物理放大法
物理中微量放大法是把不易觀察的微小量轉換成其他量加以放大,便於觀察
如 1.彈力中的微小形變 2. 測萬有引力常量、靜電力常量 3.電磁感應中感應電流(放大器) 等
㈡ 物理的放大法中,有個機械放大法,請問什麼是機械放大法(請物理高手回答)
物理實驗中物理量的放大方法
(http://www.tse.net/leting/04zycb/neirong/33zxwl/ae00081.htm)
物理學是一門以實驗為基礎的學科。物理學家研究物理問題時,需要利用各種實驗設備來進行物理實驗。在物理實驗中常常遇到一些微小物理量的測量。物理工作者為提高被測物理量精度,常選用特殊的測量裝置將被測物理量放大後再進行測量。我們把提高測量精度、使物理量的數值變大、作用時間延長、作用空間擴展的方法叫做物理量的放大法。下面按物理學內容把放大方法分類如下:
一、機械方面
機械放大是物理實驗最直觀的一種放大方法,它是一種空間放大方法。具體表現在下列實驗中。
1、游標放大法
為了提高米尺的測量精度,通常在米尺(主尺)上附帶一個可以沿尺身移動的小尺(游標)。游標上的分度值x與主尺分度值y之間有一定關系,一般使游標上p個分度格的長度與主尺上(p-1)個分度格的長度相等,即使得
px=(p-1)y
主尺與游標上每個最小分格之差δx為
δx =y-x=y/p
差值δx稱為游標尺的精度,它表示了游標尺能讀準的最小值,也就是游標的最小分度值。同理,游標尺原理還可以用於角度的精確測量中,稱為角游標。角游標的測角精度δx=1』。
2、螺旋測微放大法
螺旋測微計、讀數顯微鏡和邁克耳遜干涉儀等的測量系統的機械部分都是採用螺旋測微裝置進行測量的。常用的讀數顯微鏡的測微絲桿的螺距是lmm,當絲桿轉動一圈時,滑動平台就沿軸向前或後退lmm,在絲桿的一端固定一測微鼓輪,其周界上刻成100分格,因此當鼓輪轉動一分格時,滑動平台移動了0.01mm,從而使沿軸線方向的微小位移用鼓輪圓周上較大的弧長精確地表示出來,大大提高了測量精度。
3、機械杠桿
因為,當機械杠桿平衡時有:F1L1=F2L2。所以有:F1= F2L2/ L1 ,L2= F1L1/ F2成立。從F1和L1的表達式可以看出,機械杠桿可以把力和位移放大或細分。
4、液壓放大
根據帕斯卡定律製成的液壓機、水壓機、油壓千斤頂都有:作用在它們兩活塞上的力的比,等於它們的面積比。即:F1/F2=S1/S2。從中可以得出:F1= (S1/S2)F2,該式說明由帕斯卡定律製成的液壓機、水壓機、油壓千斤頂可以把力放大。
5、累積放大
當我們用米尺測量一張紙的厚度時,一般的方法是:取同樣的紙100張,然後用米尺測量其厚度,把測得的數除以100,即得出一張紙的厚度。該方法採用了相同量累積疊加的放大方法。既解決了可測問題,又提高了測量的精度。
6、共振
一振動系統在外力作用下強迫進行的振動稱為受迫振動。當系統作受迫振動時,強迫力的頻率與振動系統的固有頻率接近,使系統的振幅達到極大值的現象稱為共振。共振是一種選擇放大。對琴弦等樂器的共振我們稱之為共鳴。
二、時間方面
1、伽利略的斜面實驗
伽利略的斜面實驗實現的是「沖淡引力」。實際上,是把物體下降一定高度的時間予以拉長,也就是放大。
2、周期的規定
在物理實驗中,很多個實驗題目需要測定周期大小。由於測量周期多數使用秒錶來測定,由於用秒錶測量單個周期的誤差較大,一般採用一次測量n次周期的時間,若為t,則周期T=t/n,也就是說採用時間累積放大法,既解決了可測問題,又提高了測量的精度。
3、時間細分
用高速攝影攝取運動物體的瞬時狀態,如:研究自由落體運動、高速飛行的子彈、水滴下落過程中形成的變化等都是把時間過程細分並展開。
三、光學方面
1、光學裝置放大
一種是使被測物通過光學裝置放大視角形成放大像,便於觀察判別,從而提高測量精度。例如放大鏡、顯微鏡、望遠鏡等。
2、光杠桿放大
測量微小長度和微小角度變化的光杠桿鏡尺法,是使用光學裝置將待測微小物理量進行間接放大的方法,它是一種物理實驗中常用的光學放大法。
光杠桿測量原理如附圖所示。它由一面裝在一個三腳金屬架上的平面鏡構成,配合望遠鏡尺組來測變化極微小的長度。
使用時,將光杠桿的面前腳放在一個固定位置,後腳放在被測量的點上,使鏡面垂直於地面,望遠鏡尺組放在鏡面的正前方,當物體為原長時,由望遠鏡中可以看清楚標尺l0點在小鏡中的反射像,當後腳向下降落一個位移面ΔL時,鏡面M使轉動一個角度θ,這時在望遠鏡中所觀察到的像由l0點變為l1點,設若鏡面M與標尺間的距離為D,根據反射定律可知:
式中,ΔL=l1- l0,可由標尺上讀出,由於材料形變很小,相應θ也很小,所以有 tg2θ≈2θ,tgθ≈θ,因此,θ=Δl/2D=ΔL/a,所以有:
當滿足ΔL << a,Δl<< D時,不難看出,小位移ΔL被放大成能觀測的大位移Δl,其作用像杠桿的作用一樣,所以光杠桿的方法是一種放大的方法。
四、電磁方面
1、三級管、場效應管、集成電路組成的放大電路
在物理實驗中往往需要測量變化微弱的電信號(電流、電壓或功率),或者利用微弱的電信號去控制某些機構的動作,必須用電子放大器將微弱電信號放大後才能有效地進行觀察、控制和測量。電子放大作用是由三極體、場效應管、集成電路組成的放大電路完成的。
2、諧振現象
當電容C和電感L兩類元件同時出現在一個交流電路中時,隨著頻率的變化,電路中的電流I(有效值)或總阻抗z不是單調的變化,而是在某個頻率f處出現極值(極大值或極小值),這種現象叫做諧振。諧振是一種選擇放大。
3、變壓們的升壓與降壓法
對於理想變壓器有:U1/U2=N1/N2,I1/I2=N2/N1成立。
式中U1、U2分別為輸入、輸出電壓,I1、I2分別為輸入、輸出電流,N1、N2分別是原、副線圈的匝數。因此,適當選擇N1,N2即可達到升壓或降壓的目的,同時也確定了原、副線圈中電流的關系。
結論
探討物理實驗的放大法有助於實驗者重視放大法在物理實驗中的作用,有助於實驗設備改進者改進實驗設備,有助於實驗設計者利用放大法設計出新的實驗設備。
探討物理員的放大方法有利於物理工作者對科學方法的應用。有利於學生對科學方法的掌握。
㈢ [急急急]物理實驗方法里的放大法是不是等於轉換法
不是
放大法——將微小的變化(或物理量)放大,以便於觀察或研究。
轉換法——將無法觀察研究的問題轉換為與之相聯系的易於觀察研究的問題。
另外,二者也是有聯系的。例如,將乒乓球放在音叉附近觀察音叉的振動,就同時用到了轉換和放大的思想。
㈣ 在物理學中放大法的應用
放大法在有些實驗中,實驗的現象我們是能看到的,但是不容易觀察。我們就將產生的效果進行放大再進行研究。 比如音叉的振動很不容易觀察,所以我們利用小泡沫球將其現象放大。觀察壓力對玻璃瓶的作用效果時我們將玻璃瓶密閉,裝水,插上一個小玻璃管,將玻璃瓶的形變引起的液面變化放大成小玻璃管液面的變化。
㈤ 物理研究方法-放大法的定義及舉例
這些全都是:教條主義法
估計你們物理老師是教政治的,混不下去來改行蒙物理了
㈥ 採用放大法的實驗 初中物理裡面有哪些實驗採用了放大
初中物理採用了放大法的實驗:
1、桌面的微小形變,可以用平面鏡的多次反射來放大。
2、玻璃瓶子的微小形變,可用插入細玻璃管,觀察管內的水柱高度變化來放大。
3、把小球放在正在發聲的的音叉旁邊,會看到小球被振動的音叉彈起來。小球的作用是:把微小的振動放大。
㈦ 物理放大法和轉換法有何不同
個人覺得沒有不同,放大法只是轉換思維其中的一項運用而已。
也就是說,放大法也是轉換法,轉換法包含了放大法。
不明追問。
㈧ 物理中的放大實驗法是什麼
簡單的時候就是假設一切影響實驗結果的因素都不存在。理想實驗法是在實驗基礎上經過概括、抽象、推理得出規律的一種研究問題的方法,但得出的某些規律卻又不能用實驗直接驗證,又稱推理法。
比如伽利略的斜面實驗,阻力是一定會存在的,但是伽利略假設在阻力不存在的情況下小球的運動情況,所以得出勻加速運動的規律。
㈨ 物理學實驗中的轉化法和放大法是如何的關系請舉例詳細說明一下。
轉化法包含放大法。
如卡文迪許扭秤實驗:
兩球間的萬有引力是個非常小的物理量,為了測量這一引力大小,
如圖,他將扭秤兩端固定兩個小球,扭秤中間鋼絲吊著。鋼絲上固定了一面小鏡子。
用光照射鏡子,鏡子將光反射到牆壁上,形成一個光點。
之後,他用兩個大球吸引這兩個小球,如圖所示。
由於萬有引力作用,扭秤微微偏轉,鋼絲也跟著扭了一定角度,於是鋼絲上固定的鏡子轉過一個難以察覺的小角度,但鏡子反射的光線有一個明顯的偏離。根據公式和幾何關系,可以算出萬有引力大小。
可見,卡文迪許將測量兩球間的微小引力,轉化為了一個測量光斑引動距離的問題!該實驗的巧妙設計,將一個原本微小的物理量放大為極易觀測的物理量。
因此,放大法屬於轉化法,轉化法卻未必是放大法,如曹沖稱象。
㈩ 什麼是放大法
是物理方面還是其他方面的呢?