水族微生物
海洋微生物就是以海洋水體為正常棲居環境的一切微生物.
海洋微生物以單細胞藻類和微小的多細胞藻類為主,其種類和數量是海洋微生物中最多的,也是構成海洋生態鏈的基礎.
除了藻類外,各種細菌、多種酵母菌也都有.在海洋表層和近岸地區,海洋微生物最為豐富.在深海海底藻類種類和數量減少,細菌數量增加.在大洋中,細菌等微生物和種類和數量下降,主要是藻類.
B. 海洋中的微生物有多少種
廣袤無垠的海洋,是個巨大的寶庫。在那裡,不僅生活著為數眾多的名貴珍稀海洋生物,還蘊藏著豐富的金屬和非金屬礦藏。科學家查明,海水中含有將近80種金屬和非金屬元素,如鎂有2100萬億噸,鉀600萬億噸,溴100萬億噸,碘900多億噸,金550萬噸,銀4億噸。許多陸地上儲量少、分布散的稀有金屬,如鈾、鍶、銣、鋰等等,海水中的儲量也十分豐富。拿原子能燃料鈾來說,海水裡溶解有45億噸,比陸地上已探明的鈾礦儲量要多兩千倍!
然而,直到現在,我們還只能從海水中提取氯、鈉、溴、鎂、碘、鉀等少數幾種,大多數元素還無法開發利用。這是因為它們在海水中的濃度實在太低,比如鈾,300噸海水中才含有1克,採集起來太困難了。現在,科學家發現:有些海洋生物具有富集某些元素的本領,如果我們發現和培養能夠富集某些化學元素的微生物,利用它們繁殖快、數量大的特點,把它們釋放到海水裡大量繁殖,讓它們從海水中「吃飽喝足」各種礦物元素,然後再想辦法把它們收集起來,便可以提取出各種有用物質來。
可以預見,不久的將來,海洋微生物將在海水采礦事業中,大顯身手。新物種的創造者——微生物
基因工程是人工創造新物種的有效途徑,在這個工程中,微生物有著很大的用途。
C. 海洋微生物王國有哪些海洋生物
海洋微生物主要包括三大類,即原核微生物(如細菌)、真核微生物(如真菌、藻類和原蟲)和無細胞生物(如病毒),它們在自然界分布廣,種類多。憑借其代謝途徑的多樣性和遺傳適應性,它們能夠在許多極端環境中得以生存,並發揮重要的生態作用,不得不令人類對它們刮目相看。下面對海洋微生物中的幾種作以介紹。
1.海洋細菌
海洋細菌是原核微生物的一大類群,不含葉綠素和藻藍素,只能在海洋中生長、繁殖,是數量最大、分布最廣的海洋微生物。它們個體直徑一般不超過1微米,形狀有球狀、桿狀、螺旋狀或分枝絲狀,具有堅韌略具彈性的細胞壁,無真核。海洋中有自養和異養、光能和化能、好氧和厭氧、寄生和腐生,以及浮游和附著等類型的細菌。海洋真菌不超過500種,僅有陸地真菌種數的1%。現知的深海真菌只有5種,它們能夠生活在水深5315米的海洋深處。
通過顯微鏡,我們可以看到海洋細菌的特徵。它一共分為三種類型:體形近似球形的叫球菌;身體細長的是桿菌;體形彎曲的是螺旋菌。它們都屬於單細胞,內部結構與普通的植物細胞相似。如果細菌在適宜固體培養基表面或內部生長繁殖到一定程度,就形成了肉眼可見的小群體,叫菌落。菌落帶有不同的顏色,如綠膿桿菌的菌落是綠色的,葡萄球菌的菌落是金黃色的。細菌菌落的形狀、大小和顏色等特點,是鑒別菌種的重要依據。
2.海洋真菌
從生物進化史看,海洋真菌的出現要比細菌大約晚10億年,因此它是微生物王國中最年輕的家族。真菌由多細胞絲結構,能產生孢子進行有性和無性繁殖。真菌和細菌、放線菌最根本的區別在於它擁有真正的細胞核,因此真菌的細胞又稱為真核細胞。從原核細胞發展到真核細胞,是生物進化史上的一個重大事件。
大部分海洋真菌大多數棲於某種基物而生活,只有少數真菌不依賴基物而自由生活。根據海洋真菌的棲生習性,可將它劃分為五種基本的生態類型,分別為木生真菌、寄生藻體真菌、紅樹林真菌、海草真菌、寄生動物體真菌。
海洋真菌在海洋食物鏈中發揮著重要的作用,它參與海洋有機物質的分解和無機營養物的再生過程,為海洋生物不斷提供生命所需的物質。特別是在海洋沉積物中的真菌絲體和酵母菌體,是很多海洋動物的食物來源。有些海洋真菌能產生抗菌素和結構獨特的活性物質,在生態和應用方面有著不可忽視的作用,如降解海洋中的污染物、促進海洋自凈等。利用海洋真菌加工麥皮、甘蔗渣、稻草等,可製成微生物碎屑混合物,用作水產養殖中的飼料。這種做法有可持續發展、質量高、成本低廉等優點。
3.病毒
海洋病毒是海洋生態系統中的重要成員,具有形態多樣性及遺傳多樣性的特徵。海水中海洋病毒離海岸越近密度就越高。在海洋真光層中較多,隨海水深度增加逐漸減少,在靠近海底時又有回升的現象。
海洋中病毒會感染多種海洋生物。海洋噬菌體的裂解致死占異樣細菌死亡率的60%;海洋藍細菌、海洋真核藻等重要海洋初級生產者也會受到海洋病毒感染。病毒還能裂解某些種類浮游動物。眾所周知,病毒的感染致病,給水產養殖業帶來了重大的影響。研究表明,從1993年開始在全國對蝦養殖地區普遍發生的、危害性極大的機型流行病,是由一種桿狀病毒所引起的。除了破壞性的一面,海洋病毒也有好的一面,有些海洋病毒能夠幫助某些海洋浮游植物生長,對海洋環境和人類生存有益。目前,人們已越來越關注海洋病毒在海洋生態系統中所發揮的作用。
D. 海洋里主要有哪些微生物
http://ke..com/view/399863.htm
http://..com/question/1847495.html
以海洋水體為正常棲居環境的一切微生物。但由於學科傳統及研究方法的不同,本文不介紹單細胞藻類,而只討論細菌、真菌及噬菌體等狹義微生物學的對象。海洋細菌是海洋生態系統中的重要環節。作為分解者它促進了物質循環;在海洋沉積成岩及海底成油成氣過程中,都起了重要作用。還有一小部分化能自養菌則是深海生物群落中的生產者。海洋細菌可以污損水工構築物,在特定條件下其代謝產物如氨及硫化氫也可毒化養殖環境,從而造成養殖業的經濟損失。但海洋微生物的頡頏作用可以消滅陸源致病菌,它的巨大分解潛能幾乎可以凈化各種類型的污染,它還可能提供新抗生素以及其他生物資源,因而隨著研究技術的進展,海洋微生物日益受到重視。
【特性】
與陸地相比,海洋環境以高鹽、高壓、低溫和稀營養為特徵。海洋微生物長期適應復雜的海洋環境而生存,因而有其獨具的特性。
嗜鹽性
海洋微生物最普遍的特點。真正的海洋微生物的生長必需海水。海水中富含各種無機鹽類和微量元素。鈉為海洋微生物生長與代謝所必需此外,鉀、鎂、鈣、磷、硫或其他微量元素也是某些海洋微生物生長所必需的。
嗜冷性
大約90%海洋環境的溫度都在5℃以下,絕大多數海洋微生物的生長要求較低的溫度,一般溫度超過37℃就停止生長或死亡。那些能在 0℃生長或其最適生長溫度低於20℃的微生物稱為嗜冷微生物。嗜冷菌主要分布於極地、深海或高緯度的海域中。其細胞膜構造具有適應低溫的特點。那種嚴格依賴低溫才能生存的嗜冷菌對熱反應極為敏感,即使中溫就足以阻礙其生長與代謝。
嗜壓性
海洋中靜水壓力因水深而異,水深每增加10米,靜水壓力遞增1個標准大氣壓。海洋最深處的靜水壓力可超過1000大氣壓。深海水域是一個廣闊的生態系統,約56%以上的海洋環境處在100~1100大氣壓的壓力之中,嗜壓性是深海微生物獨有的特性。來源於淺海的微生物一般只能忍耐較低的壓力,而深海的嗜壓細菌則具有在高壓環境下生長的能力,能在高壓環境中保持其酶系統的穩定性。研究嗜壓微生物的生理特性必需藉助高壓培養器來維持特定的壓力。那種嚴格依賴高壓而存活的深海嗜壓細菌,由於研究手段的限制迄今尚難於獲得純培養菌株。根據自動接種培養裝置在深海實地實驗獲得的微生物生理活動資料判斷,在深海底部微生物分解各種有機物質的過程是相當緩慢的。
低營養性
海水中營養物質比較稀薄,部分海洋細菌要求在營養貧乏的培養基上生長。在一般營養較豐富的培養基上,有的細菌於第一次形成菌落後即迅速死亡,有的則根本不能形成菌落。這類海洋細菌在形成菌落過程中因其自身代謝產物積聚過甚而中毒致死。這種現象說明常規的平板法並不是一種最理想的分離海洋微生物方法。
趨化性與附著生長
海水中的營養物質雖然稀薄,但海洋環境中各種固體表面或不同性質的界面上吸附積聚著較豐富的營養物。絕大多數海洋細菌都具有運動能力。其中某些細菌還具有沿著某種化合物濃度梯度移動的能力,這一特點稱為趨化性。某些專門附著於海洋植物體表而生長的細菌稱為植物附生細菌。海洋微生物附著在海洋中生物和非生物固體的表面,形成薄膜,為其他生物的附著造成條件,從而形成特定的附著生物區系。
多形性
在顯微鏡下觀察細菌形態時,有時在同一株細菌純培養中可以同時觀察到多種形態,如球形橢圓形、大小長短不一的桿狀或各種不規則形態的細胞。這種多形現象在海洋革蘭氏陰性桿菌中表現尤為普遍。這種特性看來是微生物長期適應復雜海洋環境的產物。
發光性
在海洋細菌中只有少數幾個屬表現發光特性。發光細菌通常可從海水或魚產品上分離到。細菌發光現象對理化因子反應敏感,因此有人試圖利用發光細菌為檢驗水域污染狀況的指示菌。
【分布】
海洋細菌分布廣、數量多,在海洋生態系統中起著特殊的作用。海洋中細菌數量分布的規律是:近海區的細菌密度較大洋大,內灣與河口內密度尤大;表層水和水底泥界面處細菌密度較深層水大,一般底泥中較海水中大;不同類型的底質間細菌密度差異懸殊,一般泥土中高於沙土。大洋海水中細菌密度較小,每毫升海水中有時分離不出1個細菌菌落,因此必須採用薄膜過濾法:將一定體積的海水樣品用孔徑0.2微米的薄膜過濾,使樣品中的細菌聚集在薄膜上,再採用直接顯微計數法或培養法計數。大洋海水中細菌密度一般為每40毫升幾個至幾十個。在海洋調查時常發現某一水層中細菌數量劇增,這種微區分布現象主要決定於海水中有機物質的分布狀況。一般在赤潮之後往往伴隨著細菌數量增長的高峰。有人試圖利用微生物分布狀況來指示不同水團或溫躍層界面處有機物質積聚的特點,進而分析水團來源或轉移的規律。
海水中的細菌以革蘭氏陰性桿菌占優勢,常見的有假單胞菌屬等10餘個屬。相反,海底沉積土中則以革蘭氏陽性細菌偏多。芽胞桿菌屬是大陸架沉積土中最常見的屬。
海洋真菌多集中分布於近岸海域的各種基底上,按其棲住對象可分為寄生於動植物、附著生長於藻類和棲住於木質或其他海洋基底上等類群。某些真菌是熱帶紅樹林上的特殊菌群。某些藻類與菌類之間存在著密切的營養供需關系,稱為藻菌半共生關系。
大洋海水中酵母菌密度為每升 5~10個。近岸海水中可達每升幾百至幾千個。海洋酵母菌主要分布於新鮮或腐爛的海洋動植物體上,海洋中的酵母菌多數來源於陸地,只有少數種被認為是海洋種。海洋中酵母菌的數量分布僅次於海洋細菌。
在海洋環境中的作用。海洋堪稱為世界上最龐大的恆化器,能承受巨大的沖擊(如污染)而仍保持其生命力和生產力;微生物在其中是不可缺少的活躍因素。自人類開發利用海洋以來,競爭性的捕撈和航海活動、大工業興起帶來的污染以及海洋養殖場的無限擴大,使海洋生態系統的動態平衡遭受嚴重破壞。海洋微生物以其敏感的適應能力和快速的繁殖速度在發生變化的新環境中迅速形成異常環境微生物區系,積極參與氧化還原活動,調整與促進新動態平衡的形成與發展。從暫時或局部的效果來看,其活動結果可能是利與弊兼有,但從長遠或全局的效果來看,微生物的活動始終是海洋生態系統發展過程中最積極的一環。
海洋中的微生物多數是分解者,但有一部分是生產者,因而具有雙重的重要性。實際上,微生物參與海洋物質分解和轉化的全過程。海洋中分解有機物質的代表性菌群是:分解有機含氮化合物者有分解明膠、魚蛋白、蛋白腖、多肽、氨基酸、含硫蛋白質以及尿素等的微生物;利用碳水化合物類者有主要利用各種糖類、澱粉、纖維素、瓊脂、褐藻酸、幾丁質以及木質素等的微生物。此外,還有降解烴類化合物以及利用芬香化合物如酚等的微生物。海洋微生物分解有機物質的終極產物如氨、硝酸鹽、磷酸鹽以及二氧化碳等都直接或間接地為海洋植物提供主要營養。微生物在海洋無機營養再生過程中起著決定性的作用。某些海洋化能自養細菌可通過對氨、亞硝酸鹽、甲烷、分子氫和硫化氫的氧化過程取得能量而增殖。在深海熱泉的特殊生態系中,某些硫細菌是利用硫化氫作為能源而增殖的生產者。另一些海洋細菌則具有光合作用的能力。不論異養或自養微生物,其自身的增殖都為海洋原生動物、浮游動物以及底棲動物等提供直接的營養源。這在食物鏈上有助於初級或高層次的生物生產。在深海底部,硫細菌實際上負擔了全部初級生產。
在海洋動植物體表或動物消化道內往往形成特異的微生物區系,如弧菌等是海洋動物消化道中常見的細菌,分解幾丁質的微生物往往是肉食性海洋動物消化道中微生物區系的成員。某些真菌、酵母和利用各種多糖類的細菌常是某些海藻體上的優勢菌群。微生物代謝的中間產物如抗生素、維生素、氨基酸或毒素等是促進或限制某些海洋生物生存與生長的因素。某些浮游生物與微生物之間存在著相互依存的營養關系。如細菌為浮游植物提供維生素等營養物質,浮游植物分泌乙醇酸等物質作為某些細菌的能源與碳源。
由於海洋微生物富變異性,故能參與降解各種海洋污染物或毒物,這有助於海水的自凈化和保持海洋生態系統的穩
定。
E. 海洋里有哪些微生物
海洋中有自養和異養、光能和化能、好氧和厭氧、寄生和腐生以及浮游和附著等類型的細菌。幾乎所有已知生理類群的細菌,都可在海洋環境中找到。最常見的有: 假單胞菌屬 (Pseudomonas)、 弧菌屬(Vibrio)、無色桿菌屬 (Achromobacter)、黃桿菌屬(Flavobacterium)、螺菌屬 (Spirillum)、微球菌屬(Micrococcus)、八疊球菌屬(Sarcina)、芽孢桿菌屬(Bacillus)、棒桿菌屬 (Corynebacterium)、枝動菌屬(Mycoplana)、諾卡氏菌屬 (Nocardia)和鏈黴菌屬(Streptomyces)等十多個屬。在海水中,革蘭氏陰性桿菌占優勢;在遠洋沉積物中,則革蘭氏陽性細菌居多;在大陸架沉積物中,芽孢桿菌屬最為常見。
F. 海洋微生物
海洋生物資源是一個十分巨大的有待深入開發的生物資源,環境的多樣性決定了生物的多樣性,同時也決定了化合物的多樣性。發掘新的海洋生物資源已成為海洋葯物研究的一個重要發展趨勢。
1、海洋微生物資源
海洋微生物種類高達100萬種以上,其次生代謝產物的多樣性也是陸生微生物無法比擬的。但能人工培養的海洋微生物只有幾千種,不到總數的1%;目前為止,以分離代謝產物為目的而被分離培養的海洋微生物就更少。由於微生物可以經發酵工程大量獲得發酵產物,葯源得到保障。此外,海洋共生微生物有可能是其宿主中天然活性物質的真正產生者,具有重要的研究價值。
2、海洋罕見的生物資源
生長在深海、極地以及人跡罕至的海島上的海洋動植物,含有某些特殊的化學成分和功能基因。在水深6000米以下的海底,曾發現具有特殊的生理功能的大型海洋蠕蟲。在水溫90攝氏度的海水中仍有細菌存活。對這些生物的研究將成為一個新的方向。
3、海洋生物基因資源
海洋生物活性代謝產物是由單個基因或基因組編碼、調控和表達獲得的。獲得這些基因預示可獲得這些化合物。開展海洋葯用基因資源的研究對研究開發新的海洋葯物將有著十分重大的意義。
(1)海洋動植物基因資源:活性物質的功能基因,如活性肽、活性蛋白等。
(2)海洋微生物基因資源:海洋環境微生物基因及海洋共生微生物基因。
4、海洋天然產物資源
海洋天然產物歷經數十年的研究,已經積累了相當豐富的研究資料,為海洋葯物的開發提供了科學依據。
(1)對已獲得的上萬種海洋天然產物進行多靶點和新模型的篩選,發現新的活性。
(2)對已獲得的海洋天然產物進行結構修飾或結構改造。
(3)採用組合化學或生物合成技術,衍生更多的新的化合物,從中篩選出新的活性成分。
5、海洋中葯資源
海洋中葯是我國中葯寶庫的重要組成部分,是一種民間長期用葯經驗的總結。歷代本草中經現代臨床實踐證明療效確切的海洋葯物有110多種,是尋找先導化合物和開發海洋葯物的重要資源。從海洋中葯中開發新葯具有針對性強、見效快、周期短等特點。
G. 微生物的海洋微生物
英文名稱:marine microorganism
定義1:分布在海洋中的個體微小、形態結構簡單的單細胞或多細胞生物。
所屬學科:水產學(一級學科);水產基礎科學(二級學科)
定義2:海洋中個體微小,構造簡單的低等生物的總稱。包括細菌、放線菌、黴菌、酵母、病毒、衣原體、支原體、噬菌體和微型藻及微型原生動物等。
所屬學科:資源科技(一級學科);海洋資源學(二級學科)
以海洋水體為正常棲居環境的一切微生物。但由於學科傳統及研究方法的不同,本文不介紹單細胞藻類,而只討論細菌、真菌及噬菌體等狹義微生物學的對象。海洋細菌是海洋生態系統中的重要環節。 嗜鹽性
海洋微生物最普遍的特點。真正的海洋微生物的生長必需海水。海水中富含各種無機鹽類和微量元素。鈉為海洋微生物生長與代謝所必需此外,鉀、鎂、鈣、磷、硫或其他微量元素也是某些海洋微生物生長所必需的。
嗜冷性
大約90%海洋環境的溫度都在5℃以下,絕大多數海洋微生物的生長要求較低的溫度,一般溫度超過37℃就停止生長或死亡。那些能在 0℃生長或其最適生長溫度低於20℃的微生物稱為嗜冷微生物。嗜冷菌主要分布於極地、深海或高緯度的海域中。其細胞膜構造具有適應低溫的特點。那種嚴格依賴低溫才能生存的嗜冷菌對熱反應極為敏感,即使中溫就足以阻礙其生長與代謝。
嗜壓性
海洋中靜水壓力因水深而異,水深每增加10米,靜水壓力遞增1個標准大氣壓。海洋最深處的靜水壓力可超過1000大氣壓。深海水域是一個廣闊的生態系統,約56%以上的海洋環境處在100~1100大氣壓的壓力之中,嗜壓性是深海微生物獨有的特性。來源於淺海的微生物一般只能忍耐較低的壓力,而深海的嗜壓細菌則具有在高壓環境下生長的能力,能在高壓環境中保持其酶系統的穩定性。研究嗜壓微生物的生理特性必需藉助高壓培養器來維持特定的壓力。那種嚴格依賴高壓而存活的深海嗜壓細菌,由於研究手段的限制迄今尚難於獲得純培養菌株。根據自動接種培養裝置在深海實地實驗獲得的微生物生理活動資料判斷,在深海底部微生物分解各種有機物質的過程是相當緩慢的。
低營養性
海水中營養物質比較稀薄,部分海洋細菌要求在營養貧乏的培養基上生長。在一般營養較豐富的培養基上,有的細菌於第一次形成菌落後即迅速死亡,有的則根本不能形成菌落。這類海洋細菌在形成菌落過程中因其自身代謝產物積聚過甚而中毒致死。這種現象說明常規的平板法並不是一種最理想的分離海洋微生物方法。
多形性
在顯微鏡下觀察細菌形態時,有時在同一株細菌純培養中可以同時觀察到多種形態,如球形橢圓形、大小長短不一的桿狀或各種不規則形態的細胞。這種多形現象在海洋革蘭氏陰性桿菌中表現尤為普遍。這種特性看來是微生物長期適應復雜海洋環境的產物。
發光性
在海洋細菌中只有少數幾個屬表現發光特性。發光細菌通常可從海水或魚產品上分離到。細菌發光現象對理化因子反應敏感,因此有人試圖利用發光細菌為檢驗水域污染狀況的指示菌。
H. 如何控制水族箱的病原微生物
觀賞魚
病原微生物對於觀賞魚來說可以說是比較危險的,很多觀賞魚疾病都是由於病原性微生物導致的,小編就來為你介紹幾種控制病原微生物的方法。
一、化學方法
使用消毒液以及各種魚葯菌葯對水體消毒。這是最差的控制手段,因為它會破壞硝化系統造成惡性循環,不到萬不得已不要用這樣的方法。
二、物理方法
UV燈紫外線,雖然UV燈對硝化系統的損害不大,但是它把水中的其他有益菌也統統殺掉了,對維持水體的正常菌種比例不利,因此也不要經常使用UV燈。
三、生化方法
通過有益菌的大量繁殖來抑止致病菌的生長。在有限的水體里哪種菌的數量多,就會形成優勢菌群,弱勢菌群就會受到抑止。採用生物技術維護水質可以取得多贏,即控制了病原微生物預防和減少了魚病的發生,又加強了硝化系統(EM菌群里包含硝化菌)添加了大量益生菌,是目前水質維護的最佳手段。