化學法
干化學分析技術是相對於濕化學技術而言的,是指將液體檢測樣品直接加到為不同項目特定生產的商業化的乾燥試劑條上,以被測樣品的水分作為溶劑引起特定的化學反應,從而進行化學分析的方法,是以酶法為基礎的一類分析方法,又有干試劑化學或固相化學之稱。
它採用反射光度法或差示電極法作為測量手段,主要具備以下特點:准確度高、速度快,一般在3~4min 內即可做出檢驗結果;操作簡便,不需要日常校正;無須貯備任何其它試劑或配製任何溶液;標本無須預處理,多層膜具有選擇性過濾的功能,從而減少測定過程中干擾物質的影響;標本用量少,反應時的水分由標本中的液體成分供應,提高測定靈敏度;基於差示電極法原理的多層膜片系一次性使用,故有常規電極法的優點而無其缺點;有些情況可替代濕化學法用於急診標本,還可用於對常規檢測結果進行方法學評價等。
它不僅可用於定性檢查,目前還發展成為了半定量和定量的分析方法,已成為臨床檢驗中一類重要的方法。干化學方法在尿的定性檢查方面已取得了較大的進展。目前有些試紙可以同時測定多種項目如,尿蛋白、尿糖、隱血、膽紅素、尿膽素原、酮體、比重、亞硝酸鹽,細菌尿等。
❷ 什麼是化學處理法
經過微生物處理後,水中仍留下比較復雜的化學污染物,而且還不能除掉不斷增加的氮和磷,因此,人們經常通過化學方法繼續凈化污水。
所謂化學處理法,是利用化學原理消除污染物,或者將其轉化為有用的物質。經常使用的辦法是中和、氧化還原、混凝、電解等。例如,美國加利福尼亞州的大和湖是一個非常深而景色秀麗的湖,但它受到興旺旅遊業的威脅。政府為此在那裡興建了一個處理工廠,每天吸取750萬噸湖水,除去普通的污染和污泥後,用石灰除去磷,並在解吸塔中吹出氮(它在污水中通常是以氨的形式出現),然後使水首先通過分離床除去殘余的磷,最後通過活性炭吸附掉大部分留下來的化學物質。
(1)中和法中和法是利用化學方法使酸性廢水或鹼性廢水中和達到中性的方法。在中和處理中,應盡量遵循「以廢治廢」的原則,優先考慮廢酸或廢鹼的使用,或酸性廢水與鹼性廢水直接中和的可能性;其次才考慮採用葯劑(中和劑)進行中和處理。
(2)混凝法混凝法是通過向廢水中投入一定量的混凝劑,使廢水中難以自然沉澱的膠體狀污染物和一部分細小懸浮物經脫穩、凝聚、架橋等反應過程,形成具有一定大小的絮凝體,在後續沉澱池中沉澱分離,從而使膠體狀污染物得以與廢水分離的方法。通過混凝,能夠降低廢水的濁度、色度,去除高分子物質——呈懸浮狀或膠體狀的有機污染物和某些重金屬物質。
(3)化學沉澱法化學沉澱法是通過向廢水中投入某種化學葯劑,使之與廢水中的某些溶解性污染物質發生反應,形成使難溶鹽沉澱下來,從而降低水中溶解性污染物濃度的方法。化學沉澱法一般用於含重金屬工業廢水的處理。根據使用的沉澱劑的不同和生成的難溶鹽的種類,化學沉澱法可分為氫氧化物沉澱法、硫化物沉澱法和鋇鹽沉澱法。
(4)氧化還原法氧化還原法是利用溶解在廢水中的有毒有害物質,在氧化還原反應中能被氧化或還原的性質,把它們轉變為無毒無害物質的方法。廢水處理使用的氧化劑有臭氧、氯氣、次氯酸鈉等,還原劑有鐵、鋅、亞硫酸氫鈉等。
(5)吸附法
吸附法是採用多孔性的固體吸附劑,利用同一液相界面上的物質傳遞,使廢水中的污染物轉移到固體吸附劑上,從而使之從廢水中分離去除的方法。具有吸附能力的多孔固體物質稱為吸附劑。根據吸附劑表面吸附力的不同,可分為物理吸附、化學吸附和離子交換性吸附。在廢水處理中所發生的吸附過程往往是幾種吸附作用的綜合表現。廢水中常用的吸附劑有活性炭、磺化煤、沸石等。
(6)離子交換法離子交換是指在固體顆粒和液體的界面上發生的離子交換過程。離子交換水處理法即是利用離子交換劑對物質的選擇性交換能力去除水和廢水中的雜質和有害物質的方法。
(7)膜分離可使溶液中一種或幾種成分不能透過,而其他成分能透過的膜,稱為半透膜。膜分離是利用特殊的半透膜的選擇性透過作用,將廢水中的顆粒、分子或離子與水分離的方法,包括電滲析、擴散滲析、微過濾、超過濾和反滲透。主要的處理技術有穩定塘和土地處理法。
城市廢水的大量排放不但是水資源的浪費,同時也會造成污染。世界上不少缺水國家把城市廢水的資源化作為解決水資源短缺的重要對策之一。
近20年來經濟的持續快速發展和人口的膨脹加劇了對水的需求,造成世界范圍水資源短缺。水資源短缺威脅著人類的生存和發展,已成為全球人類共同面臨的最嚴峻的挑戰之一。為解決困擾人類發展的水資源短缺問題,開發新的可利用水源是世界各國普遍關注的課題。城市廢水水質、水量穩定,經處理和凈化以後可以作為新的再生水源加以利用。
城市廢水如不加以凈化,隨意排放,將造成嚴重的水環境污染。如將城市廢水的凈化和再生利用結合起來,去除污染物,改善水質後加以回用,不僅可以消除城市廢水對水環境的污染,而且可以減少新鮮水的使用,緩解需水和供水之間的矛盾,為工農業的發展提供新的水源,取得多種效益。許多國家和地區把城市廢水再生水作為一種水資源的重要組成,對城市廢水的資源化進行了系統規劃。例如美國佛羅里達州的南部地區、加利福尼亞州的南拉谷那、科羅拉多州的奧羅拉、沙烏地阿拉伯、義大利及地中海諸國等。實踐表明,城市廢水經處理後可以滿意地用於農業、城市和工業等領域。作為緩解水資源短缺的重要戰略之一,城市廢水資源化顯示了光明的應用前景。
世界上許多國家圍繞城市廢水的資源化與再生利用開展了大量的研究,包括廢水回用途徑的分析與開拓,廢水資源化工藝與技術研究,回用水水質標準的建立,回用水對人體健康的影響,促進廢水資源化的政策與管理體系等。
❸ 學化學方法
化學方法有許多。根據具體情況靈活運用。比如變化的思想,平衡的思想等等。
❹ 請問什麼是干化學法
干化學法是指將液體檢測樣品直接加到為不同項目特定生產的商業化的乾燥試劑條上,以被測樣品的水分作為溶劑引起特定的化學反應,從而進行化學分析的方法,是以酶法為基礎的一類分析方法,又有干試劑化學或固相化學之稱。
主要具備以下特點:
1、准確度高、速度快,一般在3~4min 內即可做出檢驗結果;
2、操作簡便,不需要日常校正;
3、無須貯備任何其它試劑或配製任何溶液;
4、標本無須預處理,多層膜具有選擇性過濾的功能,從而減少測定過程中干擾物質的影響;
5、標本用量少,反應時的水分由標本中的液體成分供應,提高測定靈敏度;
6、基於差示電極法原理的多層膜片系一次性使用,故有常規電極法的優點而無其缺點;
7、有些情況可替代濕化學法用於急診標本,還可用於對常規檢測結果進行方法學評價等。
(4)化學法擴展閱讀:
尿液干化學檢測:
亞硝酸鹽:採用亞硝酸鹽還原法。亞硝酸鹽與芳香族氨基磺胺發生重氮反應,生成重氮肥化合物,而重氮化合物與四氫苯並喹啉3-酚偶聯,生成紅色偶氮染料。亞硝酸鹽的檢出率受三個因素影響:
1、尿路感染的細菌是否含有硝酸鹽還原酶。
2、食物中是否含有硝酸鹽。
3、尿液標本是否在膀胱停留4小時以上。
符合以上三個條件,此試驗的檢出率為80%,反之可能呈陰性結果。標本放置過久或污染細菌可呈假陽性。
❺ 用化學法區別下列各組化合物中的「化學法」是什麼意思
化學法是一種以化學為核心的鑒定方法,也就是說不管 有什麼現象,其引起這種變化的原因是化學原因。比如用化學法分別鋅和銅,那麼我們可以用鹽酸,鋅可以反應產生氫氣有氣泡產生,而銅不可以,沒有氣泡產生。所以我們說有氣泡產生的金屬是鋅,而,沒有的是銅。其實簡單的用物理方法我們也可以鑒定,鋅是銀白色的,銅是紅色的,一看就明白了,但這是物理的而非化學的。就是這個意思。
❻ 學化學方法有那些
語文的背誦,物理的套公式定理回答完畢,希望對你的提問有幫助,如果滿意請採納o(∩_∩)o...哈哈
❼ 濕化學法和干化學法有什麼區別
解答:
干就是試紙條這類的反應,濕就是用試劑測定的反應
補充:
濕化學法(狹義定義:共沉澱稱為濕化學法。廣義定義:有液相參加的、通過化學反應米制備材料的方法統稱為濕化學法。
舉例:甘油三酯檢測(濕化學法)
從血清中抽提甘油三酯同時沉澱蛋白質,用氫氧化鉀造化釋出甘油,用過碘酸鈉氧化成甲醛,然後用變色酸顯色反應或用乙醯丙酮顯色產生熒光色素,用熒光法或比色法測定。)
干化學法(干化學法檢查,是指進行檢驗時採用的化學反應的方法中需要的水分很少。例如,現在驗尿是用試紙和儀器的,而以前是用試劑和尿液在試管裡面反應。現在的方法就稱為「干化學法」,以前的稱為「濕法」。)
❽ 化學方法
在地球表面的各類水體中,湖水化學性質的變化幅度最大;而且古湖水的化學性質對於生烴條件關系極大。因此,化學方法在古湖泊研究中佔有特殊地位。古湖泊研究中的化學方法,包括同位素化學、無機化學和有機地球化學三方面。
(一)穩定同位素化學
穩定同位素地球化學方法早已是大洋地層學和古海洋學研究中不可缺少的一種手段(同濟大學海洋地質系,1989)。近年來,該方法在古湖泊學研究中的應用亦越來越受到重視,且有從第四紀古湖泊學研究向第三紀古湖泊學研究推廣應用之趨勢(劉傳聯,1993)。
古湖泊學研究中的穩定同位素分析以氧(18O/16O)、碳(13C/12C)、鍶(87Sr/86Sr)三種同位素最為重要,分析材料可以是生物化石殼體,也可以是碳酸鹽岩。穩定同位素分析在古湖泊學研究中的應用十分廣泛,可以研究古湖泊水體的物理特徵(如湖泊的封閉和開放性、湖水面變化)、化學特徵(如古鹽度、硫酸鹽含量與鹼度)和生物特徵(如古生產力),也可以研究古湖泊的氣候條件。泥頁岩中有豐富的古生物化石,又含有碳酸鹽礦物或者與碳酸鹽岩共生或互層,這為進行同位素分析提供了素材。
1.氧、碳同位素
利用湖相沉積中化石或碳酸鹽岩氧碳同位素的相關性可以研究生油湖泊的封閉性和開放性。通過對現代不同類型湖泊中碳酸鹽氧、碳同位素進行大量測試後發現:開放型淡水湖泊中,原生碳酸鹽δ18O和δ13C之間不相關或略呈相關,而且δ18O和δ13C均為負值,其投點落在第三象限,如瑞士Greifen湖、美國Henderson湖和以色列Huleh湖;而封閉型鹹水、半鹹水湖泊中,δ18O和δ13C之間呈明顯的相關關系,相關系數(r)一般大於0.7,封閉性越強,相關系數越大,且δ18O正負均有,δ13C則基本屬正值,其投點落在第一、四象限,如美國大鹽湖(r=0.87)、圖爾卡納湖(r=0.86)、Natron-Magadi湖(r=0.84)。
上述規律出現的原因是,開放型湖泊中,水體快速更替,停留時間短,湖水同位素的演化微乎其微,其氧、碳同位素更多地反映了注入水的同位素特徵,因此在其中形成的原生碳酸鹽氧和碳同位素組分的變化各自獨立。封閉型湖泊中則不然,由於水體停留時間長,蒸發作用對湖水的化學組成起決定性的作用。隨著蒸發作用的增強,較輕的16O和12C優先從湖水表面逸出,造成湖水中的18O和13C含量增加,使得湖水的δ18O和δ13C較注入水明顯偏正。同時由於這種演化作用對於氧、碳同位素是同步的,所以兩者呈明顯的共變趨勢,反映在其中形成的原生碳酸鹽同位素成分上,δ18O和δ13C呈明顯的相關性。
這一規律已成為判斷第四紀古湖泊或更老湖泊封閉性的標志之一,並已有許多成功的例子。如對迦納Bosumtwi湖晚更新世—全新世沉積、對東非Kivu湖晚第四紀沉積、對西班牙Cenajo盆地中新世沉積和蘇格蘭Orcadian盆地泥盆紀沉積的研究等。
在水文條件封閉、水體停留時間長的封閉湖泊中,蒸發作用是控制氧同位素的決定因素。隨著蒸發作用的增強,使湖水的δ18O值增加,反映在其中生活的介形蟲殼體上,δ18O值也增加。所以,可以根據介形蟲殼體δ18O值的變化,可以恢復蒸發/降雨古氣候條件的變化。在封閉湖泊中,蒸發/降雨條件的變化必然引起古湖水面的波動。蒸發量大於降雨量,湖水面降低,反之則湖水面升高。所以,據介形蟲殼體δ18O值的變化同樣可以再造古湖水面的變化情況。
利用湖相沉積中化石或碳酸鹽岩碳同位素變化還可以恢復古生產力的變化。湖相原生碳酸鹽的碳同位素組分與其生活水體中溶解無機碳的碳同位素組分平衡。而影響湖水溶解無機碳碳同位素組分的一個重要因素就是湖泊的生產力。Stiller等(1980)曾提出湖泊溶解無機碳(DIC)的碳同位素組分生產力控制模式。按該模式,在穩定分層條件下,當浮游植物勃發、生產力高時,浮游植物通過光合作用吸收較多的12C,使表層水體中溶解無機碳儲庫中13C含量相對增加,從而使表層水體中形成的原生碳酸鹽的δ13C值偏高;而隨著12C富集的有機質不斷下沉,使得湖下層生活的底棲生物殼體的δ13C值逐漸降低。
這是深水分層湖泊的模式,對於淺水、不分層的湖泊來說,則有極大的不同。當湖水生產力高,造成水體中DIC儲庫中13C含量增加時,生活在其中的介形蟲也是「受益者」。其殼體的δ13C值也應是增高,而不是降低。
利用沉積物中有機質碳同位素的變化可以判斷出沉積物中有機質的來源。湖泊沉積物中的有機質有兩個來源,即陸生植物和水生植物。陸生植物按照光合作用固碳方式和初級產物的碳原子數不同可分出C3植物、C4植物和CAM植物。陸生植物中,絕大多數喬木和灌木是C3植物,草本植物主要是C4植物。
C3植物和C4植物以不同的生物化學方法固定CO2,它們具有完全不同的δ13C值。C3植物的δ13C值值變化范圍較大,在一般的情況下,它們的δ13C值大約在-22‰~-34‰之間,而C4植物的δ13C值的變化在-20‰~-9‰之間。
浮游植物利用與大氣CO2保持平衡的水中溶解CO2作為光合作用的碳源,其δ13C值與陸生C3植物的δ13C值接近,最大可偏負至-35.5‰。
所以,根據沉積有機質的碳同位素特徵可以判別有機質的物源。
2.鍶同位素
現代研究表明,生物碳酸鹽骨骼中的87Sr/86Sr比值與其生活的海水保持平衡,地質歷史上海水的87Sr/86Sr比值在不斷變化,但任一時期全球海水的87Sr/86Sr比值則是均一的(Elderfield,1986);同時人們還發現由於河、湖水中的鍶與海水中的鍶來源物質的不同,造成河、湖水的87Sr/86Sr比值明顯高於海水,如現代海水的87Sr/86Sr比值為0.709,河水中的87Sr/86Sr比值為0.711(Wadleigh等,1985)。另外,海水中鍶的濃度也與河、湖水相差懸殊,如新生代海水中鍶含量在102~103 mg/L之間(DePaolo等,1985;Koepnick等,1985),河、湖水中鍶含量多在100~102μg/L之間(Wadleigh等,1985),兩者相差3個數量級。如果海水與湖水相混(即使少量海水),水體仍反映海水87Sr/86Sr比值。所以,這樣就為利用87Sr/86Sr比值來判別「海相」、「陸相」奠定了理論基礎,無論正常海相還是與海水有關連的海陸過渡相化石都應呈現其生活時期海水的87Sr/86Sr比值(劉傳聯,1993)。
(二)無機化學
CaCO3含量分析、Sr、Ca、Mg等微量元素含量分析和常量元素分析是古湖泊學研究中常用的方法。由於介形蟲化石是湖相沉積中最常見的微體化石,對其微量元素的分析顯得格外重要,這里特別做一簡介。
介形蟲在蛻殼過程中,從其生活的水體中攝取化學成分建造新殼體(Turpen等,1971),因此,介形蟲殼體中的化學成分應記錄了水體的化學特徵。十多年,許多學者致力探索介形蟲殼體化學成分與水環境參數之間的關系,迄今報道最多的是關於介形蟲殼體中Sr/Ca和Mg/Ca摩爾比值的環境意義,而對其他微量元素的涉及尚少。Chivas等(1983,1985,1986)通過對澳大利亞鹽湖中介形蟲調查和室內飼養,指出介形蟲殼體的Sr/Ca和Mg/Ca比值與其生活水體中相應的元素比值呈定量的正相關。由於澳大利亞鹽湖中的Sr和Mg含量隨鹽度的增加而增加,因此,介形蟲殼體中Sr/Ca和Mg/Ca比值具有明顯的鹽度意義。盡管還存在不同的爭議(如Teeter等,1990),一些學者已應用這種關系,在古環境研究中把介形蟲殼體的Sr/Ca和Mg/Ca比值當作古鹽度的一個標志(Gasse等,1987;De Deckker等,1988;Anadon等,1990;Lister等,1991;Holmes等,1992;張彭熹等,1989,1994)。
對介形蟲殼體中其他微量元素的研究尚少見。Carbonel等(1988)報道了介形蟲殼體中的鹼土金屬含量與水體鹽度呈正相關,並且指出殼體中Ca、Mg含量隨水體由少營養向真營養的發展而減少了,而P、Mn、Fe的含量增加。Bodergat等(1985,1991)研究了地中海海岸帶介形蟲,指出介形蟲殼體在少鹽水中富含Si、Al、Fe、Mn和Ba,在超鹽水中以P、Sr和Li為特徵;殼體中S的含量與水體中有機質有關,殼體中P的含量則反映了水體中有機磷的含量。
總之,對介形蟲殼體化學元素的研究起步不久,對它們的環境意義尚遠不夠了解。盡管如此,無機沉積物元素地球化學和湖泊學兩者的研究成果,可以借鑒來解釋介形蟲殼體中諸多元素的環境意義(鄧宏文等,1993;李世傑等,1993)。介形蟲殼體化學元素測定可以通過質子激發X熒光分析(PIXE)技術來完成。
(三)有機地球化學
有機地球化學雖然主要著眼於烴源岩的生烴能力研究,但是同樣在古環境再造方面有巨大的潛力。這是因為沉積有機質的豐度和演化不僅與埋藏史、地熱演化史有關,而且還受控於沉積環境。所以,有機地球化學也是含油盆地古湖泊學研究的一項重要方法(鄧宏文等,1993)。
烴源岩中有機質類型的差異主要與原始生物類型及組合有關,而後者又主要取決於生物的生存環境,因而有機質類型可作為判別古環境的首要標志。具體來說可以根據乾酪根組成與類型、乾酪根碳同位素、正烷烴組成等來判別沉積環境。
生物標記化合物是識別古環境的另一項重要內容。生物標記化合物是指在有機質岩石中仍能在一定程度上保存了原始生物化學成分的基本格架的有機化合物。它的特殊的「標志作用」可以來識別有機質來源、有機質類型和沉積環境。生物標志化合物使有機地球化學將有機質提高到分子級的研究水平。從近代沉積物中可以見到不同類型的烴類或各種有關的分子,這些分子可以來自陸生植物,也可以來自海洋或湖泊的水生生物。分子的碳骨架被保存下來,它們能夠聯結成一些結構類型,如甾族化合物萜烯化合物等。生物標志化合物包括正構烷烴、類異戊間二烯烷烴、甾烷、萜烷、芳甾類烴及卟啉等。例如,正構烷烴類中<C22分子結構類型與≥C22分子結構類型的生源意義明顯不同,前者指示菌藻類,而後者是陸生高等植物高蠟質特徵。甾烷類中的4-甲基甾烷是水生的浮游植物甲藻類的標志。
一些有機地球化學參數還具有特殊的意義。如可根據有機碳含量、姥鮫烷/植烷比值、碳優勢指數等判別烴源岩沉積時的氧化-還原條件。可根據伽馬蠟烷含量和植烷優勢等判別古鹽度的高低。
除上以外,目前在油氣勘探中廣泛應用的有機相分析也是一類重要的方法。在第九章中對該方法進行了詳細描述,此處不在贅述。同時,在第十章到十三章論述中國近海各湖盆的生烴條件時,也應用了許多上面提到的有機地球化學指標。