高中數學經典題型
『壹』 高一數學集合典型例題
集合部分重在概念的理解;現在如再念高一,千萬不能寄希望於做題來搞懂一塊知專識,這樣蠻危險屬。首先,吃透老師的筆記和課本習題,一定要搞熟!然後可以找課外習題做。高三才是做題的季節。你要是在高一沒把基本概念吃透,做以往道題也是枉然的。
推薦:龍門專題
五年高考三年模擬
『貳』 高中數學比較經典的題目有那些
數列相關題目
證明題
求概率問題
幾何題
當然這些都是大題,如果你想詳細的了解,建議你看下歷屆高考題目,裡面出的題目大多是你們要考到的,而且你可以比較幾份試卷發現大多都是相關題型,然後再比對著書上給的例題,我覺得也就對這些經典例題理解的差不多了
『叄』 高中數學經典題目(江蘇的)
你是要輔導書嗎?《3年高考2年模擬》、恩波系列的:小題狂做(PS:前面的是專項練習,後面的是綜合類型的)
個人比較推薦這兩種~
『肆』 高中數學,推薦幾本練習題,帶有典型例題和歷年高考題的
推薦你買王後雄老師的
教材完全解讀,
從基礎知識點、考點都有的。
難度適中。
『伍』 高中數學經典解題技巧和方法
高中數學是很多同學高考道路上的攔路虎,很多同學一致回答:大題沒思路。高考數學6道大題,每題12分,一分都不能丟啊!
所以,今天學霸菌給大家整理了數學答題模板,大家要好好利用哈~
選擇/填空題
1、易錯點歸納:
九大模塊易混淆難記憶考點分析,如概率和頻率概念混淆、數列求和公式記憶錯誤等,強化基礎知識點記憶,避開因為知識點失誤造成的客觀性解題錯誤。
針對審題、解題思路不嚴謹如集合題型未考慮空集情況、函數問題未考慮定義域等主觀性因素造成的失誤進行專項訓練。
2、答題方法:
選擇題十大速解方法:
(十大解題技巧 你會了沒)
排除法、增加條件法、以小見大法、極限法、關鍵點法、對稱法、小結論法、歸納法、感覺法、分析選項法;
填空題四大速解方法:直接法、特殊化法、數形結合法、等價轉化法。
解答題
專題一、三角變換與三角函數的性質問題
1、解題路線圖
①不同角化同角
②降冪擴角
③化f(x)=Asin(ωx+φ)+h
④結合性質求解。
2、構建答題模板
①化簡:三角函數式的化簡,一般化成y=Asin(ωx+φ)+h的形式,即化為「一角、一次、一函數」的形式。
②整體代換:將ωx+φ看作一個整體,利用y=sin x,y=cos x的性質確定條件。
③求解:利用ωx+φ的范圍求條件解得函數y=Asin(ωx+φ)+h的性質,寫出結果。
④反思:反思回顧,查看關鍵點,易錯點,對結果進行估算,檢查規范性。
專題二、解三角形問題
1、解題路線圖
(1) ①化簡變形;②用餘弦定理轉化為邊的關系;③變形證明。
(2) ①用餘弦定理表示角;②用基本不等式求范圍;③確定角的取值范圍。
2、構建答題模板
①定條件:即確定三角形中的已知和所求,在圖形中標注出來,然後確定轉化的方向。
②定工具:即根據條件和所求,合理選擇轉化的工具,實施邊角之間的互化。
③求結果。
④再反思:在實施邊角互化的時候應注意轉化的方向,一般有兩種思路:一是全部轉化為邊之間的關系;二是全部轉化為角之間的關系,然後進行恆等變形。
專題三、數列的通項、求和問題
1、解題路線圖
①先求某一項,或者找到數列的關系式。
②求通項公式。
③求數列和通式。
2、構建答題模板
①找遞推:根據已知條件確定數列相鄰兩項之間的關系,即找數列的遞推公式。
②求通項:根據數列遞推公式轉化為等差或等比數列求通項公式,或利用累加法或累乘法求通項公式。
③定方法:根據數列表達式的結構特徵確定求和方法(如公式法、裂項相消法、錯位相減法、分組法等)。
④寫步驟:規范寫出求和步驟。
⑤再反思:反思回顧,查看關鍵點、易錯點及解題規范。
專題四、利用空間向量求角問題
1、解題路線圖
①建立坐標系,並用坐標來表示向量。
②空間向量的坐標運算。
③用向量工具求空間的角和距離。
2、構建答題模板
①找垂直:找出(或作出)具有公共交點的三條兩兩垂直的直線。
②寫坐標:建立空間直角坐標系,寫出特徵點坐標。
③求向量:求直線的方向向量或平面的法向量。
④求夾角:計算向量的夾角。
⑤得結論:得到所求兩個平面所成的角或直線和平面所成的角。
專題五、圓錐曲線中的范圍問題
1、解題路線圖
①設方程。
②解系數。
③得結論。
2、構建答題模板
①提關系:從題設條件中提取不等關系式。
②找函數:用一個變數表示目標變數,代入不等關系式。
③得范圍:通過求解含目標變數的不等式,得所求參數的范圍。
④再回顧:注意目標變數的范圍所受題中其他因素的制約。
專題六、解析幾何中的探索性問題
1、解題路線圖
①一般先假設這種情況成立(點存在、直線存在、位置關系存在等)
②將上面的假設代入已知條件求解。
③得出結論。
2、構建答題模板
①先假定:假設結論成立。
②再推理:以假設結論成立為條件,進行推理求解。
③下結論:若推出合理結果,經驗證成立則肯。 定假設;若推出矛盾則否定假設。
④再回顧:查看關鍵點,易錯點(特殊情況、隱含條件等),審視解題規范性。
專題七、離散型隨機變數的均值與方差
1、解題路線圖
(1)①標記事件;②對事件分解;③計算概率。
(2)①確定ξ取值;②計算概率;③得分布列;④求數學期望。
2、構建答題模板
①定元:根據已知條件確定離散型隨機變數的取值。
②定性:明確每個隨機變數取值所對應的事件。
③定型:確定事件的概率模型和計算公式。
④計算:計算隨機變數取每一個值的概率。
⑤列表:列出分布列。
⑥求解:根據均值、方差公式求解其值。
專題八、函數的單調性、極值、最值問題
1、解題路線圖
(1)①先對函數求導;②計算出某一點的斜率;③得出切線方程。
(2)①先對函數求導;②談論導數的正負性;③列表觀察原函數值;④得到原函數的單調區間和極值。
2、構建答題模板
①求導數:求f(x)的導數f′(x)。(注意f(x)的定義域)
②解方程:解f′(x)=0,得方程的根。
③列表格:利用f′(x)=0的根將f(x)定義域分成若干個小開區間,並列出表格。
④得結論:從表格觀察f(x)的單調性、極值、最值等。
⑤再回顧:對需討論根的大小問題要特殊注意,另外觀察f(x)的間斷點及步驟規范性。