當前位置:首頁 » 歷物理化 » 物理學大發現

物理學大發現

發布時間: 2021-08-13 18:51:52

A. 物理學上有代表性的重大發現,數量控制在20個左右

1、1992年,G.夏帕克(法國人),開發了多絲正比計數管。

2、1993年,R.A.赫爾斯、J.H.泰勒(美國人),發現一對脈沖雙星,為有關引力的研究提供了新的機會。

3、1994年,BN.布羅克豪斯(加拿大人)、C.G.沙爾(美國人),在凝聚態物質的研究中發展了中子散射技術。

4、1995年,M.L.佩爾、F.萊因斯(美國人),發現了自然界中的亞原子粒子:Υ輕子、中微子。

5、1996年,D. M . 李(美國人)、D.D.奧謝羅夫(美國人)、理查德·C.理查森(美國人),發現在低溫狀態下可以無摩擦流動的氦- 3。

6、1997年,朱棣文(美籍華人)、W.D.菲利普斯(美國人)、C.科昂–塔努吉(法國人),發明了用激光冷卻和俘獲原子的方法。

7、1998年,勞克林(美國)、斯特默(美國)、崔琦(美籍華人),發現了分數量子霍爾效應 。

8、1999年,H.霍夫特(荷蘭)、M.韋爾特曼(荷蘭),闡明了物理中電鍍弱交互作用的定量結構。

9、2000年,阿爾費羅夫(俄羅斯人)、基爾比(美國人)、克雷默(美國人),因其研究具有開拓性,奠定資訊技術的基礎,諾貝爾物理獎。

10、2001年,克特勒(德國)、康奈爾(美國)和維曼(美國),在「鹼性原子稀薄氣體的玻色-愛因斯坦凝聚態」以及「凝聚態物質性質早期基礎性研究」方面取得成就。

11、2002年,雷蒙德·戴維斯(美)、小柴昌俊(日)、里卡爾多·賈科尼(美),在天體物理學領域做出的先驅性貢獻,打開了人類觀測宇宙的兩個新「窗口」。

12、2003年,阿列克謝·阿布里科索夫(美俄雙重國籍)、維塔利·金茨堡(俄)、安東尼·萊格特(英美雙重國籍),在超導體和超流體理論上作出的開創性貢獻。

13、2004年,戴維·格羅斯、戴維·波利澤、弗蘭克·維爾澤克(均為美國人),這三位科學家對誇克的研究使科學更接近於實現它為「所有的事情構建理論」的夢想。

14、2005年,美國科羅拉多大學的約翰·L·霍爾、哈佛大學的羅伊·J·格勞貝爾,以及德國路德維希·馬克西米利安大學的特奧多爾·亨施。研究成果可改進GPS技術。

15、2006年,約翰·馬瑟、喬治·斯穆特(均為美國人),發現了黑體形態和宇宙微波背景輻射的擾動現象。

16、2007年,阿爾貝·費爾(法)、彼得·格林貝格爾(德),先後獨立發現了「巨磁電阻」效應。這項技術被認為是「前途廣闊的納米技術領域的首批實際應用之一」。

17、2008年,小林誠、益川敏、南部陽一郎(日),發現了次原子物理的對稱性自發破缺機制。

18、2009年,英國籍華裔物理學家高錕「在光學通信領域中光的傳輸的開創性成就」。

19、2010年,英國曼徹斯特大學科學家安德烈·蓋姆(俄)與康斯坦丁·諾沃肖洛夫(俄),在二維空間材料石墨烯的突破性實驗。

20、2011年,美國加州大學伯克利分校天體物理學家薩爾·波爾馬特、美國/澳大利亞布萊恩·施密特以及美國科學家亞當·里斯,發現宇宙加速膨脹最終能夠可能變成冰。

21、2012年,法國科學家沙吉·哈羅徹與美國科學家大衛·溫蘭德,實現對單個量子系統的操作和測量而不改變其量子力學屬性。

B. 近代物理學中有哪些偉大的發現

1,經典力學的建立;2、光的微粒理論和波動理論;3、熱力學的建立和能量守恆原理的誕生;4、電磁學的輝煌成就.

C. 19世紀末物理學三大發現是什麼

物理學的三大發現:X射線 發現電子 天然放射性的發現
一、X射線
19世紀末,陰極射線的研究正方興未艾,德國的維爾芝堡大學,治學嚴謹的倫琴(1845-1923)教授,也致力於這個問題的研究.
1895年11月8**晚,倫琴用黑的厚紙板把陰極射線管子包起來,意外的發現1米以外的熒光屏在閃光,而這絕不是陰極射線,因陰極射線穿不透玻璃,只能行進幾厘米遠.
倫琴斷定這是一種新射線,一種從未曾記載過的東西.倫琴用它拍出了一張肉淡骨濃的手掌照片,有人用它鑒別古畫,一時引起轟動,倫琴將這具有非凡魅力的射線命名為「X」射線.
由於X射線與原子中內層電子的躍遷有關,這說明了物理學還存在亟待搜索的未知領域.
X射線本身在醫療、研究物質結構等方面都有很多的實用價值.
二、發現電子
1.對陰極射線的眾說紛紜
19世紀末,陰極射線是一個熱門話題,有人認為這是一種以太波,有人認為是一種電磁波,而第一個確認它是粒子流,並由此發現基本粒子——電子的是JJ.湯姆遜.
2.意義:
a.宣告了原子是可分的.
b.為進行電子和原子的研究開創了新的實驗技術.
JJ.湯姆遜於1906年獲諾貝爾獎.
三天然放射性的發現——鈾鹽的放射性的發現
1.貝克勒爾 (1852-1909)
生長在法國巴黎,家庭中有許多學者.祖父和父親都是固體磷光專家,從事研究工作有60年的歷史,貝克勒爾早期從事光學研究,43歲開始研究放射現象.
2.鈾鹽的實驗
倫琴的發現,使貝克勒爾聯想到,天然物體是否也能產生X光那樣的放射現象呢?由於有著家庭的背景,貝克勒爾捷足先登,從諸多發光物體中,最後選擇到鈾鹽.最初他認為是由太陽激發鈾鹽的熒光,但是,由於天連續陰雨綿綿,貝克勒爾不得不把用黑紙包的感光底片與鈾鹽一起鎖進了抽屜,結果底片仍舊被鈾鹽感光了,鈾元素自身也能產生輻射的現象,再一次引起了人們的關注.
3.意義
貝克勒爾射線的發現,是人類第一次發現某些元素自身也具有自發輻射現象,引起了人們對原子核問題的關注.
貝克勒爾獲1903年諾貝爾獎.

D. 物理學重大發現歷史有誰

公元前5世紀 (希臘)德莫克里特 古代原子論
公元前3世紀 (希臘)阿基米德 杠桿原理,浮力,比重
艾拉托色尼 測定地球的大小
公元1世紀 張衡 發明地動儀
2世紀 (希臘)托勒梅 地心說
8世紀 張遂 南宮說 實測子午線
1543 波蘭 哥白尼 出版《天體運行》,確立日心說,近代天文學起點
1590 義大利 伽利略 自由落體
1609 德國 開普勒 行星運動第1,2定律
1619 德國 開普勒 行星運動第3定律
1643 義大利 托里拆利 發現真空
1665 牛頓 太陽光譜
1666 牛頓 萬有引力
1669 牛頓 微積分
1687 牛頓 出版《原理》
1705 哈雷 確定哈雷彗星的周期
1750 富蘭克林 發明避雷針
1752 富蘭克林 發現雷電的本質
1772 法國 拉瓦錫 質量守恆定律
1799 義大利 伏打 發明電堆及電池
1803 道爾頓 提出分子-原子說
1831 法拉第 發現電磁感應
1847 焦耳 確定能量守恆和轉換定律
1859 本生(德)基爾霍府(法) 創光譜分析法(這說明了化學物理還是一家)
1864 麥克斯韋 預見電磁波存在
1871 麥克斯韋 提出光的電磁說
1881 邁克爾遜 否定以太的實驗
1888 赫茲 證明電磁波存在
1895 倫琴 發現X射線
1896 貝克勒爾 發現放射性
1897 湯姆生 發現電子
1900 普朗克 量子假說
1902 盧瑟福 元素衰變
1905 愛因斯坦 狹義相對論
1911 盧瑟福 原子太陽系模型
1915 愛因斯坦 廣義相對論
1923 德布羅意 提出物質波
1925 海森堡 創立量子力學
狄拉克 量子力學基礎方程式
1926 薛定諤 建立波動力學

E. 愛因斯坦之後,物理學有哪些重大發現

愛因斯坦是物理學史上一位具有劃時代意義的偉大科學家。他的狹義相對論給人類帶來了對時間、空間等概念的全新認識;廣義相對論將引力幾何化,推動著天文學進入一個新時期。愛因斯坦還是量子力學的奠基人之一,用光量子解釋了光電效應使他獲得了諾貝爾物理學獎。上世紀二十年代起,愛因斯坦就坐穩了物理學領袖的位置,盡管在他四十多歲後就沒再做出重大科學發現。

60年代時,天文學領域也取得了一個又一個的重大發現,類星體、脈沖星、宇宙微波背景輻射、星際有機分子就是在這期間被發現的。這些發現為人類認識宇宙、為推動天文學、宇宙學的發展起到了極大的促進作用。

另外,超導體的理論研究、黑洞的發現、量子霍爾效應的發現、中微子振盪的發現、引力波的發現都是物理學史、人類文明史上具有里程碑意義的事件。今天,物理學依然有很多重大問題有待進一步解決。

F. 19世紀末20世紀初物理學的三大發現是什麼 意義何在

19世紀末20世紀初物理學的三大發現是:電子、X射線和放射性現象。

1、X射線

X射線是一種波長極短,能量很大的電磁波,由德國物理學家W.K.倫琴於1895年發現,故又稱倫琴射線。這一發現標志著現代物理學的產生。

由於X射線與原子中內層電子的躍遷有關,這說明了物理學還存在亟待搜索的未知領域,X射線本身在醫療、研究物質結構等方面都有很多的實用價值。

2、放射線

1896年,貝克勒耳發現了放射線。盧瑟福繼而開始研究放射線,他分別研究了三種射線的穿透本領。結果是:α射線的穿透本領最差,β射線的穿透本領比α射線強一些,能穿透幾毫米厚的鋁片。γ射線的穿透本領極強,1.3厘米厚的鉛板也只能使它的強度減弱一半。

3、電子

電子是在1897年由劍橋大學卡文迪許實驗室的約瑟夫·約翰·湯姆森在研究陰極射線時發現的,一切原子都由一個帶正電的原子核和圍繞它運動的若干電子組成。電子的定向運動形成電流,如金屬導線中的電流。

利用電場和磁場,能按照需要控制電子的運動(在固體、真空中),從而製造出各種電子儀器和元件,如各種電子管、電子顯微鏡等。

(6)物理學大發現擴展閱讀

十九世紀末二十世紀初,經典物理學的各個分支學科均發展到了完善、成熟的階段,隨著熱力學和統計力學的建立以及麥克斯韋電磁場理論的建立,經典物理學達到了它的頂峰,當時人們以系統的形式描繪出一幅物理世界的清晰、完整的圖畫,幾乎能完美地解釋所有已經觀察到的物理現象。

由於經典物理學的巨大成就,當時不少物理學家產生了這樣一種思想:認為物理學的大廈已經建成,物理學的發展基本上已經完成,人們對物理世界的解釋已經達到了終點。

物理學的一些基本的、原則的問題都已經解決,剩下來的只是進一步精確化的問題,即在一些細節上作一些補充和修正,使已知公式中的各個常數測得更精確一些。

然而,在十九世紀末二十世紀初,正當物理學家在慶賀物理學大廈落成之際,科學實驗卻發現了許多經典物理學無法解釋的事實。

首先是世紀之交物理學的三大發現,其次是經典物理學的萬里晴空中出現了兩朵「烏雲」:「以太漂移」的「零結果」和黑體輻射的「紫外災難」。

這些實驗結果與經典物理學的基本概念及基本理論有尖銳的矛盾,經典物理學的傳統觀念受到沖擊,經典物理發生「危機」。

由此引起物理學的一場革命。普朗克在德國物理學會上報告結果,成為革命開始的時刻。愛因斯坦創立相對論;海森堡、薛定諤等一群科學家創立量子力學,現代物理學誕生。

G. 近年來(15 16 17年)物理學上的最大發現 成就等。最好有詳細介紹 🙏

2015年2月26日,國際頂級科學期刊《自然》(Nature)以封面標題的形式發表了潘建偉、陸朝陽等人的文章《單個光子的多個自由度的量子隱形傳態》(Quantum teleportation of multiple degrees of freedom of a single photon)。
簡而言之,這項工作的新成果在於「多個自由度」,因為以前已經實現了單個自由度的量子隱形傳態。
什麼是量子?一個量如果存在最小的不可分割的基本單位,就像上台階一樣,只能上一個一個的台階而不能上半個台階,我們就說這個量是量子化的,把這個最小單位稱為量子。我們日常所見的宏觀世界似乎一切都是無限可分的,微觀世界裡卻有很多物理量是量子化的,例如原子中電子的能量。所以准確描述微觀世界的理論必然是量子化的,這種理論就是量子力學。宏觀物質是由微觀粒子組成的,所以對宏觀世界的准確描述也必須是量子力學。中學里學的牛頓力學只是對宏觀世界的近似描述,在作為量子力學對立面的意義上被稱為經典力學。
什麼是量子隱形傳態?這是一種在1993年提出的方案,把粒子A的未知的量子態傳輸給遠處的另一個粒子B,讓B粒子的狀態變成A粒子最初的狀態。注意傳的是狀態而不是粒子,A、B的空間位置都沒有變化,並不是把A粒子傳到遠處。當B獲得這個狀態時,A的狀態必然改變,任何時刻都只能有一個粒子處於目標狀態,所以並不能復制狀態,或者說這是一種破壞性的復制。在宏觀世界復制一本書或一個電腦文件是很容易的,在量子力學中卻不能復制一個粒子的未知狀態,這是量子與經典的一個本質區別。很多人聽說量子力學中狀態的變化是瞬時的,無論兩個粒子相距多遠,於是認為隱形傳態的速度可以超過光速,推翻相對論。錯了。隱形傳態的方案中有一步是把一個重要的信息(可以理解為一個密鑰)從A處傳到B處,利用這個信息才能把B粒子的狀態變成目標狀態。這個信息需要用經典信道(例如打電話、發郵件)傳送,速度不能超過光速,所以整個隱形傳態的速度也不能超過光速。很多人把隱形傳態當成科幻電影中的傳送術,瞬間把人傳到任意遠處,然後還擔心復制人和本尊的倫理問題,其實這些理解都是錯誤的。量子隱形傳態是以不高於光速的速度、破壞性地把一個粒子的未知狀態傳輸給另一個粒子。打個比方,用顏色表示狀態,A粒子最初是紅色的,通過隱形傳態,我們可以讓遠處的B粒子變成紅色,而A粒子同時變成了綠色。但是我們完全不需要知道A最初是什麼顏色,無論A是什麼顏色,這套方法都可以保證B變成A最初的顏色,同時A的顏色改變。
量子隱形傳態是在什麼時候實現的?是1997年,當時潘建偉在奧地利維也納大學的塞林格(Zeilinger)教授組里讀博士,他們在《自然》上發表了一篇題為《實驗量子隱形傳態》(「Experimental quantum teleportation」)的文章,潘建偉是第二作者。這篇文章後來入選了《自然》雜志的「百年物理學21篇經典論文」,跟它並列的論文包括倫琴發現X射線、愛因斯坦建立相對論、沃森和克里克發現DNA雙螺旋結構等等。
什麼是自由度?自由度就是描述一個體系所需的變數的數目。例如一個靜止在一條線上的粒子,描述它只需要一個數,自由度就是1。靜止在一個面上的粒子,自由度就是2。三維空間中的靜止粒子,自由度就是3。描述三維空間中一個運動的粒子,需要知道位置的3個分量和動量的3個分量,自由度是6。光子具有自旋角動量和軌道角動量,如果你看不懂這兩個詞,沒關系,只要明白它們是兩個自由度就夠了。在1997年的實驗中,傳的只是自旋。此後各種體系的各種自由度都被傳輸過,但每次實驗都只能傳輸一個自由度。
傳輸一個自由度固然很厲害,但是只具有演示價值。隱形傳態要實用,就必須傳輸多個自由度。這在理論上是完全可以實現的。打個比方,現在用顏色和形狀來表示狀態,A粒子最初是紅色的正方體,我們可以讓B粒子變成紅色的正方體,同時A變成綠色的球體。這個擴展看似顯而易見,但跟傳輸一個自由度相比,有極大的困難。隱形傳態實驗一般需要一個傳輸的「量子通道」,這個通道是由多個粒子組成的,這些粒子糾纏在一起,使得一個粒子狀態的改變立刻就會造成其他粒子狀態的改變。用物理學術語說,這些粒子處於「糾纏態」。制備多粒子的糾纏態已經是一個很困難的任務了,而要傳輸多個自由度,就需要制備多粒子的多個自由度的「超糾纏態」,更加令人望而生畏。潘建偉研究組就是攻破了這個難關,搭建了6光子的自旋-軌道角動量糾纏實驗平台,才實現了自旋和軌道角動量的同時傳輸。
用《道德經》的話說:「道生一,一生二,二生三,三生萬物。」1997年實現了道生一,那時潘建偉還是博士生。2015年實現了一生二,這時他已經是量子信息的國際領導者。從傳輸一個自由度到傳輸兩個自由度,走了18年之久,這中間有無數的奇思妙想、艱苦奮斗,是人類智慧與精神的偉大贊歌。
下面我們來看其餘九大突破。再次強調,排名不分先後,九名並列亞軍。每一項工作都是科學家們的卓越成就,值得我們熱烈鼓掌。基本內容是我對上引歐洲物理學會新聞的翻譯,有些地方加上我的注釋。
首次測量到單電子的同步輻射。獎給8號項目(Project 8)協作組(注釋:8號項目的兩位發言人來自美國的麻省理工大學和加州大學聖塔芭芭拉分校),他們測量到氪-83的β衰變中發射出的單個電子的同步輻射。輻射是在電子通過磁場時發出的,使得團隊可以對粒子被發射時的能量作出非常精確的測量。8號項目正在努力提高測量精度,以用於計算物理學中最難以捉摸的量之一——電子型反中微子的質量,這些電子型反中微子也是在β衰變中發射出的。注釋:根據相對論,能量等於質量乘以光速的平方。因此如果精確地知道一個核反應前後那些能觀測到的粒子的能量,兩者相減就得到那些觀測不到的粒子(在這里是電子型反中微子)帶走的能量,也就知道了這些粒子的質量。因為中微子的質量非常微小,接近於零,所以這個實驗需要極高的精度,才能得出有意義的結果。
終於發現了外爾費米子。獎給普林斯頓大學的Zahid Hasan、麻省理工大學的Marin Soljačić以及中國科學院(注釋:物理研究所)的方忠與翁紅明,為他們關於外爾費米子的先驅性工作。這些無質量的粒子是德國數學家赫爾曼·外爾(Hermann Weyl)在1929年預言的。Hasan和方忠、翁紅明領導的團隊各自獨立地在准金屬砷化鉭(TaAs)中發現了一種准粒子的指示性證據,這種准粒子表現得就像外爾費米子。Soljačić和同事們在一種非常不同的材料中發現了存在外爾玻色子的證據,——一種「雙gyroid」(注釋:gyroid是一種無窮連接的三重周期性最小面,參見https://en.wikipedia.org/wiki/Gyroid)的光子晶體。外爾費米子的無質量特性意味著它們可能被用於高速電子學,此外由於它們面對散射時受到拓撲保護,對量子計算機可能也有用處。注釋:對外爾費米子的一個介紹,可以見中科院物理所戴希研究員的博客《外爾半金屬的故事》,他和方忠用理論計算預測了在TaAs中發現外爾費米子的可能性。現在發現的外爾費米子不是真實的粒子,而是一種真實粒子的集體運動模式,即准粒子,這是凝聚態物理中特有的現象。外爾最初是在粒子物理領域預言這種粒子的,尋找它花了86年,最終卻是在凝聚態物理領域找到了這種粒子。在凝聚態物理中實現粒子物理的理論,是當代物理學一種普遍而有趣的思路。
2016年物理學將會發生一些重大的科學事件,其中粒子物理學、天文學和宇宙學似乎提前規劃好了。來自歐洲核子研究中心總幹事法比奧拉的觀點,明年大型強子對撞機會繼續在13 TeV能量上對撞質子,預計會有一個新的發現,是後上帝粒子時代的產物。但是強子對撞機可能還無法達到14TeV能量,科學家正在不斷進行嘗試,歐洲核子研究中心的ATLAS和CMS實驗已經暗示超對稱粒子存在的可能性,它們位於更高對撞能量中。2016年科學領域取得了許多令人矚目的成就,包括有「時空漣漪」之稱的引力波被發現、可以發射有效載荷至軌道並安全返回的火箭等。但2017年更令人充滿期待,人類有望找到「信息寶庫」,包括卡西尼號探測器通過土星大氣層、新的物理學粒子被發現、預防痴呆症的更好方式等。與此同時,2017年也有許多令科學家們感到害怕的前景。

2017年科學展望
1.利物浦大學物理學教授塔拉·希爾斯(Tara Shears)
2016年,歐洲大型強子對撞機完成技術升級並重新啟動,相比以前擁有了更加強大的能級和強度,獲得了海量高能數據。我期盼著強子對撞機的粒子對撞數據中出現新的發現,那必定是非常有趣的。通過對這些數據進行分析,你覺得宇宙正慢慢成為焦點,你很快就能看到更多粒子被發現。
2.倫敦大學學院精神病學講師克勞迪亞·庫珀(Claudia Cooper)
隨著我們越來越多地發現可增加老年痴呆症危險的因素,較少正規教育、不良飲食、糖尿病、缺少活動、聽力損失等,我們有可能延緩甚至預防老年痴呆症。在精神上、社交方面以及心理上幫助人們保持活躍,吃更健康的飲食和好好照顧自己的身體,都可以減緩認知衰退的速度。2017年,相關研究有望取得更多發現,以支持人們抵抗痴呆症的侵襲。
3.朴茨茅斯大學天文學和天體物理學講師凱倫·馬斯特斯(Karen Masters)
我非常期待下一輪引力波試驗的結果。2016年人類首次直接探測到引力波,這讓我感到非常激動,我甚至因此專門買下帶有引力波圖案的裙子以示慶祝。首次發現引力波不僅證明了引力理論的正確性,同時也是對那些建造驚人探測器的人的巨大鼓舞。更重要的是,作為天文學家,我發現物體探測非常迷人。黑洞碰撞的質量令人感到驚訝,它竟然能夠發出如此清晰的信號,並且在試驗初期就被發現。是幸運,亦或是這種信號普遍存在?我很激動,希望2017年能夠看到宇宙中更多的黑洞碰撞事件,我們將利用這些新的方式來了解宇宙。

熱點內容
二年級上冊期末語文試卷 發布:2025-06-07 05:51:52 瀏覽:813
天天有喜片尾曲叫什麼 發布:2025-06-07 02:50:22 瀏覽:237
豬生物安全 發布:2025-06-07 02:36:35 瀏覽:27
小孩數學思維 發布:2025-06-07 02:15:50 瀏覽:66
沖刺100必備答案數學 發布:2025-06-07 00:34:36 瀏覽:845
語文的小游戲 發布:2025-06-07 00:21:42 瀏覽:734
面試英語怎麼說 發布:2025-06-07 00:11:58 瀏覽:525
禮物什麼 發布:2025-06-06 22:50:02 瀏覽:680
九年級上冊物理題 發布:2025-06-06 22:12:36 瀏覽:696
上海初中歷史 發布:2025-06-06 21:20:55 瀏覽:877