當前位置:首頁 » 歷物理化 » 化學用表

化學用表

發布時間: 2021-08-14 00:11:28

A. 化學化學價表

K Na Ag H +1價
Ca Mg Ba Zn Cu +2價
S有-2+4 +6價
Fe +2+3 C+2+4
莫忘單質是零價
以上是經常用到的
下面補充一些別的
N-3+2+4+5
P+5
Cl-1+5+7
Br-1
I -1
順口溜
鉀鈉氫銀正一價;鈣鎂鋇鋅銅正二價.

鋁是正三氧負二;鐵有正二正三價.

硫有負二正四六;磷有正五正負三.

正一五七負一氯;大家一定要記熟.

化合價的概念
元素的「化合價」是元素的一種重要性質,這種性質只有跟其他元素相化合時才表現出來。就是說,當元素以游離態存在時,即沒有跟其他元素相互結合成化合物時,該元素是不表現其化合價的,因此單質中元素的化合價為「0」。例如Zn、C、H2等。

部分元素的化合價

1

H:1,-1

Li,Na,K,Rb,Cs:1

Cu,Ag:1,2,3

Au:1,3

2

Be,Mg,Ca,Zn,Sr,Cd,Ba,Ra:2

Hg:1,2

3

B,Al,Sc,Ga,Y,La,Pr-Lu,Ac:3

In,Tl:1,3

4

C,Si,Ge,Sn,Pb:2,4

Ti,Zr:2,3,4

Ce,Hf,Th:3,4

5

N:-3,1,2,3,4,5

P:-3,1,3,4,5

As,Sb:-3,3,5

Bi:3,5

V,Nb,Ta:2,3,4,5

Pa:3,4,5

6

O:-2,-1,2

S,Se,Te:-2,2,4,6

Po:2,4,6

Cr:2,3,6

Mo,W:2,3,4,5,6

U:3,4,5,6

7

F:-1

Cl:-1,1,3,4,5,6,7

Br,I:-1,1,3,5,7

Mn:2,3,4,6,7

Tc,Re:4,5,6,7

Np,Pu:3,4,5,6,7

8

Xe:1,4,6,8

Ru:2,3,4,5,6,7,8

Fe,Os:2,3,4,5,6,8

Co,Ni,Pd:2,3,4

Rh,Ir,Pt:2,3,4,5,6

9

NH4:+1 PO4:-3

所以,物質的化合價有的有多種。

B. 化學表格

古典原子論:德謨克利特 主要內容:物質由極小的稱為「原子」的微粒構成,物質只能分割到原子為止
近代原子論:道爾頓 主要內容:原子是不可分割的實心球體
葡萄乾:湯姆生 主要內容:正電荷像麵包一樣松軟,電子像嵌在麵包里的葡萄乾即。原子呈圓球狀 充斥著正電荷,而帶負電荷的電子則像一粒粒葡萄乾一樣鑲嵌其中
主要依據:用陰極射線發現電子,揭開原子有復雜結構
行星模型:盧瑟福 主要內容:原子的質量幾乎全部集中在直徑很小的核心區域,叫原子核,電子在 原子核外繞核作軌道運動。
主要依據:α粒子散射實驗中,少部分α粒子改變了原來的直線射程,而發生不同程度的偏轉

C. 求化學元素周期表!要高清的!

化學元素周期表是根據原子序數從小至大排序的化學元素列表。列表大體呈長方形,某些元素周期中留有空格,使特性相近的元素歸在同一族中,如鹼金屬元素、鹼土金屬、鹵族元素、稀有氣體等。

這使周期表中形成元素分區且分有七主族、七副族、Ⅷ族、0族。由於周期表能夠准確地預測各種元素的特性及其之間的關系,因此它在化學及其他科學范疇中被廣泛使用,作為分析化學行為時十分有用的框架。

俄國化學家門捷列夫(Dmitri Mendeleev)於1869年發明周期表,此後不斷有人提出各種類型周期表不下170餘種,歸納起來主要有:短式表(以門捷列夫為代表)、長式表(維爾納式為代表)、特長表(以波爾塔式為代表);平面螺線表和圓形表(以達姆開夫式為代表);立體周期表(以萊西的圓錐柱立體表為代表)等。

中國教學上長期慣用的是長式周期表。

拓展資料

發展歷程

現代化學的元素周期律是1869年俄國科學家門捷列夫(Dmitri Mendeleev)首先創造的,他將當時已知的63種元素依相對原子質量大小並以表的形式排列,把有相似化學性質的元素放在同一列,製成元素周期表的雛形。

經過多年修訂後才成為當代的周期表。在周期表中,元素是以元素的原子序排列,最小的排行最先。表中一橫行稱為一個周期,一列稱為一個族。

原子半徑由左到右依次減小,上到下依次增大。

在化學教科書和字典中,都附有一張「元素周期表(英文:the periodic table)」。這張表揭示了物質世界的秘密,把一些看來似乎互不相關的元素統一起來,組成了一個完整的自然體系。它的發明,是近代化學史上的一個創舉,對於促進化學的發展,起了巨大的作用。看到這張表,人們便會想到它的最早發明者——門捷列夫。

1869年,俄國化學家門捷列夫按照相對原子質量由小到大排列,將化學性質相似的元素放在同一縱行,編制出第一張元素周期表。元素周期表揭示了化學元素之間的內在聯系,使其構成了一個完整的體系,成為化學發展史上的重要里程碑之一。

隨著科學的發展,元素周期表中未知元素留下的空位先後被填滿。當原子結構的奧秘被發現時,編排依據由相對原子質量改為原子的質子數﹙核外電子數或核電荷數﹚,形成現行的元素周期表。

按照元素在周期表中的順序給元素編號,得到原子序數。原子序數跟元素的原子結構有如下關系:

質子數=原子序數=核外電子數=核電荷數

利用周期表,門捷列夫成功的預測當時尚未發現的元素的特性(鎵、鈧、鍺)。1913年英國科學家莫色勒利用陰極射線撞擊金屬產生射線X,發現原子序越大,X射線的頻率就越高,因此他認為核的正電荷決定了元素的化學性質,並把元素依照核內正電荷(即質子數或原子序)排列。後來又經過多名科學家多年的修訂才形成當代的周期表。

將元素按照相對原子質量由小到大依次排列,並將化學性質相似的元素放在一個縱列。每一種元素都有一個序號,大小恰好等於該元素原子的核內質子數,這個序號稱為原子序數。在周期表中,元素是以元素的原子序排列,最小的排行最前。表中一橫行稱為一個周期,一列稱為一個族。

原子的核外電子排布和性質有明顯的規律性,科學家們是按原子序數遞增排列,將電子層數相同的元素放在同一行,將最外層電子數相同的元素放在同一列。

元素周期表有7個周期,16個族。每一個橫行叫作一個周期,每一個縱行叫作一個族(VIII B族包含三個縱列)。這7個周期又可分成短周期(1、2、3)、長周期(4、5、6、7)。共有16個族,從左到右每個縱列算一族(VIII B族除外)。例如:氫屬於I A族元素,而氦屬於0族元素。

元素在周期表中的位置不僅反映了元素的原子結構,也顯示了元素性質的遞變規律和元素之間的內在聯系。使其構成了一個完整的體系稱為化學發展的重要里程碑之一。

同一周期內,從左到右,元素核外電子層數相同,最外層電子數依次遞增,原子半徑遞減(零族元素除外)。失電子能力逐漸減弱,獲電子能力逐漸增強,金屬性逐漸減弱,非金屬性逐漸增強。元素的最高正氧化數從左到右遞增(沒有正價的除外),最低負氧化數從左到右遞增(第一周期除外,第二周期的O、F元素除外)。

同一族中,由上而下,最外層電子數相同,核外電子層數逐漸增多,原子半徑增大,原子序數遞增,元素金屬性遞增,非金屬性遞減。

元素周期表的意義重大,科學家正是用此來尋找新型元素及化合物。

2015年12月31日美國《科學新聞》雙周刊網站發表了題為《四種元素在元素周期表上獲得永久席位》的報道。國際純粹與應用化學聯合會(IUPAC)宣布俄羅斯和美國的研究團隊已獲得充分的證據,證明其發現了115、117和 118號元素。

此外,該聯合會已認可日本理化學研究所的科研人員發現了113號元素。兩個研究團隊通過讓質量較輕的核子相互撞擊,並跟蹤其後產生的放射性超重元素的衰變情況,合成了上述四種元素。IUPAC執行理事林恩·瑟比說,有關確認新元素的報告將於2016年初公布。

官方對這些元素的認可意味著它們的發現者有權為其命名並設計符號。113號元素將成為首個由亞洲人發現並命名的元素,於2016年6月正式命名為Nihonium,符號Nh。

2015年12月30日,國際純粹與應用化學聯合會宣布第113,115,117,118號元素存在,它們將由日本、俄羅斯和美國科學家命名。IUPAC官方宣布,元素周期表已經加入4個新元素。

2016年6月8日,國際純粹與應用化學聯合會宣布,將合成化學元素第113號(縮寫為Nh)、115號(Mc)、117號(Ts)和118號(Og)提名為化學新元素 。

D. 求化學元素周期表,要清晰的。

這個行嗎

E. 初三化學元素表

需要記住前20種元素:

氫 氦 鋰 鈹 硼 H He Li Be B

碳 氮 氧 氟 氖 C N O F Ne

鈉 鎂 鋁 硅 磷 Na Mg Al Si P

硫 氯 氬 鉀 鈣 S Cl Ar K Ca

鋅 鐵 錳 鋇 碘 Zn Fe Mn Ba I

銅 汞 銀 鉑 金 Cu Hg Ag Pt Au

拼音如下:

氫(qīng) 氦(hài)

鋰(lǐ) 鈹(pí) 硼(péng) 碳(tàn) 氮(dàn) 氧(yǎng) 氟(fú) 氖(nǎi)

鈉(nà) 鎂(měi) 鋁(lǚ) 硅(guī) 磷(lín) 硫(liú) 氯(lǜ) 氬(yà)

鉀(jiǎ) 鈣(gài)

順口溜記憶法:

青害李皮朋,探丹陽付奶。

(氫氦鋰鈹硼,碳氮氧氟氖)

那美女桂林,流露押嫁該。

(鈉鎂鋁硅磷,硫氯氬鉀鈣)

(5)化學用表擴展閱讀:

化學元素周期表是根據原子序數從小至大排序的化學元素列表。列表大體呈長方形,某些元素周期中留有空格,使特性相近的元素歸在同一族中,如鹼金屬元素、鹼土金屬、鹵族元素、稀有氣體等。

這使周期表中形成元素分區且分有七主族、七副族、Ⅷ族、0族。由於周期表能夠准確地預測各種元素的特性及其之間的關系,因此它在化學及其他科學范疇中被廣泛使用,作為分析化學行為時十分有用的框架。

俄國化學家門捷列夫(Dmitri Mendeleev)於1869年發明周期表, 此後不斷有人提出各種類型周期表不下170餘種。

歸納起來主要有:短式表(以門捷列夫為代表)、長式表(維爾納式為代表)、特長表(以波爾塔式為代表);平面螺線表和圓形表(以達姆開夫式為代表);立體周期表(以萊西的圓錐柱立體表為代表)等。

F. 化學(元素周期表)

如果你是高中生那就問的極其超綱了。另外如果要所有的,你給的分也忒少了吧?
第四周期以鈧Sc為例:+21 2 8 9 2 鎵Ga:+31 2 8 18 3
第五周期:鍶Sr:+38 2 8 18 8 2 釔Y:+39 2 8 18 9 2
銦In:+49 2 8 18 18 3
第六周期:鋇:+56 2 8 18 18 8 2
鑭La:+57 2 8 18 18 9 2鈰Ce:+58 2 8 18 19 9 2
汞Hg:+80 2 8 18 32 18 2
鉈Tl:+81 2 8 18 32 18 3
第七周期鐳Ra:+88 2 8 18 32 18 8 2
錒Ac:+89 2 8 18 32 18 9 2
鐒Lr:+103 2 8 18 32 32 9 2
釒侖Rg(原Uuu,打不出):+111 2 8 18 32 32 17 2
Uub:+112 2 8 18 32 32 18 2
以上只是舉例,並不能說明太多問題,不能說某一層電子是有規律的多次來遞增的,除了能量最低規則外還有洪特規則,鮑里不相容原理等等,可以解釋如鈀Pd:+46 2 8 18 18 0之類的現象,不過還是不能完全完全概括,統的來說用薛定諤方程相關方程就可以比較全面的概括全部的現象,包括看起來比較混亂的鑭系和錒系,以及語言第八周期將可能出現的超錒系。

G. 化學元素表有哪些

第一個周期:氫氦(輕咳)即背誦它很輕松。
第二周期:鋰鈹硼碳 氮氧氟氖(狸皮捧炭 蛋養弗奶):前一句是用狐狸皮捧木炭,後一句是說凡是從蛋里養的都不吃奶。
第三周期:鈉鎂鋁硅磷硫氯氬(拉美旅歸,林柳路呀):一個人從拉丁美洲旅行回來,道路上有很多柳樹
第四周期:鉀鈣鈧鈦釩鉻錳鐵鈷鎳銅鋅鎵鍺砷硒溴氪(賈蓋扛袋煩擱猛,鐵箍捏從新家者,身洗臭殼):名字叫賈蓋的人扛袋子心裡煩,擱在地上很猛,鐵箍是從新來的人那裡捏來的,從身上洗去臭殼吧。
第五周期:銣鍶釔鋯鈮鉬鍀釕銠鈀銀鎘銦錫銻碲碘氙(如思已告你目的,鐐銬把人隔音息,涕地點三):如果讓你思考已經告訴了你目的,鐐銬把人隔絕了音息,眼淚落到地上三點。
第六周期:銫鋇鑭鉿鉭鎢錸鋨銥鉑金汞鉈鉛鉍釙砹氡(塞壩攔河但勿來,俄依鉑金供他錢,必破挨凍):塞住大壩攔在河上就不要來了,俄國依靠鉑金供他錢,必然會國破挨凍。
第七周期:鈁鐳錒(防雷啊):要防範打雷

H. 化學元素周期表圖

化學元素周期表圖:http://ke..com/pic/8/11462876658858574.jpg
化學元素周期表
元素周期表是元素周期律用表格表達的具體形式,它反映元素原子的內部結構和它們之間相互聯系的規律。元素周期表簡稱周期表。元素周期表有很多種表達形式,目前最常用的是維爾納長式周期表。元素周期表有7個周期,有16 個族和4個區。元素在周期表中的位置能反映該元素的原子結構。周期表中同一橫列元素構成一個周期。同周期元素原子的電子層數等於該周期的序數。同一縱行(第Ⅷ族包括3個縱行)的元素稱「族」。族是原子內部外電子層構型的反映。例如外電子構型,IA族是ns1,IIIA族是ns2 np1,O族是ns2 np6, IIIB族是(n-1) d1·us2等。元素周期表能形象地體現元素周期律。根據元素周期表可以推測各種元素的原子結構以及元素及其化合物性質的遞變規律。當年,門捷列夫根據元素周期表中未知元素的周圍元素和化合物的性質,經過綜合推測,成功地預言未知元素及其化合物的性質。現在科學家利用元素周期表,指導尋找製取半導體、催化劑、化學農葯、新型材料的元素及化合物。

化學元素周期表最早由門捷列夫於1869年編定

1 H氫1.0079
2 He氦4.0026
3 Li鋰6.941
4 Be鈹9.0122
5 B硼10.811
6 C碳12.011
7 N氮14.007
8 O氧15.999
9 F氟18.998
10 Ne氖20.17
11 Na鈉22.9898
12 Mg鎂24.305
13 Al鋁26.982
14 Si硅28.085
15 P磷30.974
16 S硫32.06
17 Cl氯35.453
18 Ar氬39.94
19 K鉀39.098
20 Ca鈣40.08
21 Sc鈧44.956
22 Ti鈦47.9
23 V 釩50.94
24 Cr鉻51.996
25 Mn錳54.938
26 Fe鐵55.84
27 Co鈷58.9332
28 Ni鎳58.69
29 Cu銅63.54
30 Zn鋅65.38
31 Ga鎵69.72
32 Ge鍺72.5
33 As砷74.922
34 Se硒78.9
35 Br溴79.904
36 Kr氪83.8
37 Rb銣85.467
38 Sr鍶87.62
39 Y 釔88.906
40 Zr鋯91.22
41 Nb鈮92.9064
42 Mo鉬95.94
43 Tc鍀(99)
44 Ru釕161.0
45 Rh銠102.906
46 Pd鈀106.42
47 Ag銀107.868
48 Cd鎘112.41
49 In銦114.82
50 Sn錫118.6
51 Sb銻121.7
52 Te碲127.6
53 I碘126.905
54 Xe氙131.3
55 Cs銫132.905
56 Ba鋇137.33
57-71La-Lu鑭系
57 La鑭138.9
58 Ce鈰140.1
59 Pr鐠140.9
60 Nd釹144.2
61 Pm鉕(147)
62 Sm釤150.3
63 Eu銪151.96
64 Gd釓157.25
65 Tb鋱158.9
66 Dy鏑162.5
67 Ho鈥164.9
68 Er鉺167.2
69 Tm銩168.9
70 Yb鐿173.04
71 Lu鑥174.967
72 Hf鉿178.4
73 Ta鉭180.947
74 W鎢183.8
75 Re錸186.207
76 Os鋨190.2
77 Ir銥192.2
78 Pt鉑195.08
79 Au金196.967
80 Hg汞200.5
81 Tl鉈204.3
82 Pb鉛207.2
83 Bi鉍208.98
84 Po釙(209)
85 At砹(201)
86 Rn氡(222)
87 Fr鈁(223)
88 Ra鐳226.03
89-103Ac-Lr錒系
89 Ac錒(227)
90 Th釷232.0
91 Pa鏷231.0
92 U鈾238.0
93 Np鎿(237)
94 Pu鈈(239,244)
95 Am鎇(243)
96 Cm鋦(247)
97 Bk錇(247)
98 Cf鐦(251)
99 Es鎄(252)
100 Fm鐨(257)
101 Md鍆(258)
102 No鍩(259)
103 Lr鐒(260)
104 Rf釒盧(257)
105 Db釒杜(261)
106 Sg釒喜(262)
107 Bh釒波(263)
108 Hs釒黑(262)
109 Mt釒麥(265)
110 Ds釒達(266)
111 Rg釒侖(272)
112 Uub(285)
113 Uut(284)
114 Uuq(289)
115 (未知)
116 Uuh(292)
117 (未知)
118 Uuo(293)

門捷列夫出生於1834年,他出生不久,父親就因雙目失明出外就醫,失去了得以維持家人生活的教員職位。門捷列夫14歲那年,父親逝世,接著火災又吞沒了他家中的所有財產,真是禍不單行。1850年,家境困頓的門捷列夫藉著微薄的助學金開始了他的大學生活,後來成了彼得堡大學的教授。

幸運的是,門捷列夫生活在化學界探索元素規律的卓絕時期。當時,各國化學家都在探索已知的幾十種元素的內在聯系規律。

1865年,英國化學家紐蘭茲把當時已知的元素按原子量大小的順序進行排列,發現無論從哪一個元素算起,每到第八個元素就和第一個元素的性質相近。這很像音樂上的八度音循環,因此,他乾脆把元素的這種周期性叫做「八音律」,並據此畫出了標示元素關系的「八音律」表。

顯然,紐蘭茲已經下意識地摸到了「真理女神」的裙角,差點就揭示元素周期律了。不過,條件限制了他作進一步的探索,因為當時原子量的測定值有錯誤,而且他也沒有考慮到還有尚未發現的元素,只是機械地按當時的原子量大小將元素排列起來,所以他沒能揭示出元素之間的內在規律。

可見,任何科學真理的發現,都不會是一帆風順的,都會受到阻力,有些阻力甚至是人為的。當年,紐蘭茲的「八音律」在英國化學學會上受到了嘲弄,主持人以不無譏諷的口吻問道:「你為什麼不按元素的字母順序排列?」

門捷列夫顧不了這么多,他以驚人的洞察力投入了艱苦的探索。直到1869年,他將當時已知的仍種元素的主要性質和原子量,寫在一張張小卡片上,進行反復排列比較,才最後發現了元素周期規律,並依此制定了元素周期表。

先背熟元素周期表,然後就會慢慢找出各族元素的規律,以後見到沒有學過的元素只要是同一族的都會知道有什麼特點,有什麼化學性質,那就不是可以舉一反三了

橫著看叫周期,是指元素周期表上某一橫列元素最外層電子從1到8的一個周期循環
豎著看叫族,是指某一豎列元素因最外層電子數相同而表現出的相似的化學性質

可能太口語化了……化學專業的達人們再解釋一下~

偶是學信息的4年沒看化學了
主族元素是只有最外層電子沒有排滿的,但是副族有能級的躍遷,次外層電子也沒排滿。去找本高一的化學課本都有阿

用諧音狂想記憶法較好記:輕(氫)孩(氦)離(鋰)皮(鈹),朋(硼)嘆(碳)淡(氮)養(氧),佛(氟)奶(氖)那(鈉)沒(鎂),屢(鋁)歸(硅)臨(磷)留(硫),濾(氯)牙(氬)加(鉀)鈣。
意思是說:瘦弱體重很輕的小孩皮膚脫皮,朋友慨嘆說你應該粗放型地養他。我們家老佛爺也就是孩子的奶奶說:那樣沒法子養。屢次回老家討偏方,臨走時還給人家留下錢,人家屢次說,你應該給他的牙加補一些鈣。
這是我上初中時學化學時自己編的,你瞧都二十年了還記得很清楚。元素周期表」。這張表揭示了物質世界的秘密,把一些看來似乎互不相關的元素統一起來,組成了一個完整的自然體系。它的發明,是近代化學史上的一個創舉,對於促進化學的發展,起了巨大的作用。看到這張表,人們便會想到它的最早發明者——門捷列夫。
德米特里·伊萬諾維奇·門捷列夫生於一八三四年二月七日俄國西伯利亞的托波爾斯克市。這個時代,正是歐洲資本主義迅速發展時期。生產的飛速發展,不斷地對科學技術提出新的要求。化學也同其它科學一樣,取得了驚人的進展。門捷列夫正是在這樣一個時代,誕生到人間。門捷列夫從小就熱愛勞動,熱愛學習。他認為只有勞動,才能使人們得到快樂、美滿的生活;只有學習,才能使人變得聰明。
門捷列夫在學校讀書的時候,一位很有名的化學教師,經常給他們講課。熱情地向他們介紹當時由英國科學家道爾頓始創的新原子論。由於道爾頓新原於學說的問世,促進了化學的發展速度,一個一個的新元素被發現了。化學這一門科學正激動著人們的心。這位教師的講授,使門捷列夫的思想更加開闊了,決心為化學這門科學獻出一生。
門捷列夫在大學學習期間,表現出了堅韌、忘我的超人精神。疾病折磨著門捷列夫,由於喪失了無數血液,他一天一天的消瘦和蒼白了。可是,在他貧血的手裡總是握著一本化學教科書。那裡面當時有很多沒有弄明白的問題,纏繞著他的頭腦,似乎在召呼他快去探索。他在用生命的代價,在科學的道路上攀登著。他說,我這樣做「不是為了自己的光榮,而是為了俄國名字的光榮。」——過了一段時間以後,門捷列夫並沒有死去,反而一天天好起來了。最後,才知道是醫生診斷的錯誤,而他得的不過是氣管出血症罷了。
由於門捷列夫學習刻苦和在學習期間進行了一些創造性的研究工作,一八五五年,他以優異成績從學院畢業。畢業後,他先後到過辛菲羅波爾、敖德薩擔任中學教師。這期間,他一邊教書,一邊在極其簡陋的條件下進行研究,寫出了《論比容》的論文。文中指出了根據比容進行化合物的自然分組的途徑。一八五七年一月,他被批准為彼得堡大學化學教研室副教授,當時年僅二十三歲。
攀登科學高峰的路,是一條艱苦而又曲折的路。門捷列夫在這條路上,也是吃盡了苦頭。當他擔任化學副教授以後,負責講授《化學基礎》課。在理論化學里應該指出自然界到底有多少元素?元素之間有什麼異同和存在什麼內部聯系?新的元素應該怎樣去發現?這些問題,當時的化學界正處在探索階段。近五十多年來,各國的化學家們,為了打開這秘密的大門,進行了頑強的努力。雖然有些化學家如德貝萊納和紐蘭茲在一定深度和不同角度客觀地敘述了元素間的某些聯系,但由於他們沒有把所有元素作為整體來概括,所以沒有找到元素的正確分類原則。年輕的學者門捷列夫也毫無畏懼地沖進了這個領域,開始了艱難的探索工作。
他不分晝夜地研究著,探求元素的化學特性和它們的一般的原子特性,然後將每個元素記在一張小紙卡上。他企圖在元素全部的復雜的特性里,捕捉元素的共同性。一但他的研究,一次又一次地失敗了。可他不屈服,不灰心,堅持幹下去。
為了徹底解決這個問題,他又走出實驗室,開始出外考察和整理收集資料。一八五九年,他去德國海德爾堡進行科學深造。兩年中,他集中精力研究了物理化學,使他探索元素間內在聯系的基礎更扎實了。一八六二年,他對巴庫油田進行了考察,對液體進行了深入研究,重測了一些元素的原子量,使他對元素的特性有了深刻的了解。一八六七年,他借應邀參加在法國舉行的世界工業展覽俄羅斯陳列館工作的機會,參觀和考察了法國、德國、比利時的許多化工廠、實驗室,大開眼界,豐富了知識。這些實踐活動,不僅增長了他認識自然的才幹,而且對他發現元素周期律,奠定了雄厚的基礎。
門捷列夫又返回實驗室,繼續研究他的紙卡。他把重新測定過的原子量的元素,按照原子量的大小依次排列起來。他發現性質相似的元素,它們的原子量並不相近;相反,有些性質不同的元素,它們的原子量反而相近。他緊緊抓住元素的原子量與性質之間的相互關系,不停地研究著。他的腦子因過度緊張,而經常昏眩。但是,他的心血並沒有白費,在一八六九年二月十九日,他終於發現了原素周期律。他的周期律說明:簡單物體的性質,以及元素化合物的形式和性質,都和元素原子量的大小有周期性的依賴關系。門捷列夫在排列元素表的過程中,又大膽指出,當時一些公認的原子量不準確。如那時金的原子量公認為169.2,按此在元素表中,金應排在鋨、銥、鉑的前面,因為它們被公認的原子量分別為198.6、6.7、196.7,而門捷列夫堅定地認為金應排列在這三種元素的後面,原子量都應重新測定。大家重測的結果,鋨為190.9、銥為193.1、鉑為195.2,而金是197.2。實踐證實了門捷列夫的論斷,也證明了周期律的正確性。
在門捷列夫編制的周期表中,還留有很多空格,這些空格應由尚未發現的元素來填滿。門捷列夫從理論上計算出這些尚未發現的元素的最重要性質,斷定它們介於鄰近元素的性質之間。例如,在鋅與砷之間的兩個空格中,他預言這兩個未知元素的性質分別為類鋁和類硅。就在他預言後的四年,法國化學家布阿勃朗用光譜分析法,從門鋅礦中發現了鎵。實驗證明,鎵的性質非常象鋁,也就是門捷列夫預言的類鋁。鎵的發現,具有重大的意義,它充分說明元素周期律是自然界的一條客觀規律;為以後元素的研究,新元素的探索,新物資、新材料的尋找,提供了一個可遵循的規律。元素周期律象重炮一樣,在世界上空轟響了!
門捷列夫發現了元素周期律,在世界上留下了不朽的光榮,人們給他以很高的評價。恩格斯在《自然辯證法》一書中曾經指出。「門捷列夫不自覺地應用黑格爾的量轉化為質的規律,完成了科學上的一個勛業,這個勛業可以和勒維烈計算尚未知道的行星海王星的軌道的勛業居於同等地位。」
由於時代的局限性,門捷列夫的元素周期律並不是完整無缺的。一八九四年,惰性氣體氛的發現,對周期律是一次考驗和補充。一九一三年,英國物理學家莫塞萊在研究各種元素的倫琴射線波長與原子序數的關系後,證實原子序數在數量上等於原子核所帶的陽電荷,進而明確作為周期律的基礎不是原子量而是原子序數。在周期律指導下產生的原於結構學說,不僅賦予元素周期律以新的說明,並且進一步闡明了周期律的本質,把周期律這一自然法則放在更嚴格更科學的基礎上。元素周期律經過後人的不斷完善和發展,在人們認識自然,改造自然,征服自然的斗爭中,發揮著越來越大的作用。
門捷列夫除了完成周期律這個勛業外,還研究過氣體定律、氣象學、石油工業、農業化學、無煙火葯、度量衡等。由於他總是日以繼夜地頑強地勞動著,在他研究過的這些領域中,都在不同程度上取得了成就。
一九0七年二月二日,這位享有世界盛譽的科學家,因心肌梗塞與世長辭了。但他給世界留下的寶貴財產,永遠存留在人類的史冊上。

元素周期律的發現是許多科學家共同努力的結果。
1789年,拉瓦錫出版的《化學大綱》中發表了人類歷史上第一張《元素表》,在這張表中,他將當時已知的33種元素分四類。
1829年,德貝萊納在對當時已知的54種元素進行了系統的分析研究之後,提出了元素的三元素組規則。他發現了幾組元素,每組都有三個化學性質相似的成員。並且,在每組中,居中的元素的原子量,近似於兩端元素原子量的平均值。
1850年,德國人培頓科弗宣布,性質相似的元素並不一定只有三個;性質相似的元素的原子量之差往往為8或8的倍數。
1862年,法國化學家尚古多創建了《螺旋圖》,他創造性地將當時的62種元素,按各元素原子量的大小為序,標志著繞著圓柱一升的螺旋線上。他意外地發現,化學性質相似的元素,都出現在同一條母線上。
1863年,英國化學家歐德林發表了《原子量和元素符號表》,共列出49個元素,並留有9個空位。
上述各位科學家以及他們所做的研究,在一定程度上只能說是一個前期的准備,但是這些准備工作是不可缺少的。而俄國化學家門捷列夫、德國化學家邁爾和英國化學家紐蘭茲在元素周期律的發現過程中起了決定性的作用。
1865年,紐蘭茲正在獨立地進行化學元素的分類研究,在研究中他發現了一個很有趣的現象。當元素按原子量遞增的順序排列起來時,每隔8個元素,元素的物理性質和化學性質就會重復出現。由此他將各種元素按著原子量遞增的順序排列起來,形成了若干族系的周期。紐蘭茲稱這一規律為「八音律」。這一正確的規律的發現非但沒有被當時的科學界接受,反而使它的發現者紐蘭茲受盡了非難和侮辱。直到後來,當人人已信服了門氏元素周期之後才警醒了,英國皇家學會對以往對紐蘭茲不公正的態度進行了糾正。門捷列夫在元素周期的發現中可謂是中流砥柱,不可避免地,他在研究工作中亦接受了包括自己的老師在內的各個方面的不理解和壓力。
門捷列夫生於1834年,10歲之前居住於西伯利亞,在一個政治流放者的指導下,學習科學知識並對其產生了極大興趣。1847年,失去父親的門捷列夫隨母親來到披得堡。1850年,進入中央師范學院學習,畢業後曾擔任中學教師,後任彼得堡大學副教授。
1867年,擔任教授的門捷列夫為了系統地講好無機化學課程中,正在著手著述一本普通化學教科書《化學原理》。在著書過程中,他遇到一個難題,即用一種怎樣的合乎邏輯的方式來組織當時已知的63種元素。
門捷列夫仔細研究了63種元素的物理性質和化學性質,又經過幾次並不滿意的開頭之後,他想到了一個很好的方法對元素進行系統的分類。門捷列夫准備了許多類似撲克牌一樣的卡片,將63種化學元素的名稱及其原子量、氧化物、物理性質、化學性質等分別寫在卡片上。門捷列夫用不同的方法去擺那些卡片,用以進行元素分類的試驗。最初,他試圖像德貝萊納那樣,將元素分分為三個一組,得到的結果並不理想。他又將非金屬元素和金屬元素分別擺在一起,使其分成兩行,仍然未能成功。他用各種方法擺弄這些卡片,都未能實現最佳的分類。
1869年3月1日這一天,門捷列夫仍然在對著這些卡片苦苦思索。他先把常見的元素族按照原子量遞增的順序拼在一起,之後是那些不常見的元素,最後只剩下稀土元素沒有全部「入座」,門捷列夫無奈地將它放在邊上。從頭至尾看一遍排出的「牌陣」,門捷列夫驚喜地發現,所有的已知元素都已按原子量遞增的順序排列起來,並且相似元素依一定的間隔出現。
第二天,門捷列夫將所得出的結果製成一張表,這是人類歷史上第一張化學元素周期表。在這個表中,周期是縱行,族是橫行。在門捷列夫的周期表中,他大膽地為尚待發現的元素留出了位置,並且在其關於周期表的發現的論文中指出:按著原子量由小到大的順序排列各種元素,在原子量跳躍過大的地方會有新元素被發現,因此周期律可以預言尚待發現的元素。
事實上,德國化學家邁爾早在1864年就已發明了「六元素表」,此表已具備了化學元素周期表早幾個月,邁爾又對「六元素表」進行了遞減,提出了著名的《原子體積周期性圖解》。該圖解比門氏的第一張化學元素表定量化程度要強,因而比較精確。但是,邁爾未能對該圖解進行系統說明,而該圖解側重於化學元素物理性質的體現。
1871年12月,門捷列夫在第一張元素周期表的基礎上進行增益,發表了第二張表。在該表中,改豎排為橫排,使用一族元素處於同一豎行中,更突出了元素性質的周期性。至此,化學元素周期律的發現工作已圓滿完成。
客觀上來說,邁爾和門捷列夫都曾獨自發現了元素的周期律,但是由於門捷列夫對元素周期律的研究最為徹底,故而在化學界通常將周期律稱為門捷列夫周期律。

I. 化學元素表

你好:
首先:一橫行稱為一個周期,一列稱為一個族。

然後:核外電子排布的規律 :橫的是同周期 也就是最外層電子數從1開始增加
豎的是同主族 也就是增加一個周期(電子層數) 但最外層電子數相同

再來是:還有你說的那些過渡金屬,類金屬,鹼金屬……不需要的,除非你要報這專業。

最後:口訣嘛我引用了別人的這樣:
第一周期:氫 氦 ---- 侵害

第二周期:鋰 鈹 硼 碳 氮 氧 氟 氖 ---- 鯉皮捧碳 蛋養福奶

第三周期:鈉 鎂 鋁 硅 磷 硫 氯 氬 ---- 那美女桂林留綠牙(那美女鬼 流露綠牙)

第四周期:鉀 鈣 鈧 鈦 釩 鉻 錳 ---- 嫁改康太反革命
鐵 鈷 鎳 銅 鋅 鎵 鍺 ---- 鐵姑捏痛新嫁者
砷 硒 溴 氪 ---- 生氣 休克

第五周期:銣 鍶 釔 鋯 鈮 ---- 如此一告你
鉬 鍀 釕 ---- 不得了
銠 鈀 銀 鎘 銦 錫 銻 ---- 老把銀哥印西堤
碲 碘 氙 ---- 地點仙

第六周期:銫 鋇 鑭 鉿 ----(彩)色貝(殼)藍(色)河
鉭 鎢 錸 鋨 ---- 但(見)烏(鴉)(引)來鵝
銥 鉑 金 汞 砣 鉛 ---- 一白巾 供它牽
鉍 釙 砹 氡 ---- 必不愛冬(天)

第七周期:鈁 鐳 錒 ---- 很簡單了~就是---- 防雷啊!
希望有幫助

J. 初中化學元素周期表全部

元素周期表(注音版)

qīng氫 hài氦 lǐ鋰 pí鈹 péng硼 tàn碳 dàn氮 yǎng氧

fú氟 nǎi氖 nà鈉 měi鎂lǚ鋁 guī硅 lín磷 liú硫 lǜ氯

yà氬 jiǎ鉀 gài鈣 kàng鈧 tài鈦 fán釩 gè鉻měng錳

tiě鐵 gǔ鈷 niè鎳 tóng銅 xīn鋅 jiā鎵 zhě鍺 shēn砷

xī硒 xiù溴 kè氪rú銣 sī鍶 yǐ釔 gào鋯 ní鈮 mù鉬

dé鍀 liǎo釕 lǎo銠 pá鈀 yín銀 gé鎘 yīn銦 xī錫 tī銻

dì碲 diǎn碘 xiān氙 sè銫 bèi鋇 lán鑭 shì鈰 cuò錯

nǚ釹pǒ鉕 shān釤 yǒu銪 gá釓 tè鋱 dí鏑 huǒ鈥

ěr鉺diū銩 yì鐿 lǔ鑥 hā鉿 tǎn鉭 wū鎢 lái錸 é鋨

yī銥 bó鉑 jīn金 gǒng汞 tā鉈 qiān鉛 bì鉍 pō釙ài砹

dōng氡 fāng鈁 léi鐳 ā錒 tǔ釷 pú鏷 yóu鈾 ná鎿

bù鈈 méi鎇 jū鋦péi錇 kāi鐦 āi鎄 fèi鐨 mén鍆 nuò鍩 láo鐒

(10)化學用表擴展閱讀:

化學元素周期表是根據原子序數從小至大排序的化學元素列表。列表大體呈長方形,某些元素周期中留有空格,使特性相近的元素歸在同一族中,如鹼金屬元素、鹼土金屬、鹵族元素、稀有氣體等。

這使周期表中形成元素分區且分有七主族、七副族、Ⅷ族、0族。由於周期表能夠准確地預測各種元素的特性及其之間的關系,因此它在化學及其他科學范疇中被廣泛使用,作為分析化學行為時十分有用的框架。

按照元素在周期表中的順序給元素編號,得到原子序數。原子序數跟元素的原子結構有如下關系:

質子數=原子序數=核外電子數=核電荷數

原子的核外電子排布和性質有明顯的規律性,科學家們是按原子序數遞增排列,將電子層數相同的元素放在同一行,將最外層電子數相同的元素放在同一列。

元素周期表有7個周期,16個族。每一個橫行叫作一個周期,每一個縱行叫作一個族(VIII B族包含三個縱列)。這7個周期又可分成短周期(1、2、3)、長周期(4、5、6、7)。共有16個族,從左到右每個縱列算一族(VIII B族除外)。例如:氫屬於I A族元素,而氦屬於0族元素。

元素在周期表中的位置不僅反映了元素的原子結構,也顯示了元素性質的遞變規律和元素之間的內在聯系。使其構成了一個完整的體系,被稱為化學發展的重要里程碑之一。

元素位置推斷

1、元素周期數等於核外電子層數;

2、主族元素的序數等於最外層電子數;

3、確定族數應先確定是主族還是副族,其方法是採用原子序數逐步減去各周期的元素種數,即可由最後的差數來確定。在第一至第五周期時最後的差數小於等於10時差數就是族序數,差為8、9、10時為Ⅷ族,差數大於10時,則再減去10,最後結果為族序數;在第六、七周期時差數為1:ⅠA族,差數為2:ⅡA族,差數為3~17:鑭系或錒系,差數介於18和21之間:減14,差數為22~24:Ⅷ族,差數大於25:減24,為對應的主族

根據各周期所含的元素種類推斷,用原子序數減去各周期所含的元素種數,當結果為「0」時,為零族;當為正數時,為周期表中從左向右數的縱行,如為「2」則為周期表中從左向右數的第二縱行,即第ⅡA族;當為負數時其主族序數為8+結果。

所以應熟記各周期元素的種數,即2、8、8、18、18、32、32。如:

①114號元素在周期表中的位置114-2-8-8-18-18-32-32=-4,8+(-4)=4,即為第七周期,第ⅣA族。

②75號元素在周期表中的位置75-2-8-8-18-18=21,21-14=7,即為第六周期,第ⅦB族

熱點內容
遠大校園招聘 發布:2025-06-05 06:59:00 瀏覽:555
美國老師電影 發布:2025-06-05 04:26:44 瀏覽:383
快樂星球2姬老師 發布:2025-06-05 04:26:41 瀏覽:895
智能走勢歷史開獎記錄歷史開獎記錄 發布:2025-06-05 04:06:05 瀏覽:500
英語there 發布:2025-06-05 04:03:04 瀏覽:134
校園bgm 發布:2025-06-05 01:51:37 瀏覽:133
小學校長師德師風事跡材料 發布:2025-06-05 01:51:28 瀏覽:466
柬埔寨人文地理 發布:2025-06-05 00:25:02 瀏覽:609
師德常識考試題及答案 發布:2025-06-04 23:14:18 瀏覽:7
衡陽招聘老師 發布:2025-06-04 22:11:19 瀏覽:924