的是——情境創設。因此,很多計算課都創設生活情景,常常是創設「買東西」 或者是「逛商場」的情境,硬要從生活中得到一些數據用來計算或者一定要聯系生活,難道這就是新課標的理念嗎?
建構主義學習理論認為,學習總是與一定的社會文化背景即「情境」相聯系的,在實際情境下進行學習,有利於意義建構。的確,良好的問題情境能有效地激活學生的有關經驗和體驗。新課標也非常強調,計算教學時「應通過解決實際問題進一步培養數感,增進學生對運算意義的理解」「應使學生經歷從實際問題中抽象出數量關系,並運用所學知識解決問題的過程」「避免將運算與應用割裂開來」。然而,任何事物都不是絕對的。因為數學的來源,一是來自數學外部現實社會的發展需要;二是來自數學內部的矛盾,即數學本身發展的需要。這兩方面的來源都可能成為我們展開教學的背景。
例如「負數」的教學,傳統的教材中很少 出現在小學教學,現在課程標准規定在小學階段要引進負數。現實生活中存在著大量的具有相反意義的量,可以作為揭示負數的素材;同時,從數學本身出發,為了解決諸如「2-3」不夠減的矛盾,需要引進一種新的數,也同樣是小學生易於感知的問題情境。這里,選擇兩種角度之一引進都是可取的。
【案例】內容:新課標人教版第九冊小數乘整數和小數除以整數
【方法一】引入一個買風箏的生活情景。一個風箏3.5元,買3個這樣的風箏要多少元?在教小數除以整數時也出現了王鵬早鍛練的生活情景。用學生感興趣的事引入教學,在完成計算教學的目標的同時也教學了解決諸如單價×數量=總價,路程÷時間=速度等應用題,正所謂「一箭雙雕」。
【方法二】在教學這兩個內容的教學中用舊知識的遷移,在新授前作一個復習整數乘除法計算的鋪墊,通過對比練習,學生掌握積的小數點如何確定,商的小數點要和被除數的小數點對齊。這才是這節計算方法的重中之重。
【思考】方法一其目的是讓學生在解決實際生活中的問題,通過單位的轉化理解算理,這是可取的,也是現實的,無可非議。但一節課下來,學生究竟能兼顧多少?方法二的復習鋪墊是有必要的。試問有些學生連整數的乘除法都不過關,又豈能談小數的乘除法呢?為什麼會連整數的乘除法也不過關呢?新課標對學生的計算要求不高,又加上計算器的加入教學,有些老師的認識不夠,日積月累,學生的計算能力不強,事實證明有時候鋪墊時有必要的。但常常有的老師走進了誤區,為了使教學更順暢,設計了一些過渡性、暗示性問題,給學生設置了一條狹隘的思維通道,使得學生無需探究就可以得出結論。這樣的一個鋪墊,無疑成了抹殺學生廣闊思維的一筆。這些都是教師在選擇用情景導入還是復習導入要考慮和注意的問題。
可見,創設情境和復習鋪墊並不是對立的,不是所有的計算教學都必須從生活中找「原型」,選擇怎樣的引入方式取決於計算教學的內容特點和學生的學習起點。
二、正確處理演算法多樣化與演算法優化的關系
新課標在「基本理念」中指出「由於學生所處的文化環境、家庭背景和自身思維方式的不同,學生的數學學習活動應當是一個生動活潑的、主動的和富有個性的過程。」在第一學段「內容標准」中說:「應重視口算,加強估算,提倡演算法多樣化。」在第一學段「教學建議」中再次指出:「由於學生生活背景和思考角度不同,所使用的方法必然是多樣的,教師應尊重學生的想法,鼓勵學生獨立思考,提倡計算方法的多樣化。」
「演算法多樣化」是新課程改革初期的熱門詞語。
數學課程改革實施的初期,大家對「演算法多樣化」感覺很新鮮,計算教學一改過去「教材選定演算法——教師講解演算法——學生模仿演算法——練習強化演算法」的機械模式,出現了非常可喜的變化,「演算法多樣化」已成為計算教學最顯明的特徵。
【案例】 「兩位數乘法」的教學片斷:
首先,教師通過問題情境:一箱汽水24瓶,18箱汽水有多少瓶?先讓學生估計一下大約有多少瓶,然後列出式子24×18,設法算出結果。經過老師的精心「引導」,出現了多樣化的演算法,老師花了將近一節課的時間進行了展示:
(1)24×10+24×8=432
(2)20×18+4×18=432
(3) 24×20-24×2=432
(4) 24×2×9=432
(5) 24×3×6=432
(6) 18×4×6=432
(7) 18×3×8=432
(8)24+24+24+24+……+24=432(18個24相加)
(9)18+18+18+18+……+18=432(24個18相加)
還有些同學用了豎式計算出結果。最後,老師說「你們喜歡用什麼樣的演算法就用什麼樣的演算法。」課後交流時,老師認為「現在計算教學一定要演算法多樣化,演算法越多越能體現課改精神。」通過詢問課堂上想出第八、九種演算法的學生:「你真是這樣算的嗎?」學生說:「我才不願意用這種笨方法呢!是老師課前吩咐我這么說的。」連續問了好幾個學生,竟沒有一個學生用這種逐個加的方法。那麼前面的幾種演算法真是學生自己想出來的嗎?
第8、9種方法有哪個學生願意用這種笨方法呢!在乘法的初步認識時已經知道了乘法的意義:求幾個相同加數的和的簡便計算。那麼第8、9種的方法完全沒必要在這節課中展示出來。其實學生用第1、2種方法就完全能明白兩位數乘法的算理,列豎式不就更簡單了嗎?
【思考】上述案例反映了在計算教學中少數老師對演算法多樣和演算法優化這對基本矛盾的認識模糊。演算法多樣化應是一種態度,是一個過程,它的本意是指群體中不同個體間的方法的多樣化,而不是指每一個體的方法多要多樣化,不要求學生對同一計算掌握多種演算法。演算法多樣化的本質是要尊重學生的不同想法,鼓勵學生獨立思考、嘗試創新,而不是千篇一律。演算法多樣化不是教學的最終目的,不能片面追求形式化。老師不必煞費苦心「索要」多樣化的演算法,也不必為了體現多樣化,刻意引導學生尋求「低思維層次演算法」。即使有時是教材編排的演算法,但在實際教學中學生中沒有出現,即學生已經超越了的「低思維層次演算法」,教師可以不再出示,沒有必要走回頭路。
在如何更有效地處理演算法多樣與演算法優化這對矛盾上,我們應該進行更深層次的思考。以學生思維憑借的依據來看,可以分為基於動作的思維、基於形象的思維和基於符號與邏輯的思維。顯然這三種思維並不在同一層次上,不在同一層次上的演算法就應該提倡優化,而且必須優化,只是優化的過程應是學生不斷體驗與感悟的過程,而不是教師強制規定和主觀臆斷的過程,應讓學生逐步找到適合自己的最優演算法。具體體現在
1、計算方法的優化。
演算法的優化是讓學生在群體比較的過程中優化,在個體感悟的前提下實施優化。因為優化是學生對知識結構的再構建過程,是發自學生內心的行為和自主的活動。正如葉瀾教授所說「沒有聚焦的發散是沒有價值的,聚焦的目的是為了促進學生發展。」演算法優化是學生個體的學習、體驗與感悟的過程,不是群體或教師的優化。對於個體而言,是個體對原有的計算方法進行優化的過程,是個體學習、容納他人計算方法的過程,是個體思維發展、提高的過程。如果不對演算法進行優化,那麼我們的學生就沒有收獲、沒有提高。
2、傳承優秀教學文化。
中國優秀教學文化非常豐富,乘法口訣就是最好的說明。我們的計算教學中做了一些嘗試。我們在三年級進行了「巧算24點」的數學游戲介紹,計算中的技巧方法講解;五年級進行了兩個兩位數相乘的巧算:十位數互補,尾數相同,其計算方法是:頭乘頭後加尾數為前積,尾自乘為後積。如48×68=3264。計算程序是4×6=24 24+8=32 32為前積,8×8=64為後積,兩積相連就得3264。還有兩個頭相同,尾互補數相乘的巧算;兩個十幾的數相乘的巧算等。讓學生在發現探索中學習掌握,事實證明,這些優秀的教學文化不但能極大限度地調動學生眼、腦、手、口、耳多種感官的協調活動,對於培養我們快捷的心算能力和反應能力都很有幫助。
三、正確處理算理直觀與演算法抽象的關系
曾有一些教師認為,計算教學沒有什麼道理可講,只要讓學生掌握計算方法後,反復「演練」,就可以達到正確、熟練的要求了。結果,不少學生雖然能夠依據計演算法則進行計算,但因為算理不清,知識遷移的范圍就極為有限,無法適應計算中千變萬化的各種具體情況。
算理是指四則計算的理論依據,它是由數學概念、性質、定律等內容構成的數學基礎理論知識。演算法是實施四則計算的基本程序和方法。算理為演算法提供了理論指導,演算法使算理具體化。學生在學習計算的過程中,明確了算理和演算法,就便於靈活、簡便地進行計算,計算的多樣性才有基礎和可能。因此,在計算教學中重視算理和演算法是一個十分重要的課題。
【案例】《分數與除法》
首先這位老師從一個同學的生日引出分蛋糕這一生活情景,激發學生的學習興趣。讓學生知道數學知識來源於實際生活的需要。在教學中為了能讓學生充分理解了3÷4=的算理。讓每個學生都動手操作分餅。把3塊餅平均分給4個小朋友可以有幾種分法,引導學生動手操作,得出兩種不同的分法,引出的兩種含義,這個數學學習活動是一個生動活潑的、主動的、富有個性的過程,讓學生通過實際操作感悟新知識。課件的生動演示更能學生明白分餅的過程。
【思考】在這節課中學生在不斷地嘗試、探究、猜想、思考中,不斷地產生問題、解決問題、再生成新的問題,在合作、比較、交流中進一步理解分數與除法的關系。也給學生留出了操作空間,因此學生對分數與除法的關系理解得比較透徹。而本環節中,用動手操作來解釋答案到底是四分之三還是四分之一成為必然,而不是依樣畫葫蘆,照著課本「例行公事」或按著老師的旨意被動行事。這樣的動手操作才能使學生真正理解了本課的重點,突破難點。
在教具演示、學具操作等直觀刺激下,學生對算理理解得十分清晰。但是,可能好景不長,當學生還流連在直觀形象的算理中,馬上就面對十分抽象的演算法,接著的計算都是直接運用抽象的簡化演算法進行計算。如在四年級利用運算定律簡便計算的教學時,這方面的教學讓很多老師都很「頭痛」。學生在剛學的時候,掌握得不錯。但很多式子在一起要判斷能簡算的簡算時,很多學生就不能作出正確的判斷。這正是學生對算理和演算法的了解不夠深入。如:75+25×3往往很多同學做成(75+25)×3,以為是利用了乘法分配律。原因是對乘法分配律這算理理解得不透徹。因此,在算理直觀與演算法抽象之間應該架設一座橋梁,讓學生在剪拼圖形的過程中逐步完成「動作思維---形象思維---抽象思維」的發展過程。
總之,計算教學既需要讓學生在直觀中理解算理,也需要讓學生掌握抽象的法則,更需要讓學生充分體驗由直觀算理到抽象演算法的過渡和演變過程,從而達到對算理的深層理解和對演算法的切實把握。
四、正確處理形成技能與解決問題的關系
《義務教育數學課程標准》中不再設置專門的「應用題」領域,而是注重讓學生「經歷將一些實際問題抽象為數與代數問題的過程,掌握數與代數的基礎知識和基本技能,並能解決簡單的問題」。現在的計算課,能否擔當起以往應用題教學的重任?如何處理解決實際問題與形成計算技能之間的矛盾?計算本身的問題如何解決?
不難發現,為了體現計算與應用的密切聯系,在計算教學時不少教師總是從實際問題引入,在學生初步理解算理後,馬上就去解決大量的實際問題。表面上看,學生的應用意識得到了培養,但另一方面我們也發現,學生常常是算式列對了,計算錯誤率卻很高。一段時間下來,發現學生的計算能力並未達到目標,於是再反過來進行大量的訓練,使得不少學生短時間內似乎計算正確率和速度提高不少,但實際上違背了學生的認知規律,學生的計算技能並沒有實質性的提高,更嚴重的是這種簡單化的處理大大挫傷了學生的學習熱情。
教育心理學認為,計算是一種智力操作技能,而知識轉化為技能是需要過程的,計算技能的形成具有自身獨特的規律。誠然,過去計算教學中單調、機械的模仿和大量重復性的過度訓練是要不得的,但是,在計算教學時只注重算理的理解和解決實際問題,對計算技能形成的過程如蜻蜓點水般一帶而過,也是不利於培養學生的計算能力的。特別需要指出的是:可以先針對重點、難點進行專項和對比練習,再根據學生的實際體驗,適時縮減中間過程,進行歸類和變式練習,最後讓學生面對實際問題,掌握相應策略。
如:在第九冊的《稍復雜的方程》中的3個例題中都無一例外地擔負著雙重任務,不僅要引導學生正確分析等量關系,學會列方程,同時還要教會他們解形如ax±b=c、a(x±b)=c、ax±bx=c的方程,所以在教學過程中老師要注意節奏的調控,重難點處應把握好輕重緩急。如果是一課時完成兩個任務,學生吃不消,尤其是班額較大的班級。因此,可分開進行教學,第一課時先解較復雜的方程,先讓學生掌握解方程的技巧,落實基本技能目標。第二課時再完成列方程解決問題。這樣下來的問題確實少很多,這樣令重點突出,難點分散。現在的教材是希望學生在解決問題的過程中形成計算的技能。
總之,計算教學中正確處理以上四種關系對於數學課程改革的成敗起著重要作用,從數學教育本質的角度出發,以計算教學基本矛盾的解決為導向,促進計算教學的深入改革,為切實提高學生的計算能力和數學素養打下良好的基礎。在教學中選擇有效的計算教學策略,提高學生計算的能力。
l 解釋改革以來教師在計算教學中的困惑
一、估算19+17時,很多學生直接算出36,這時教師該怎麼辦?在教學中如何處理好估算和精確計算的關系?
首先要講清楚估算的要求,讓學生理解估算的含義。估算是對運算過程與計算結果進行近似或粗略估計的一種能力。當前國際數學教育中十分重視估算,隨著科技的迅速發展,有大量事實是不可能也不需要進行精確計算的。無數事例說明,一個人在一天活動中估計和差積商的次數,遠比進行精確計算的次數多的多。
估算主要是在日常生活中無法進行精確計算或沒有必要算出精確結果時所採用的一種計算方式;精算則是根據需要准確計算出結果的計算方式。兩者在教學中各有各的要求,在小學階段主要是培養學生精確計算的能力,同時讓學生在具體情境中體驗估算的需要。
而精確計算(包括口算和筆算)能力是學生必要的計算技能,在教學中要注意培養。
二、現在的教材在計算教學中都沒有出現計演算法則,對此,教師該怎樣處理?
數學法則反映的是幾個數學概念之間的關系。計演算法則是用文字表述的運算規定,它是在算理指導下對運算過程實施細則作出的具體規定,所反映的是一種規范化的操作程序。
新課程改革的趨勢之一就是淡化形式,注重本質。因此現在的計算教學淡化了程式化地敘述算理和計演算法則,強化的是學生對算理的理解和演算法的掌握,強化的是學生在計算過程的經歷過程和主動探索。
對於教材中沒有出現的計演算法則,只要讓學生理解算理並掌握演算法就行了。
至於敘述和概括計演算法則,不要太高的要求,特別是低年級。
三、計算課,如何有效提高學生計算的速度和准確率?
關於計算的速度和准確率,是衡量學生計算能力形成的兩個重要維度。計算教學改革的總體趨勢是對計算的快捷性要求有所降低。
對於一些基本口算要讓學生達到快速和正確的要求。即在小學階段的口算內容中,兩個一位數相加與其相對應的減法和表內乘法與其相對應的除法是四則運算中的基本口算,俗稱「四張九九表」,這「四表」是一切計算的基礎,務必使學生達到「脫口而出」的熟練程度。
而對於筆算,不必過高地提出速度的要求,重要的是讓學生正確計算,逐步提高速度。
四、計算器進入課堂後,學生平時可以使用嗎?怎樣才能解決現代教學工具和筆算的矛盾?
根據《義務教育數學課程標准(實驗稿)》中的規定,在第二學段中指出「能藉助計算器進行較復雜的運算,解決簡單的實際問題,探索簡單的數學規律。」因此,有些版本的教材從四年級開始就引入計算器的教學,以幫助學生進行計算和探索規律。只要有必要,學生平時當然可以使用。不過也要注意引導學生合理使用計算器,不能完全依賴計算器。
Ⅷ 小學數學筆算題
題精選(一)
1.直接寫得數
28×專3=屬 270×3= 8×6+5=
49×2=160×4=7×8+4=
17×40=190×5= 9×4+5=
23×20= 14×50=5×9+7=
2.計算下列各題18×34=19×25=27×32=45×12=
3.列式計算
(1)13個34是多少?
(2)26的32信是多少?
(3)把43連續加19次,結果是多少?
(4)23和16相乘,積是多少?
習題精選(二)
1. 計算題
2. 計算題
33×12= 232×6= 23×31=
3. 計算題
142×23= 32×37=
4. 甲數比乙數的2倍多126,乙數是25,求甲數.
5. 23個35是多少?
習題精選(三)
1. 填空
用乘數個位上的數與被乘數相乘,得到的積是表示幾個一;用乘數十位上的數與被乘數相乘,得到的積是表示幾個十. ( )
2. 計算題
114×25=433×23=25×43=302×24=
3. 比45的13倍少205的數是多少?
4. 14的25倍是多少?
Ⅸ 小學數學計算技巧
1、十幾乘十幾:口訣,頭乘頭,尾加尾,尾乘尾;個位相乘,不夠兩位數要用0佔位回。
2、第答一個乘數互補,另一個乘數數字相同:口訣,一個頭加1後,頭乘頭,尾乘尾。
3、11乘任意數:口訣,首尾不動下落,中間之和下拉。
4、兩位數的乘法,特別是90以上的互乘就更難了。其實有這樣的簡單技巧,比如97x96=9312來說,只要拿100減乘數與被乘數,把答案分別相乘與相加,把乘出來的答案擺在後面,用100減加出來的總和後擺在前面。
(9)小學數學筆算擴展閱讀:
從小學生數學學習心理來看,學生的學習過程不是被動的吸收過程,而是一個以已有知識和經驗為基礎的重新建構的過程。
因此,做中學,玩中學,將抽象的數學關系轉化為學生生活中熟悉的事例,將使兒童學得更主動。從我們的教育目標來看,家長和教師在傳授知識的同時,更應注重培養學生的觀察、分析和應用等綜合能力。