微生物認識
A. 微生物的介紹
微生物學是生物學的分支學科之一,它是研究各類微小生物,如細菌、放線菌、真菌、病毒、立克次氏體、枝原體、衣原體、原生動物以及藻類等的形態、生理、生物化學、分類和生態的科學。甲骨文中的「酒」字
微生物學發展簡史
自古以來,人類在日常生活和生產實踐中,已經覺察到微生物的生命活動及其所發生的作用。中國利用微生物進行釀酒的歷史,可以追溯到4000多年前的龍山文化時期。殷商時代的甲骨文中刻有「酒」字。北魏賈思勰的《齊民要術》中,列有穀物制曲,釀酒、制醬、造醋和腌菜等方法。
在古希臘留下來的石刻上,記有釀酒的操作過程。中國在春秋戰國時期,就已經利用微生物分解有機物質的作用,進行漚糞積肥。公元二世紀的《神農本草經》中,有白僵蠶治病的記載。公園六世紀的《左傳》中,有用麥曲治腹瀉病的記載。在10世紀的《醫宗金鑒》中,有關於種痘方法的記載。1796年,英國人琴納發明了牛痘苗,為免疫學的發展奠定了基礎。
17世紀,荷蘭人列文虎克用自製的簡單顯微鏡(可放大160~260倍)觀察牙垢、雨水、井水和植物浸液後,發現其中有許多運動著的「微小動物」,並用文字和圖畫科學地記載了人類最早看見的「微小動物」——細菌的不同形態(球狀、桿狀和螺旋狀等)。過了不久,義大利植物學家米凱利也用簡單的顯微鏡觀察了真菌的形態。
1838年,德國動物學家埃倫貝格在《纖毛蟲是真正的有機體》一書中,把纖毛蟲綱分為22科,其中包括3個細菌的科(他將細菌看作動物),並且創用細菌一詞。1854年,德國植物學家科恩發現桿狀細菌的芽孢,他將細菌歸屬於植物界,確定了此後百年間細菌的分類地位。法國微生物學家—巴斯德
微生物學的研究從19世紀60年代開始進入生理學階段。法國科學家巴斯德對微生物生理學的研究為現代微生物學奠定了基礎。他論證酒和醋的釀造以及一些物質的腐敗都是由一定種類的微生物引起的發酵過程,並不是發酵或腐敗產生微生物;他認為發酵是微生物在沒有空氣的環境中的呼吸作用,而酒的變質則是有害微生物生長的結果;他進一步證明不同微生物種類各有獨特的代謝機能,各自需要不同的生活條件並引起不同的作用;他提出了防止酒變質的加熱滅菌法,後來被人稱為巴斯德滅菌法,使用這一方法可使新生產的葡萄酒和啤酒長期保存。
後來,他開始研究人、禽、畜的傳染病(狂犬病、炭疽病和雞霍亂等),創立了病原微生物是傳染病因的正確理論,和應用菌苗接種預防傳染病的方法。巴斯德在微生物學各方面的科學研究成果,促進了醫學、發酵工業和農業的發展。
與巴斯德同時代的德國微生物學家科赫對新興的醫學微生物學作出了巨大貢獻。科赫首先論證炭疽桿菌是炭疽病的病原苗,接著又發現結核病和霍亂的病原細菌,並提倡採用消毒和殺菌方法防止這些疾病的傳播;他的學生們也陸續發現白喉,肺炎、破傷風、鼠疫等的病原細菌,導致了當時和以後數十年間人們對細菌給予高度的重視;他首創細菌的染色方法,採用了以瓊脂作凝固培養基培養細菌和分離單苗落而獲得純培養的操作過程;他規定了鑒定病原細菌的方法和步驟,提出著名的科赫法則。
1860年,英國外科醫生利斯特應用葯物殺菌,並創立了無菌的外科手術操作方法。1901年,著名細菌學家和動物學家梅契尼科夫發現白細胞吞噬細菌的作用,對免疫學的發展作出了貢獻。
俄國出生的法國微生物學家維諾格拉茨基於1887年發現硫磺細菌,1890年發現硝化細菌,他論證了土壤中硫化作用和硝化作用的微生物學過程以及這些細菌的化能營養特性。他最先發現嫌氣性的自生固氮細菌,並運用無機培養基、選擇性培養基以及富集培養等原理和方法,研究土壤細菌各個生理類群的生命活動,揭示土壤微生物參與土壤物質轉化的各種作用,為土壤微生物學的發展奠定了基礎。
1892年,俄國植物生理學家伊萬諾夫斯基發現煙草花葉病原體是比細菌還小的、能通過細菌過濾器的,光學顯微鏡不能窺測的生物,稱之為過濾性病毒。 1915~1917年,特沃特和埃雷爾觀察細菌苗落上出現噬菌斑以及培養液中的溶菌現象,發現了細菌病毒——噬菌體。病毒的發現使人們對生物的概念從細胞形態擴大到了非細胞形態。
20世紀以來,生物化學和生物物理學向微生物學滲透,再加上電子顯微鏡的發明和同位素示蹤原子的應用,推動了微生物學向生物化學階段的發展。1897年德國學者畢希納發現酵母菌的無細胞提取液能與酵母一樣具有發酵糖液產生乙醇的作用,從而認識了酵母菌酒精發酵的酶促過程,將微生物生命活動與酶化學結合起來。
諾伊貝格等人對酵母菌生理的研究和對酒精發酵中間產物的分析,克勒伊沃對微生物代謝的研究以及他所開拓的比較生物化學的研究方向,其他許多人以大腸桿菌為材料所進行的一系列基本生理和代謝途徑的研究,都闡明了生物體的代謝規律和控制其代謝的基本原理,並且在控制微生物代謝的基礎上擴大利用微生物,發展酶學,推動了生物化學的發展。從20世紀30年代起,人們利用微生物進行乙醇、丙酮、丁醇、甘油、各種有機酸、氨基酸、蛋白質、油脂等的工業化生產。
1929年,弗萊明發現青黴菌能抑制葡萄球菌的生長,揭示了微生物間的拮抗關系,並發現了青黴素。1949年,瓦克斯曼在他多年研究土壤微生物所積累資料的基礎上,發現了鏈黴素。此後陸續發現的新抗生素越來越多。這些抗生素除醫用外,也應用於防治動植物的病害和食品保藏。
1941年,比德爾和塔特姆用X射線和紫外線照射鏈孢霉,使其產生變異,獲得營養缺陷型。他們對營養缺陷型的研究不僅可以進一步了解基因的作用和本質,而且為分子遺傳學打下了基礎。1944年,埃弗里第一次證實了引起肺炎球菌形成莢膜遺傳性狀轉化的物質是脫氧核糖核酸(DNA)。1953年,沃森和克里克提出了DNA分子的雙螺旋結構模型和核酸半保留復制學說。
富蘭克爾-康拉特等通過煙草花葉病毒重組試驗,證明核糖核酸(RNA)是遺傳信息的載體,為奠定分子生物學基礎起了重要作用。其後,又相繼發現轉運核糖核酸(tRNA)的作用機制、基因三聯密碼的論說、病毒的細微結構和感染增殖過程、生物固氮機制等微生物學中的重要理論,展示了微生物學廣闊的應用前景。
1957年,科恩伯格等成功地進行了DNA的體外組合和操縱。近年來,原核微生物基因重組的研究不斷獲得進展,胰島素已用基因轉移的大腸桿菌發酵生產,干擾素也已開始用細菌生產。現代微生物學的研究將繼續向分子水平深入,向生產的深度和廣度發展。
在微生物學的發展過程中,按照研究內容和目的的不同,相繼建立了許多分支學科:研究微生物基本性狀的有關基礎理論的有微生物形態學、微生物分類學、微生物生理學、微生物遺傳學和微生物生態學;研究微生物各個類群的有細菌學、真菌學、藻類學、原生動物學、病毒學等;研究在實踐中應用微生物的有醫學微生物學、工業微生物學、農業微生物學、食品微生物學、乳品微生物學、石油微生物學、土壤微生物學、水的微生物學飼料微生物學、環境微生物學、免疫學等。
由於微生物學各分支學科的相互配合、互相促進,以及與生物化學、生物物理學、分子生物學等學科的相互滲透,使其在基礎理論研究和實際應用兩方面都有了迅速的發展。
B. 人類對微生物的認識3句話概括
1錯,月相的變化是由於太陽,月球,地球之間的位置的變化而變化的
2生活垃圾並不是都是無用的,比如,有的垃圾經過分解或處理可以成為作物養料等
3微生物並不是對人類都是有害的,比如有些微生物可以分解垃圾中的化學成分,使之成為肥料
4經過處理應該是可以吧...
C. 人類認識微生物的過程
樓主下載下這個pdf看看就明白了,很詳細的
http://60.164.110.123/ebook/gjfd/ts002056.pdf
D. 人類對微生物認識的歷史
看這個資料吧:http://ke..com/view/3736.htm
解釋得很詳細了吧,有版圖片權的
E. 談談對微生物免疫學的認識
微生物類群十分龐雜,包括: 硝化細菌、無細胞結構的病毒、類病毒、擬病毒等,屬於原核生物的細菌、放線菌、立克次氏體、衣原體等,屬於真核生物的酵母菌和黴菌,單細胞藻類、原生動物等。
F. 怎麼寫一篇關於對微生物認識的文章
微生物(microorganism簡稱microbe)是包括細菌、病毒、真菌以及一些小型的原生動物等在內的一大 類生物群體,它個體微小,卻與人類生活密切相關。微生物在自然界中可謂「無處不在,無處不有」,涵蓋了有益有害的眾多種類,廣泛涉及健康、醫葯、工農業、環保等諸多領域。 體微小,一般<0.1mm。構造簡單,有單細胞的,簡單多細胞的,非細胞的進化地位低。 微生物五大共性: 1,體積小,面積大。 2,吸收多,轉化快。 3,生長旺,繁殖快。4,適應強,易變異。5,分布廣,種類多。微生物與人類的生產、生活和生存息息相關。有很多食品(如醬油、醋、味精、酒、酸奶、乳酪、蘑菇)、工業品(如皮革、紡織、石化)、葯品(如抗生素、疫苗、維生素、生態農葯)是依賴於微生物製造的;微生物在礦產探測與開采、廢物處理(如水凈化、沼氣發酵)等各種領域中也發揮重要作用。微生物是自然界唯一認知的固氮者(如大豆根瘤菌)與動植物殘體降解者(如纖維素的降解),同時位於常見生物鏈的首末兩端,從而完成碳、氮、硫、磷等生物質在大循環中的銜接。若沒有微生物,眾多生物就失去必需的營養來源、植物的纖維質殘體就無法分解而無限堆積,就沒有自然界當前的繁榮與秩序或人類的產生與維續。此外,微生物對地球上氣候的變化也起著重要作用。許多微生物直接參與了溫室氣體的排放或者吸收,而也有很多微生物可以成為未來的生物燃料。 生物對人類最重要的影響之一是導致傳染病的流行。在人類疾病中有50%是由病毒引起。世界衛生組織公布資料顯示:傳染病的發病率和病死率在所有疾病中占據第一位。微生物導致人類疾病 微生物的歷史,也就是人類與之不斷斗爭的歷史。在疾病的預防和治療方面,人類取得了長足的進展,但是新現和再現的微生物感染還是不斷發生,像大量的病毒性疾病一直缺乏有效的治療葯物。一些疾病的致病機制並不清楚。大量的廣譜抗生素的濫用造成了強大的選擇壓力,使許多菌株發生變異,導致耐葯性的產生,人類健康受到新的威脅。一些分節段的病毒之間可以通過重組或重配發生變異,最典型的例子就是流行性感冒病毒。每次流感大流行流感病毒都與前次導致感染的株型發生了變異,這種快速的變異給疫苗的設計和治療造成了很大的障礙。而耐葯性結核桿菌的出現使原本已近控制住的結核感染又在世界范圍內猖獗起來。微生物千姿百態,有些是腐敗性的,即引起食品氣味和組織結構發生不良變化。當然有些微生物是有益的,它們可用來生產如乳酪,麵包,泡菜,啤酒和葡萄酒。
G. 我認識的微生物作文
對微生物的認識
地球上,除了我們人類,還有許多生物,它們和我們生活在一起,如,動物、植物等,但在我們肉眼看不到的地方,還有一種生物,——它就是微生物,一個不起眼的「小人國」。
今天下午的科學課上,我第一次認識了微生物。
鈴聲響起,科學老師走了進來,只見他手上提著一隻籃子,裡面放著一台顯微鏡和一瓶很臟的水,咦,我不禁納悶:老師帶一瓶臟水來上課,干什麼用呢?帶著一連串的問題,我認真聽老師講課……
「今天我們要來認識一個新朋友,請大家歡迎。」我們帶著疑問將目光投向老師,這時,老師將載玻片拿出來,用滴管從那很臟的水中取出一滴,放在玻璃片上,製成了一個標片,放在顯微鏡下,調好光度、亮度,觀察著。
我們都很好奇,伸長脖子張望著,過了一會,老師抬起頭來,說:「誰想上來認識新朋友?」「我」,同學們爭先恐後地舉手,都想去認識新朋友,老師讓我們按照順序上去觀察,一個,兩個,三個,……快要輪到我了。
到我了,我俯下身子,把眼睛對著目鏡觀察,只見一隻只如米粒大的小蟲在鏡片上爬來爬去,小蟲兩頭尖尖的中間圓圓的,行動起來非常迅速,一會兒在這,一會兒在那,而且微生物非常多、密。原來這么一小滴水中就有那麼多微生物,怪不得湖裡的水不能喝。
觀察完了微生物,老師開始上課,這次科學課,讓我更了解微生物,更喜歡科學課了!
這堂有趣的科學課,讓我明白了我們身邊處處有科學,只是我們沒有仔細觀察。只要我們仔細觀察,仔細思考,就會發現科學知識,就能打開科學大門,我永遠都不會忘了這堂有趣的科學課!
H. 微生物常識
微生物的定義
形體微小,結構簡單,通常要用光學顯微鏡和電子顯微鏡才能看清楚的生物,統稱為微生物。 (但有些微生物是可以看見的,像屬於真菌的蘑菇、靈芝等。)
1 特點: 個體微小,一般<0.1mm。
構造簡單,有單細胞的,簡單多細胞的,非細胞的。進化地位低。
2 分類:
原核類: 三菌,三體。
真核類: 真菌,原生動物,顯微藻類。
非細胞類: 病毒,亞病毒 ( 類病毒,擬病毒,朊病毒)。
3 五大共性:
體積小,面積大;
吸收多,轉化快微生物;
生長旺,繁殖快;
適應強,易變異;
分布廣,種類多。
[編輯本段]微生物的類群
種類
原核:細菌、放線菌、螺旋體、支原體、立克次氏體、衣原體。
真核:真菌、藻類、原生動物。
非細胞類:病毒和亞病毒。
一般地,在中國大陸地區的教科書中,均將微生物劃分為以下8大類:
細菌、病毒、真菌、放線菌、立克次體、支原體、衣原體、螺旋體。
1 細菌:
(1)定義:一類細胞細短,結構簡單,胞壁堅韌,多以二分裂方式繁殖和水生性強的原核生物
(2)分布:溫暖,潮濕和富含有機質的地方
(3)結構:主要是單細胞的原核生物,有球形,桿形,螺旋形
基本結構:細胞膜 細胞壁 細胞質 核質
特殊結構:莢膜、鞭毛、菌毛、芽胞
(4)繁殖: 主要以二分裂方式進行繁殖的
(5)菌落: 單個細菌用肉眼是看不見的,當單個或少數細菌在固體培養基啊行大量繁殖時,便會形成一個肉眼可見的,具有一定形態結構的子細胞群落.
菌落是菌種鑒定的重要依據.不同種類的細菌菌落的大小,形狀光澤度顏色硬度透明度都不同.
2 放線菌
(1)定義:一類主要成菌絲狀生長和以孢子繁殖的陸生性較強的原核生物
(2)分布:含水量較低,有機物較豐富的,呈微鹼性的土壤中
(3)形態構造:主要由菌絲組成,包括基內菌絲和氣生菌絲(部分氣生菌絲可以成熟分化為孢子絲,產生孢子)
(4)繁殖:通過形成無性孢子的形式進行無性繁殖
無性繁殖 有性繁殖
(5)菌落:在固體培養基上:乾燥,不透明,表面呈緻密的絲絨狀,彩色乾粉
3 病毒
(1) 定義:一類由核酸和蛋白質等少數幾種成分組成的「非細胞生物」,但是它的生存必須依賴於活細胞.
(2)結構:蛋白質衣殼以及核酸(核酸為DNA或RNA)
(3)大小:一般直徑在100nm左右,最大的病毒直徑為200nm的牛痘病毒,最小的病毒直徑為28nm的脊髓灰質炎病毒
(4)增殖:病毒的生命活動中一個顯著的特點為寄生性。病毒只能寄生在某種特定的活細胞內才能生活。並利用會宿主細胞內的環境及原料快速復制增值。在非寄生狀態時呈結晶狀,不能進行獨立的代謝活動。以 噬菌體為例: 吸附→DNA注入→復制、合成→組裝→釋放
[編輯本段]微生物的特點
一、微生物的化學組成
C,H,O,N,P,S以及其他元素
二、微生物的營養物質
1 水和無機鹽
2 碳源:凡能為微生物提供生長繁殖所需碳元素的營養物質
來源
作用
3氮源:凡能為微生物提供所必需氮元素的營養物質
來源
作用:主要用於合成蛋白質,核酸以及含氮的代謝產物
4 能源:能為微生物生命活動提供最初能源來源的營養物質或輻射能
根據碳源和能源分類:
5生長因子:微生物生長不可缺少的微量有機物
能引起人和動物致病的微生物叫病源微生物,有八大類:
1.真菌:引起皮膚病。深部組織上感染。
2放線菌:皮膚,傷口感染。
3螺旋體:皮膚病,血液感染 如梅毒,鉤端螺旋體病。
4細菌:皮膚病化膿,上呼吸道感染 ,泌尿道感染,食物中毒,敗血壓症,急性傳染病等。
5立克次氏體:斑疹傷寒等。
6衣原體:沙眼,泌尿生殖道感染。
7病毒:肝炎,乙型腦炎,麻疹,艾滋病等。
8支原體:肺炎,尿路感染。
生物界的微生物達幾萬種,大多數對人類有益,只有一少部份能致病。有些微生物通常不致病,在特定環境下能引起感染稱條件致病菌。 能引起食品變質,腐敗,正因為它們分解自然界的物體,才能完成大自然的物質循環。
微生物的作用
微生物對人類最重要的影響之一是導致傳染病的流行。在人類疾病中有50%是由病毒引起。世界衛生組織公布資料顯示:傳染病的發病率和病死率在所有疾病中占據第一位。微生物導致人類疾病的歷史,也就是人類與之不斷斗爭的歷史。在疾病的預防和治療方面,人類取得了長足的進展,但是新現和再現的微生物感染還是不斷發生,像大量的病毒性疾病一直缺乏有效的治療葯物。一些疾病的致病機制並不清楚。大量的廣譜抗生素的濫用造成了強大的選擇壓力,使許多菌株發生變異,導致耐葯性的產生,人類健康受到新的威脅。一些分節段的病毒之間可以通過重組或重配發生變異,最典型的例子就是流行性感冒病毒。每次流感大流行流感病毒都與前次導致感染的株型發生了變異,這種快速的變異給疫苗的設計和治療造成了很大的障礙。而耐葯性結核桿菌的出現使原本已近控制住的結核感染又在世界范圍內猖獗起來。
微生物千姿百態,有些是腐敗性的,即引起食品氣味和組織結構發生不良變化。當然有些微生物是有益的,它們可用來生產如乳酪,麵包,泡菜,啤酒和葡萄酒。微生物非常小,必須通過顯微鏡放大約1000 倍才能看到。比如中等大小的細菌,1000個疊加在一起只有句號那麼大。想像一下一滴牛奶,每毫升腐敗的牛奶中約有5千萬個細菌,或者講每誇脫牛奶中細菌總數約為50億。也就是一滴牛奶中可有含有50 億個細菌。
微生物能夠致病,能夠造成食品、布匹、皮革等發霉腐爛,但微生物也有有益的一面。最早是弗萊明從青黴菌抑制其它細菌的生長中發現了青黴素,這對醫葯界來講是一個劃時代的發現。後來大量的抗生素從放線菌等的代謝產物中篩選出來。抗生素的使用在第二次世界大戰中挽救了無數人的生命。一些微生物被廣泛應用於工業發酵,生產乙醇、食品及各種酶制劑等;一部分微生物能夠降解塑料、處理廢水廢氣等等,並且可再生資源的潛力極大,稱為環保微生物;還有一些能在極端環境中生存的微生物,例如:高溫、低溫、高鹽、高鹼以及高輻射等普通生命體不能生存的環境,依然存在著一部分微生物等等。看上去,我們發現的微生物已經很多,但實際上由於培養方式等技術手段的限制,人類現今發現的微生物還只佔自然界中存在的微生物的很少一部分。
微生物間的相互作用機制也相當奧秘。例如健康人腸道中即有大量細菌存在,稱正常菌群,其中包含的細菌種類高達上百種。在腸道環境中這些細菌相互依存,互惠共生。食物、有毒物質甚至葯物的分解與吸收,菌群在這些過程中發揮的作用,以及細菌之間的相互作用機制還不明了。一旦菌群失調,就會引起腹瀉。
隨著醫學研究進入分子水平,人們對基因、遺傳物質等專業術語也日漸熟悉。人們認識到,是遺傳信息決定了生物體具有的生命特徵,包括外部形態以及從事的生命活動等等,而生物體的基因組正是這些遺傳信息的攜帶者。因此闡明生物體基因組攜帶的遺傳信息,將大大有助於揭示生命的起源和奧秘。在分子水平上研究微生物病原體的變異規律、毒力和致病性,對於傳統微生物學來說是一場革命。
以人類基因組計劃為代表的生物體基因組研究成為整個生命科學研究的前沿,而微生物基因組研究又是其中的重要分支。世界權威性雜志《科學》曾將微生物基因組研究評為世界重大科學進展之一。通過基因組研究揭示微生物的遺傳機制,發現重要的功能基因並在此基礎上發展疫苗,開發新型抗病毒、抗細菌、真菌葯物,將對有效地控制新老傳染病的流行,促進醫療健康事業的迅速發展和壯大!
從分子水平上對微生物進行基因組研究為探索微生物個體以及群體間作用的奧秘提供了新的線索和思路。為了充分開發微生物(特別是細菌)資源,1994年美國發起了微生物基因組研究計劃(MGP)。通過研究完整的基因組信息開發和利用微生物重要的功能基因,不僅能夠加深對微生物的致病機制、重要代謝和調控機制的認識,更能在此基礎上發展一系列與我們的生活密切相關的基因工程產品,包括:接種用的疫苗、治療用的新葯、診斷試劑和應用於工農業生產的各種酶制劑等等。通過基因工程方法的改造,促進新型菌株的構建和傳統菌株的改造,全面促進微生物工業時代的來臨。
工業微生物涉及食品、制葯、冶金、采礦、石油、皮革、輕化工等多種行業。通過微生物發酵途徑生產抗生素、丁醇、維生素C以及一些風味食品的制備等;某些特殊微生物酶參與皮革脫毛、冶金、採油采礦等生產過程,甚至直接作為洗衣粉等的添加劑;另外還有一些微生物的代謝產物可以作為天然的微生物殺蟲劑廣泛應用於農業生產。通過對枯草芽孢桿菌的基因組研究,發現了一系列與抗生素及重要工業用酶的產生相關的基因。乳酸桿菌作為一種重要的微生態調節劑參與食品發酵過程,對其進行的基因組學研究將有利於找到關鍵的功能基因,然後對菌株加以改造,使其更適於工業化的生產過程。國內維生素C兩步發酵法生產過程中的關鍵菌株氧化葡萄糖酸桿菌的基因組研究,將在基因組測序完成的前提下找到與維生素C生產相關的重要代謝功能基因,經基因工程改造,實現新的工程菌株的構建,簡化生產步驟,降低生產成本,繼而實現經濟效益的大幅度提升。對工業微生物開展的基因組研究,不斷發現新的特殊酶基因及重要代謝過程和代謝產物生成相關的功能基因,並將其應用於生產以及傳統工業、工藝的改造,同時推動現代生物技術的迅速發展。
據資料統計,全球每年因病害導致的農作物減產可高達20%,其中植物的細菌性病害最為嚴重。除了培植在遺傳上對病害有抗性的品種以及加強園藝管理外,似乎沒有更好的病害防治策略。因此積極開展某些植物致病微生物的基因組研究,認清其致病機制並由此發展控制病害的新對策顯得十分緊迫。
經濟作物柑橘的致病菌是國際上第一個發表了全序列的植物致病微生物。還有一些在分類學、生理學和經濟價值上非常重要的農業微生物,例如:胡蘿卜歐文氏菌、植物致病性假單胞菌以及中國正在開展的黃單胞菌的研究等正在進行之中。日前植物固氮根瘤菌的全序列也剛剛測定完成。借鑒已經較為成熟的從人類病原微生物的基因組學信息篩選治療性葯物的方案,可以嘗試性地應用到植物病原體上。特別像柑橘的致病菌這種需要昆蟲媒介才能完成生活周期的種類,除了殺蟲劑能阻斷其生活周期以外,只能通過遺傳學研究找到毒力相關因子,尋找抗性靶位以發展更有效的控制對策。固氮菌全部遺傳信息的解析對於開發利用其固氮關鍵基因提高農作物的產量和質量也具有重要的意義。
在全面推進經濟發展的同時,濫用資源、破壞環境的現象也日益嚴重。面對全球環境的一再惡化,提倡環保成為全世界人民的共同呼聲。而生物除污在環境污染治理中潛力巨大,微生物參與治理則是生物除污的主流。微生物可降解塑料、甲苯等有機物;還能處理工業廢水中的磷酸鹽、含硫廢氣以及土壤的改良等。微生物能夠分解纖維素等物質,並促進資源的再生利用。對這些微生物開展的基因組研究,在深入了解特殊代謝過程的遺傳背景的前提下,有選擇性的加以利用,例如找到不同污染物降解的關鍵基因,將其在某一菌株中組合,構建高效能的基因工程菌株,一菌多用,可同時降解不同的環境污染物質,極大發揮其改善環境、排除污染的潛力。美國基因組研究所結合生物晶元方法對微生物進行了特殊條件下的表達譜的研究,以期找到其降解有機物的關鍵基因,為開發及利用確定目標。
在極端環境下能夠生長的微生物稱為極端微生物,又稱嗜極菌。嗜極菌對極端環境具有很強的適應性,極端微生物基因組的研究有助於從分子水平研究極限條件下微生物的適應性,加深對生命本質的認識。
有一種嗜極菌,它能夠暴露於數千倍強度的輻射下仍能存活,而人類一個劑量強度就會死亡。該細菌的染色體在接受幾百萬拉德a射線後粉碎為數百個片段,但能在一天內將其恢復。研究其DNA修復機制對於發展在輻射污染區進行環境的生物治理非常有意義。開發利用嗜極菌的極限特性可以突破當前生物技術領域中的一些局限,建立新的技術手段,使環境、能源、農業、健康、輕化工等領域的生物技術能力發生革命。來自極端微生物的極端酶,可在極端環境下行使功能,將極大地拓展酶的應用空間,是建立高效率、低成本生物技術加工過程的基礎,例如PCR技術中的TagDNA聚合酶、洗滌劑中的鹼性酶等都具有代表意義。極端微生物的研究與應用將是取得現代生物技術優勢的重要途徑,其在新酶、新葯開發及環境整治方面應用潛力極大。
[編輯本段]微生物在整個生命世界中的地位
當人類在發現和研究微生物之前,把一切生物分成截然不同的兩大界-動物界和植物界。隨著人們對微生物認識的逐步深化,從兩界系統經歷過三界系統、四界系統、五界系統甚至六界系統,直到20世紀70年代後期,美國人Woese等發現了地球上的第三生命形式-古菌,才導致了生命三域學說的誕生。該學說認為生命是由古菌域(Archaea)、細菌域(Bacteria)和真核生物域(Eucarya)所構成。在圖示「生物的系統進化樹」中,左側的黃色分枝是細菌域;中間的褐色和紫色分枝是古菌域;右側的綠色分枝是真核生物域。
古菌域包括嗜泉古菌界(Crenarchaeota)、廣域古菌界(Euryarchaeota)和初生古菌界(Korarchaeota);細菌域包括細菌、放線菌、藍細菌和各種除古菌以外的其它原核生物;真核生物域包括真菌、原生生物、動物和植物。除動物和植物以外,其它絕大多數生物都屬微生物范疇。由此可見,微生物在生物界級分類中佔有特殊重要的地位。
生命進化一直是人們關注的熱點。Brown等依據平行同源基因構建的「Cenancestor」生命進化樹,認為生命的共同祖先Cenancestor是一個原生物。原生物在進化過程中產生兩個分支,一個是原核生物(細菌和古菌),一個是原真核生物,在之後的進化過程中細菌和古菌首先向不同的方向進化,然後原真核生物經吞食一個古菌,並由古菌的DNA取代寄主的RNA基因組而產生真核生物。
從進化的角度,微生物是一切生物的老前輩。如果把地球的年齡比喻為一年的話,則微生物約在3月20日誕生,而人類約在12月31日下午7時許出現在地球上。
I. 古代對微生物有怎樣的認識
微生物是指那些微小的、靠肉眼難以看到或看清的生物。從人類開始出現,就在許多方面和它們打交道,在利用有益微生物和防除有害微生物方面,不斷地積累經驗。幾千年來,我國勞動人民在認識和利用微生物方面,有過許多重大發明創造,根據歷史記載,我國釀酒歷史至少有四五千年。殷墟出土的商代甲骨文中,有和現代漢字形體相似的字。在殷墟中發現的釀酒作坊遺址,證明早在3000多年前,我國的釀酒事業已經相當發達。
岐伯是黃帝之臣,也是黃帝的太醫,奉黃帝之命嘗味各種草木,典主醫病經方。
相傳岐伯曾經乘坐由12隻白鹿拉的絳雲車,遨遊於東海中的蓬萊仙山,奉黃帝之命向仙人求不死之葯,十分浪漫。
有一次,黃帝問岐伯:「上古時代有學問的醫生,製成湯液,但雖然制好,卻備在那裡不用,這是什麼道理?」
岐伯說:「古代有學問的醫生,他做好的湯液,是以備萬一的。因為上古太和之世,人們身心康泰,很少疾病,所以雖製成了湯液,還是放在那裡不用的。後來,當外界邪氣乘虛傷人時,只要服些湯液酒,病就可以好了。」
接著,黃帝和岐伯又討論了湯液在治療中的作用,以及用葯物內服和砭石、針灸外治的方法。
故事中的湯液就是酒。酒是《黃帝內經》中黃帝與岐伯討論的內容之一,表明當時酒不僅用來飲用,也用於治療疾病。
J. 使人們開始認識微生物的認識是
對於形體微小、構造簡單、要在高倍數顯微鏡下才能看清面貌的微生物,我們看似熟悉實則陌生。我們知道它們藏在我們身體的腸胃等部位,參與消化等生命運作過程,但對它們到底產生多大的作用,卻並不完全清楚,甚至很多人直接忽視了微生物的存在,認為它們可有可無。
也許這正是英國科學記者埃德·揚專門撰寫一本《我包羅萬象》來介紹微生物知識的原因。埃德·揚致力於科普知識傳播工作,其作品常見於《美國國家地理》《自然》等科學媒體,還曾因為對生物醫學和生命科學知識的傳播和報道獲得多個獎項。在《我包羅萬象》這本書里,他用講故事的方法向大眾系統介紹微生物知識,讓大家重新認識微生物在動物的生命運行機制中都扮演了哪些重要角色,了解微生物這個數量龐大、與人類既合作又競爭的共生盟友。