原核生物dna復制過程
❶ 原核生物DNA復制過程
以原核生物DNA復制過程予以簡要說明 1.DNA雙螺旋的解旋 DNA在復制時,其雙鏈首先解開,形成復制叉,而復制叉的形成則是由多種蛋白質及酶參與的較復雜的復制過程 (1)單鏈DNA結合蛋白(single—stranded DNA binding protein,ssbDNA蛋白) ssbDNA蛋白是較牢固的結合在單鏈DNA上的蛋白質。原核生物ssbDNA蛋白與DNA結合時表現出協同效應:若第1個ssbDNA蛋白結合到DNA上去能力為1,第2個的結合能力可高達103;真核生物細胞中的ssbDNA蛋白與單鏈DNA結合時則不表現上述效應。ssbDNA蛋白的作用是保證解旋酶解開的單鏈在復制完成前能保持單鏈結構,它以四聚體的形式存在於復制叉處,待單鏈復制後才脫下來,重新循環。所以,ssbDNA蛋白只保持單鏈的存在,不起解旋作用。(2)DNA解鏈酶(DNA helicase) DNA解鏈酶能通過水解ATP獲得能量以解開雙鏈DNA。這種解鏈酶分解ATP的活性依賴於單鏈DNA的存在。如果雙鏈DNA中有單鏈末端或切口,則DNA解鏈酶可以首先結合在這一部分,然後逐步向雙鏈方向移動。復制時,大部分DNA解旋酶可沿滯後模板的5』—〉3』方向並隨著復制叉的前進而移動,只有個別解旋酶(Rep蛋白)是沿著3』—〉5』方向移動的。故推測Rep蛋白和特定DNA解鏈酶是分別在DNA的兩條母鏈上協同作用以解開雙鏈DNA。(3)DNA解鏈過程 DNA在復制前不僅是雙螺旋而且處於超螺旋狀態,而超螺旋狀態的存在是解鏈前的必須結構狀態,參與解鏈的除解鏈酶外還有一些特定蛋白質,如大腸桿菌中的Dna蛋白等。一旦DNA局部雙鏈解開,就必須有ssbDNA蛋白以穩定解開的單鏈,保證此局部不會恢復成雙鏈。兩條單鏈DNA復制的引發過程有所差異,但是不論是前導鏈還是後隨鏈,都需要一段RNA引物用於開始子鏈DNA的合成。因此前導鏈與後隨鏈的差別在於前者從復制起始點開始按5』—3』持續的合成下去,不形成岡崎片段,後者則隨著復制叉的出現,不斷合成長約2—3kb的岡崎片段。 2.岡崎片段與半不連續復制 因DNA的兩條鏈是反向平行的,故在復制叉附近解開的DNA鏈,一條是5』—〉3』方向,另一條是3』—〉5』方向,兩個模板極性不同。所有已知DNA聚合酶合成方向均是5』—〉3』方向,不是3』—〉5』方向,因而無法解釋DNA的兩條鏈同時進行復制的問題。為解釋DNA兩條鏈各自模板合成子鏈等速復制現象,日本學者岡崎(Okazaki)等人提出了DNA的半連續復制(semidiscontinuous replication)模型。1968年岡崎用3H脫氧胸苷短時間標記大腸桿菌,提取DNA,變性後用超離心方法得到了許多3H標記的,被後人稱作岡崎片段的DNA。延長標記時間後,岡崎片段可轉變為成熟DNA鏈,因此這些片段必然是復制過程中的中間產物。另一個實驗也證明DNA復制過程中首先合成較小的片段,即用DNA連接酶溫度敏感突變株進行試驗,在連接酶不起作用的溫度下,便有大量小DNA片段積累,表明DNA復制過程中至少有一條鏈首先合成較短的片段,然後再由連接酶鏈成大分子DNA。一般說,原核生物的岡崎片段比真核生物的長。深入研究還證明,前導鏈的連續復制和滯後鏈的不連續復制在生物界具有普遍性,故稱為DNA雙螺旋的半不連續復制。 3.復制的引發和終止 所有的DNA的復制都是從一個固定的起始點開始的,而DNA聚合酶只能延長已存在的DNA鏈,不能從頭合成DNA鏈,新DNA的復制是如何形成的?經大量實驗研究證明,DNA復制時,往往先由RNA聚合酶在DNA模板上合成一段RNA引物,再由聚合酶從RNA引物3』端開始合成新的DNA鏈。對於前導鏈來說,這一引發過程比較簡單,只要有一段RNA引物,DNA聚合酶就能以此為起點,一直合成下去。對於後隨鏈,引發過程較為復雜,需要多種蛋白質和酶參與。後隨鏈的引發過程由引發體來完成。引發體由6種蛋白質構成,預引體或引體前體把這6種蛋白質結合在一起並和引發酶或引物過程酶進一步組裝形成引發體。引發體似火車頭一樣在後隨鏈分叉的方向前進,並在模板上斷斷續續的引發生成滯後鏈的引物RNA短鏈,再由DNA聚合酶 III 作用合成DNA,直至遇到下一個引物或岡崎片段為止。由RNA酶H降解RNA引物並由DNA聚合酶 I 將缺口補齊,再由DNA連接酶將每兩個岡崎片段連在一起形成大分子DNA.。
❷ 以大腸桿菌為例,論述原核生物DNA的復制過程
以原核生物DNA復制過程予以簡要說明 1.DNA雙螺旋的解旋 DNA在復制時,其雙鏈首先解開,形成復制叉,而復制叉的形成則是由多種蛋白質及酶參與的較復雜的復制過程 (1)單鏈DNA結合蛋白(single—stranded DNA binding protein,ssbDNA蛋白) ssbDNA蛋白是較牢固的結合在單鏈DNA上的蛋白質。原核生物ssbDNA蛋白與DNA結合時表現出協同效應:若第1個ssbDNA蛋白結合到DNA上去能力為1,第2個的結合能力可高達103;真核生物細胞中的ssbDNA蛋白與單鏈DNA結合時則不表現上述效應。ssbDNA蛋白的作用是保證解旋酶解開的單鏈在復制完成前能保持單鏈結構,它以四聚體的形式存在於復制叉處,待單鏈復制後才脫下來,重新循環。所以,ssbDNA蛋白只保持單鏈的存在,不起解旋作用。(2)DNA解鏈酶(DNA helicase) DNA解鏈酶能通過水解ATP獲得能量以解開雙鏈DNA。這種解鏈酶分解ATP的活性依賴於單鏈DNA的存在。如果雙鏈DNA中有單鏈末端或切口,則DNA解鏈酶可以首先結合在這一部分,然後逐步向雙鏈方向移動。復制時,大部分DNA解旋酶可沿滯後模板的5』—〉3』方向並隨著復制叉的前進而移動,只有個別解旋酶(Rep蛋白)是沿著3』—〉5』方向移動的。故推測Rep蛋白和特定DNA解鏈酶是分別在DNA的兩條母鏈上協同作用以解開雙鏈DNA。(3)DNA解鏈過程 DNA在復制前不僅是雙螺旋而且處於超螺旋狀態,而超螺旋狀態的存在是解鏈前的必須結構狀態,參與解鏈的除解鏈酶外還有一些特定蛋白質,如大腸桿菌中的Dna蛋白等。一旦DNA局部雙鏈解開,就必須有ssbDNA蛋白以穩定解開的單鏈,保證此局部不會恢復成雙鏈。兩條單鏈DNA復制的引發過程有所差異,但是不論是前導鏈還是後隨鏈,都需要一段RNA引物用於開始子鏈DNA的合成。因此前導鏈與後隨鏈的差別在於前者從復制起始點開始按5』—3』持續的合成下去,不形成岡崎片段,後者則隨著復制叉的出現,不斷合成長約2—3kb的岡崎片段。 2.岡崎片段與半不連續復制 因DNA的兩條鏈是反向平行的,故在復制叉附近解開的DNA鏈,一條是5』—〉3』方向,另一條是3』—〉5』方向,兩個模板極性不同。所有已知DNA聚合酶合成方向均是5』—〉3』方向,不是3』—〉5』方向,因而無法解釋DNA的兩條鏈同時進行復制的問題。為解釋DNA兩條鏈各自模板合成子鏈等速復制現象,日本學者岡崎(Okazaki)等人提出了DNA的半連續復制(semidiscontinuous replication)模型。1968年岡崎用3H脫氧胸苷短時間標記大腸桿菌,提取DNA,變性後用超離心方法得到了許多3H標記的,被後人稱作岡崎片段的DNA。延長標記時間後,岡崎片段可轉變為成熟DNA鏈,因此這些片段必然是復制過程中的中間產物。另一個實驗也證明DNA復制過程中首先合成較小的片段,即用DNA連接酶溫度敏感突變株進行試驗,在連接酶不起作用的溫度下,便有大量小DNA片段積累,表明DNA復制過程中至少有一條鏈首先合成較短的片段,然後再由連接酶鏈成大分子DNA。一般說,原核生物的岡崎片段比真核生物的長。深入研究還證明,前導鏈的連續復制和滯後鏈的不連續復制在生物界具有普遍性,故稱為DNA雙螺旋的半不連續復制。 3.復制的引發和終止 所有的DNA的復制都是從一個固定的起始點開始的,而DNA聚合酶只能延長已存在的DNA鏈,不能從頭合成DNA鏈,新DNA的復制是如何形成的?經大量實驗研究證明,DNA復制時,往往先由RNA聚合酶在DNA模板上合成一段RNA引物,再由聚合酶從RNA引物3』端開始合成新的DNA鏈。對於前導鏈來說,這一引發過程比較簡單,只要有一段RNA引物,DNA聚合酶就能以此為起點,一直合成下去。對於後隨鏈,引發過程較為復雜,需要多種蛋白質和酶參與。後隨鏈的引發過程由引發體來完成。引發體由6種蛋白質構成,預引體或引體前體把這6種蛋白質結合在一起並和引發酶或引物過程酶進一步組裝形成引發體。引發體似火車頭一樣在後隨鏈分叉的方向前進,並在模板上斷斷續續的引發生成滯後鏈的引物RNA短鏈,再由DNA聚合酶 III 作用合成DNA,直至遇到下一個引物或岡崎片段為止。由RNA酶H降解RNA引物並由DNA聚合酶 I 將缺口補齊,再由DNA連接酶將每兩個岡崎片段連在一起形成大分子DNA。
❸ 原核生物和真核生物DNA復制過程
原核生物與真核生物dna復制共同的特點:
1分為起始、延伸、終止三個過程;
2必須有提供3』羥基末端的引物;
3親代dna分子為模板,四種脫氧三磷酸核苷(dntp)為底物,多種酶及蛋白質
:dna拓撲異構酶、dna解鏈酶、單鏈結合蛋白、引物酶、
dna聚合酶、rna酶以及dna連接酶等.
4一般為雙向復制、半保留復制、半不連續復制.
原核生物與真核生物dna復制不同的特點:
1真核生物為線性dna,具有多個復制起始位點,形成多個復制叉,dna聚合酶的移動速度較原核生物慢.原核生物為一般為環形dna,具有單一復制起始位點.
2真核生物dna復制只發生在細胞周期的s期,一次復制開始後在完成前不再進行復制,原核生物多重復制同時進行.
3真核生物復制子大小不一且並不同步.
4原核生物有9-mer和13-mer的重復序列構成的復制起始位點,而真核生物的復制起始位點無固定形式.
5真核生物有五種dna聚合酶,需要mg+.主要復制酶為dna聚合酶δ(ε),引物由dna聚合酶α合成.原核生物只有三種,主要復制酶為dna聚合酶iii.
6真核生物末端靠端粒酶補齊,而原核生物以多聯體的形式補齊.
7真核生物岡崎片段間的rna引物由核酸外切酶mf1去除,而原核生物岡崎片段由dna聚合酶i去除.8真核生物dna聚合酶γ負責線粒體dna合成.9真核生物dna聚合酶δ的高前進能力來自於rf-c蛋白與pcna蛋白的互相作用.原核生物dna聚合酶iii的前進能力來自與γ復合體(夾鉗裝載機)與β亞基二聚體(β夾鉗)的相互作用。
❹ 原核生物DNA復制的詳細過程
復制開始時,DNA分子首先利用細胞提供的能量,在解旋酶的作用下,把兩條螺旋的雙鏈解開,這個過程叫解旋。然後,以解開的每一段母鏈為模板,以周圍環境中的四種脫氧核苷酸為原料,按照鹼基配對互補配對原則,在DNA聚合酶的作用下,各自合成與母鏈互補的一段子鏈。隨著解旋過程的進行,新合成的子鏈也不斷地延伸,同時,每條子鏈與其母鏈盤繞成雙螺旋結構,從而各形成一個新的DNA分子。
1.DNA雙螺旋的解旋
DNA在復制時,其雙鏈首先解開,形成復制叉,這是一種有多種蛋白質及酶參與的復雜過程。
①DNA解鏈酶
②單鏈DNA結合蛋白
③DNA拓撲異構酶
2.DNA復制的引發
所有DNA的復制都是從一個固定起始點開始的。
3.復制的延伸
在復制的延伸過程中,前導鏈和後隨鏈的合成同時進行。前導鏈持續合成,由全酶異二聚體中的一個亞單位和前導鏈模板結合,在引物RNA合成的基礎上,連續合成新的DNA,其合成方向與復制叉一致。
後隨鏈的合成分段進行,形成中間產物岡崎片段,再通過共價連接成一條連續完整的新DNA鏈。分為4個步驟:
❺ 原核生物與真核生物的dna復制過程
DNA復制是指DNA雙鏈在細胞分裂以前進行的復制過程,復制的結果是一條雙鏈變成兩條一樣的雙鏈(如果復制過程正常的話),每條雙鏈都與原來的雙鏈一樣。(排除突變等不定因素)
這個過程是透過名為半保留復制的機制來得以順利完成的。半保留復制是由華生與克里克所預測,並且由麥賽爾森(Matthew Meselson)和斯特爾(Franklin Stahl)於1958年進行研究而得以證實。
復制可以分為以下幾個階段:
* 起始階段:DNA解旋酶在局部展開雙螺旋結構的DNA分子為單鏈,引物酶辨認起始位點,以解開的一段DNA為模板,按照5'到3'方向合成RNA短鏈。形成RNA引物。
* DNA片段的生成:在引物提供了3'-OH末端的基礎上,DNA聚合酶催化DNA的兩條鏈同時進行復制過程,由於復制過程只能由5'->3'方向合成,因此一條鏈能夠連續合成,另一條鏈分段合成,其中每一段短鏈成為岡崎片段(Okazaki fragments)。
* RNA引物的水解:當DNA合成一定長度後,DNA聚合酶水解RNA引物,補填缺口。
* DNA連接酶將DNA片段連接起來,形成完整的DNA分子。
最後DNA新合成的片段在旋轉酶的幫助下重新形成螺旋狀。
❻ 原核細胞dna復制過程包括哪幾個階段
原核細胞的分裂包括兩個方面:(1)細胞DNA的復制和分配,使分裂後的子細胞能得到親代細胞的一整套遺傳物質;(2)細胞質分裂,把細胞基本上分成兩等份。
原核細胞的DNA分子是環狀的,無游離端。
在一系列酶的催化下,經過解旋和半保留式復制,形成了兩個一樣的環狀DNA分子。復制常是由DNA附著在質膜上的部位開始。在DNA分子復制完成之後,便開始了細胞質分裂。當然,在開始分裂之前需要細胞生長,細胞的生長反映了細胞內按比例地合成一定量的結構蛋白酶。
細胞分裂時,先由一定部位開始。復制好的兩個DNA分子仍與膜相連;隨著連接處的生長,把DNA分子拉開。在細胞中部,質膜環繞細胞發生內褶,褶中產生了新的壁物質,形成了隔。隔不斷向中央生長延伸,最後形成了將細胞隔為兩部分的完整的隔。隔縱裂為二,把母細胞分成了大致相等的兩個子細胞。
❼ 簡述原核生物DNA的復制過程
DNA的復制是一個邊解旋邊復制的過程。復制開始時,DNA分子首先利用細胞提供的能量,在解旋酶的作用下,把兩條螺旋的雙鏈解開,這個過程叫解旋。然後,以解開的每一段母鏈為模板,以周圍環境中的四種脫氧核苷酸為原料,按照鹼基配對互補配對原則,在DNA聚合酶的作用下,各自合成與母鏈互補的一段子鏈。隨著解旋過程的進行,新合成的子鏈也不斷地延伸,同時,每條子鏈與其母鏈盤繞成雙螺旋結構,從而各形成一個新的DNA分子。這樣,復制結束後,一個DNA分子,通過細胞分裂分配到兩個子細胞中去!