r數學代表什麼意思
R在數學中代表的的意義
數論的 R 或r表示集合理論中的實數集,而復數中的實數部分也以此符號為內代表。
幾何學的 R 或 r 表示容一個圓的半徑,代表英文單詞radius。
幾何學中,∠R則表示直角,代表英文單詞right angle。
幾何學的 r 又表示弧度(一種角度的表示方法,360度等於弧度2 π),代表英文單詞radian。
微積分以書寫體的大寫R代表黎曼積分(Riemann integral)。
❷ 數學中的Z,Q,R分別代表什麼
Z表示集合中的整數集
Q表示有理數集
R表示實數集
N表示集合中的自然數集
N+表示正整數集
拓展資料:
符號法
有些集合可以用一些特殊符號表示,比如:
N:非負整數集合或自然數集合{0,1,2,3,…}
N*或N+:正整數集合{1,2,3,…}
Z:整數集合{…,-1,0,1,…}
Q:有理數集合
Q+:正有理數集合
Q-:負有理數集合
R:實數集合(包括有理數和無理數)
R+:正實數集合
R-:負實數集合
C:復數集合
∅ :空集(不含有任何元素的集合)
❸ R在數學中代表什麼
有理數
整數用
自然數用n
實數用r
正整數用n+
或n*
負整數用n-
有理數用q
0有多種定義,這里只舉最為常見的幾種。(樓上列舉了許多是0的性質,但一般不作為定義)
一、自然數0的定義及其擴充。
1、根據皮亞諾(peano)自然數公理體系,0就是自然數中首先出現的數。皮亞諾公理1就是:0屬於自然數集。
2、自然數集的定義也可以以1為首先出現的自然數,那麼公理1成為:1屬於自然數集。這時0並不屬於自然數集。相應地,0是作為自然數的擴充出現的。可以定義「擴大了的自然數集」,即定義0是任何兩個相等自然數的差(當然先已經定義了減法),也可以用後面代數學中0的一般定義,將0並入這個擴大了的自然數集中。
3、整數、有理數、實數、復數中的0,都來源於自然數集中的0。在數集的擴張理論中,較小的數集都是以較大數集的序對或序列的一個等價類的形式嵌入較大數集的。比如把任意兩個相同自然數的序對的等價類定義為整數(涵義就是這兩個自然數的差),其中兩個相同的自然數構成的序對的等價類就是0。
4、在皮亞諾公理中,只是抽象地定義了自然數。也可以用構造的方法構成集合論中的自然數。這樣,自然數0被等同於空集,而1就是{空集},2就是{空集,{空集}},等等。
二、一般代數理論中的0。
在一般代數結構中,如果定義了加法運算(一般加法是可交換的),那麼則定義0就是滿足集中任何元素與之相加都仍得該元素性質的元素(也就是x+0=x這一性質)。如任何一個域中都有0元素,實數域中的0也可以這樣定義。
如果一個代數結構沒有定義加法,只定義了乘法,有時也可以說滿足集中任何元素與之相乘都仍得0性質的元素(也就是0*x=0或x*0=0)。由於這里乘法沒有交換律,所以有「左0元」和「右0元」之分。如數域k上n階方陣關於乘法構成一個群,就可以說它有左、右0元。
順變提一下,布爾(boolean)代數中0是另一種符號,遵循的又是邏輯運算的法則了。
附:皮亞諾自然數公理(也就是自然數的公理化定義)
pa1:零是個自然數.
pa2:每個自然數都有一個後繼(也是個自然數).
pa3:零不是任何自然數的後繼.
pa4:不同的自然數有不同的後繼.
pa5:(歸納公理)設由自然數組成的某個集含有零,且每當該集含有某個自然數時便也同時含有這個數的後繼,那麼該集定含有全部自然數.
參考資料:汪芳庭,數學基礎.潘承洞,潘承彪,初等數論.藍以中,高等代數簡明教程,抽象代數復明教程.范德瓦爾登,代數學
❹ R在數學是什麼意思
實數,圓的直徑
❺ 數學中R表示的是什麼
R是實數,當然包括負數,也包括小數。
N是自然數,N*是不包含零的自然數即1、2、3、……
❻ R在數學中的含義
數論的 R 或r表示集合理論中的實數集,而復數中的實數部分也以此符號為代表。 幾何學的 R 或 r 表示一個圓的半徑,代表英文單詞radius。 幾何學中,∠R則表示直角,代表英文單詞right angle。 幾何學的 r 又表示弧度(一種角度的表示方法,360度等於弧度2 π),代表英文單詞radian。 微積分以書寫體的大寫R代表黎曼積分(Riemann integral)。
❼ 數學中R代表什麼
數學中有幾個表示數集的常用記號是可以不用說明而直接使用的:
N 自然數集內容
Z 整數集
Q 有理數集
R 實數集
C 復數集
數學首先是一種特殊的語言,嚴格的數學語言是只有符號而沒有文字的,在教科書中經常會介紹一些大家公認的重要符號,這些都是很重要的。
數學語言是很嚴格的,一般你要用一個記號表示什麼,例如用R表示園的半徑,你都必須先加以說明。除了那些大家都認同了的常用記號。這些記號很多的啦,象因為,所以,推出,等價等等,太多太多的啦。
❽ 數學中的R+和R*是什麼意思是同一個意思嗎
是同一個意思,R+和R*在數學中表示正實數的意思。
常見的集合字母有:
N:非負整數集合或自然數集合{0,1,2,3,…}
N*或N+:正整數集合{1,2,3,…}
Z:整數集合{…,-1,0,1,…}
Q:有理數集合
Q+:正有理數集合
Q-:負有理數集合
R:實數集合(包括有理數和無理數)
R+:正實數集合
R-:負實數集合
C:復數集合
∅ :空集(不含有任何元素的集合)
(8)r數學代表什麼意思擴展閱讀
集合常見符號
1、∈
讀作「屬於」。若a∈A,則a屬於集合A,a是集合A中的元素。
2、⊆
對於兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,我們就說集合A包含於集合B,或集合B包含集合A,也說集合A是集合B的子集。
3、∁
若給定全集U,有A⊆U,則A在U中的相對補集稱為A的絕對補集(或簡稱補集),即由U中所有不屬於A的元素組成的集合,寫作∁UA。
4、∩
由所有屬於集合A且屬於集合B的元素組成的集合,叫做A,B的交集。A 和 B 的交集寫作 "A ∩B"。表示:A 交 B
5、∪
由所有屬於A或屬於B的元素所組成的集合,叫做A,B的並集。讀作:A並B。
❾ 數學上R*是什麼意思
R表示實數,*表示正數,所以R*表示正實數。見人教版高中數學必修一編寫說明。
編寫說明中有N*或者N+表示正整數集,所以R*表示正實數。
❿ 數學上的R代表什麼數
代表圓的半徑,圓或圓的半徑是從其中心到其周邊的任何線段,並且在更現代的使用中,它也是其中任何一個的長度。 這個名字來自拉丁半徑,意思是射線,也是一個戰車的輪輻。
半徑的復數可以是半徑(拉丁文復數)或常規英文復數半徑。半徑的典型縮寫和數學變數名稱為r。 通過延伸,直徑d定義為半徑的兩倍:d=2r。
具有周長(圓周)C的圓的半徑為:
(10)r數學代表什麼意思擴展閱讀
如果物體沒有中心,則該術語可能指其周長,其外接圓的半徑或外接球體。 在任一情況下,半徑可以大於直徑的一半,通常將其定義為圖中任何兩個點之間的最大距離。 幾何圖形的半徑通常是其中包含的最大圓或球的半徑。 環,管或其他中空物體的內半徑是其空腔的半徑 。
對於常規多邊形,半徑與其周長相同。正多邊形的內半徑也稱為心距。在圖論中,圖的半徑是從u到圖的任何其他頂點的最大距離的所有頂點u的最小值。